#pragma once #include "llama.h" #include "grammar-parser.h" #include <string> #include <vector> #include <unordered_map> // sampling parameters typedef struct llama_sampling_params { int32_t n_prev = 64; // number of previous tokens to remember int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens. int32_t top_k = 40; // <= 0 to use vocab size float top_p = 0.95f; // 1.0 = disabled float min_p = 0.05f; // 0.0 = disabled float tfs_z = 1.00f; // 1.0 = disabled float typical_p = 1.00f; // 1.0 = disabled float temp = 0.80f; // 1.0 = disabled int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size) float penalty_repeat = 1.10f; // 1.0 = disabled float penalty_freq = 0.00f; // 0.0 = disabled float penalty_present = 0.00f; // 0.0 = disabled int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0 float mirostat_tau = 5.00f; // target entropy float mirostat_eta = 0.10f; // learning rate bool penalize_nl = true; // consider newlines as a repeatable token std::string samplers_sequence = "kfypmt"; // top_k, tail_free, typical_p, top_p, min_p, temp std::string grammar; // optional BNF-like grammar to constrain sampling // Classifier-Free Guidance // https://arxiv.org/abs/2306.17806 std::string cfg_negative_prompt; // string to help guidance float cfg_scale = 1.f; // how strong is guidance std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens std::vector<llama_token> penalty_prompt_tokens; bool use_penalty_prompt_tokens = false; } llama_sampling_params; // general sampler context // TODO: move to llama.h struct llama_sampling_context { // parameters that will be used for sampling llama_sampling_params params; // mirostat sampler state float mirostat_mu; llama_grammar * grammar; // internal grammar_parser::parse_state parsed_grammar; // TODO: replace with ring-buffer std::vector<llama_token> prev; std::vector<llama_token_data> cur; }; #include "common.h" // Create a new sampling context instance. struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_params & params); void llama_sampling_free(struct llama_sampling_context * ctx); // Reset the sampler context // - clear prev tokens // - reset grammar void llama_sampling_reset(llama_sampling_context * ctx); // Copy the sampler context void llama_sampling_cp(llama_sampling_context * src, llama_sampling_context * dst); // Get the last sampled token llama_token llama_sampling_last(llama_sampling_context * ctx); // Get a string representation of the last sampled tokens std::string llama_sampling_prev_str(llama_sampling_context * ctx_sampling, llama_context * ctx_main, int n); // Print sampling parameters into a string std::string llama_sampling_print(const llama_sampling_params & params); // Print sampling order into a string std::string llama_sampling_order_print(const llama_sampling_params & params); // this is a common sampling function used across the examples for convenience // it can serve as a starting point for implementing your own sampling function // Note: When using multiple sequences, it is the caller's responsibility to call // llama_sampling_reset when a sequence ends // // required: // - ctx_main: context to use for sampling // - ctx_sampling: sampling-specific context // // optional: // - ctx_cfg: context to use for classifier-free guidance // - idx: sample from llama_get_logits_ith(ctx, idx) // // returns: // - token: sampled token // - candidates: vector of candidate tokens // llama_token llama_sampling_sample( struct llama_sampling_context * ctx_sampling, struct llama_context * ctx_main, struct llama_context * ctx_cfg, int idx = 0); void llama_sampling_accept( struct llama_sampling_context * ctx_sampling, struct llama_context * ctx_main, llama_token id, bool apply_grammar);