#include "ngram-cache.h" #include "common.h" #include "log.h" #include <cstdint> #include <fstream> void llama_ngram_cache_update(llama_ngram_cache & ngram_cache, int ngram_min, int ngram_max, std::vector<llama_token> & inp, int nnew, bool print_progress) { const int64_t t_start_ms = ggml_time_ms(); const int64_t inp_size = inp.size(); const int64_t n_todo = inp_size * (ngram_max - ngram_min + 1); int64_t n_done = 0; for (int64_t ngram_size = ngram_min; ngram_size <= ngram_max; ++ngram_size) { const int64_t i_start = std::max(inp_size - nnew, ngram_size); for (int64_t i = i_start; i < inp_size; ++i) { const int64_t ngram_start = i - ngram_size; llama_ngram ngram(&inp[ngram_start], ngram_size); const llama_token token = inp[i]; llama_ngram_cache::iterator part_it = ngram_cache.find(ngram); if (part_it == ngram_cache.end()) { llama_ngram_cache_part part; part.emplace(token, 1); ngram_cache.emplace(ngram, part); } else { llama_ngram_cache_part::iterator token_count_it = part_it->second.find(token); if (token_count_it == part_it->second.end()) { part_it->second.emplace(token, 1); } else { token_count_it->second++; } } ++n_done; if (print_progress && n_done % 10000000 == 0) { const int64_t t_now_ms = ggml_time_ms(); const int64_t eta_ms = (inp_size*(ngram_max-ngram_min+1) - n_done) * (t_now_ms - t_start_ms) / n_done; const int64_t eta_min = eta_ms / (60*1000); const int64_t eta_s = (eta_ms - 60*1000*eta_min) / 1000; fprintf(stderr, "%s: %" PRId64 "/%" PRId64 " done, ETA: %02" PRId64 ":%02" PRId64 "\n", __func__, n_done, n_todo, eta_min, eta_s); } } } } // Helper function to get a token from the combined, speculative sequence of inp and draft. static llama_token get_token(const std::vector<llama_token> & inp, const std::vector<llama_token> & draft, const size_t i) { return i < inp.size() ? inp[i] : draft[1 + i - inp.size()]; } // If sample size or percentage are below these thresholds the draft is aborted early: constexpr int draft_min_sample_size_lax[LLAMA_NGRAM_MAX] = { 2, 2, 1, 1}; constexpr int draft_min_percent_lax[LLAMA_NGRAM_MAX] = {66, 50, 50, 50}; constexpr int draft_min_sample_size_strict[LLAMA_NGRAM_MAX] = { 4, 3, 2, 2}; constexpr int draft_min_percent_strict[LLAMA_NGRAM_MAX] = {75, 66, 66, 66}; // Helper function that tries to draft a token from only the static ngram cache: static llama_token try_draft(llama_ngram_cache & nc_static, const llama_ngram ngram_static) { llama_ngram_cache::iterator part_static_it = nc_static.find(ngram_static); if (part_static_it == nc_static.end()) { return -1; } const llama_ngram_cache_part part_static = part_static_it->second; int max_count_static = 0; int sum_count_static = 0; llama_token max_token = -1; for (std::pair<llama_token, int> token_count_static : part_static) { const llama_token token = token_count_static.first; const int32_t count_static = token_count_static.second; if (count_static > max_count_static) { max_token = token; max_count_static = count_static; } sum_count_static += count_static; } if (sum_count_static < draft_min_sample_size_lax[LLAMA_NGRAM_STATIC-1]) { return -1; } if (100*max_count_static < draft_min_percent_lax[LLAMA_NGRAM_STATIC-1]*sum_count_static) { return -1; } return max_token; } // Try to draft a token from primary cache (context/dynamic), validate with static cache: static llama_token try_draft( llama_ngram_cache & nc_primary, const std::vector<llama_ngram> & ngrams_primary, llama_ngram_cache_part & part_static, const int * min_sample_size, const int * min_percent) { llama_token drafted_token = -1; for (int i = ngrams_primary.size()-1; i >= 0 && drafted_token == -1; --i) { const llama_ngram ngram_primary = ngrams_primary[i]; llama_ngram_cache::iterator part_primary_it = nc_primary.find(ngram_primary); if (part_primary_it == nc_primary.end()) { continue; } const llama_ngram_cache_part part_primary = part_primary_it->second; int max_count_primary = 0; int max_count_static = 0; int sum_count_primary = 0; llama_token max_token = -1; for (std::pair<llama_token, int> token_count_primary : part_primary) { const llama_token token = token_count_primary.first; llama_ngram_cache_part::iterator token_count_static_it = part_static.find(token); const int32_t count_primary = token_count_primary.second; const int32_t count_static = token_count_static_it != part_static.end() ? 100*token_count_static_it->second : 1; if (count_primary*count_static > max_count_primary*max_count_static) { max_token = token; max_count_primary = count_primary; max_count_static = count_static; } sum_count_primary += count_primary; } if (sum_count_primary < min_sample_size[i]) { continue; } if (100*max_count_primary < min_percent[i]*sum_count_primary) { continue;; } drafted_token = max_token; } return drafted_token; } void llama_ngram_cache_draft( std::vector<llama_token> & inp, std::vector<llama_token> & draft, int n_draft, int ngram_min, int ngram_max, llama_ngram_cache & nc_context, llama_ngram_cache & nc_dynamic, llama_ngram_cache & nc_static ) { GGML_ASSERT(draft.size() == 1); const int inp_size = inp.size(); if (inp_size < LLAMA_NGRAM_STATIC) { return; } while ((int) draft.size()-1 < n_draft) { llama_token drafted_token = -1; const int ngram_start_static = inp_size-LLAMA_NGRAM_STATIC + draft.size()-1; llama_ngram ngram_static; for (int j = ngram_start_static; j < ngram_start_static + LLAMA_NGRAM_STATIC; ++j) { ngram_static.tokens[j-ngram_start_static] = get_token(inp, draft, j); } llama_ngram_cache::iterator part_static_it = nc_static.find(ngram_static); llama_ngram_cache_part part_static; if (part_static_it != nc_static.end()) { part_static = part_static_it->second; } // cd = context + dynamic std::vector<llama_ngram> ngrams_cd; for (int ngram_size_cd = ngram_min; ngram_size_cd <= ngram_max; ++ngram_size_cd) { const int ngram_start_cd = inp_size-ngram_size_cd + draft.size()-1; llama_ngram ngram_cd; for (int j = ngram_start_cd; j < ngram_start_cd + ngram_size_cd; ++j) { ngram_cd.tokens[j-ngram_start_cd] = get_token(inp, draft, j); } ngrams_cd.push_back(ngram_cd); } if (drafted_token == -1) { drafted_token = try_draft(nc_context, ngrams_cd, part_static, draft_min_sample_size_lax, draft_min_percent_lax); } if (drafted_token == -1) { drafted_token = try_draft(nc_dynamic, ngrams_cd, part_static, draft_min_sample_size_strict, draft_min_percent_strict); } if (drafted_token == -1) { drafted_token = try_draft(nc_static, ngram_static); } if (drafted_token == -1) { break; } LOG(" - draft candidate: token=%d\n", drafted_token); draft.push_back(drafted_token); } } void llama_ngram_cache_save(llama_ngram_cache & ngram_cache, std::string & filename) { std::ofstream file_out(filename, std::ios::binary); for (std::pair<llama_ngram, llama_ngram_cache_part> item : ngram_cache) { const llama_ngram ngram = item.first; llama_ngram_cache_part token_counts = item.second; GGML_ASSERT(!token_counts.empty()); const int32_t ntokens = token_counts.size(); GGML_ASSERT(ntokens > 0); file_out.write(reinterpret_cast<const char *>(&ngram), sizeof(llama_ngram)); file_out.write(reinterpret_cast<const char *>(&ntokens), sizeof(int32_t)); for (std::pair<llama_token, int32_t> item2 : token_counts) { const llama_token token = item2.first; const int32_t count = item2.second; GGML_ASSERT(count > 0); file_out.write(reinterpret_cast<const char *>(&token), sizeof(llama_token)); file_out.write(reinterpret_cast<const char *>(&count), sizeof(int32_t)); } } } llama_ngram_cache llama_ngram_cache_load(std::string & filename) { std::ifstream hashmap_file(filename, std::ios::binary); if (!hashmap_file) { throw std::ifstream::failure("Unable to open file " + filename); } llama_ngram_cache ngram_cache; llama_ngram ngram; int32_t ntokens; llama_token token; int32_t count; char * ngramc = reinterpret_cast<char*>(&ngram); char * ntokensc = reinterpret_cast<char*>(&ntokens); char * tokenc = reinterpret_cast<char*>(&token); char * countc = reinterpret_cast<char*>(&count); while(hashmap_file.read(ngramc, sizeof(llama_ngram))) { GGML_ASSERT(!hashmap_file.eof()); GGML_ASSERT(hashmap_file.read(ntokensc, sizeof(int32_t))); GGML_ASSERT(ntokens > 0); llama_ngram_cache_part token_counts; for (int i = 0; i < ntokens; ++i) { GGML_ASSERT(!hashmap_file.eof()); GGML_ASSERT(hashmap_file.read(tokenc, sizeof(llama_token))); GGML_ASSERT(!hashmap_file.eof()); GGML_ASSERT(hashmap_file.read(countc, sizeof(int32_t))); GGML_ASSERT(count > 0); token_counts.emplace(token, count); } ngram_cache.emplace(ngram, token_counts); } GGML_ASSERT(hashmap_file.eof()); return ngram_cache; } void llama_ngram_cache_merge(llama_ngram_cache & ngram_cache_target, llama_ngram_cache & ngram_cache_add) { for (std::pair<llama_ngram, llama_ngram_cache_part> ngram_part : ngram_cache_add) { const llama_ngram ngram = ngram_part.first; llama_ngram_cache_part part = ngram_part.second; llama_ngram_cache::iterator part_merged_it = ngram_cache_target.find(ngram); if (part_merged_it == ngram_cache_target.end()) { ngram_cache_target.emplace(ngram, part); continue; } for (std::pair<llama_token, int32_t> token_count : part) { const llama_token token = token_count.first; const int32_t count = token_count.second; GGML_ASSERT(count > 0); llama_ngram_cache_part::iterator token_count_merged_it = part_merged_it->second.find(token); if (token_count_merged_it == part_merged_it->second.end()) { part_merged_it->second.emplace(token, count); continue; } token_count_merged_it->second += count; } } }