#!/usr/bin/env python3 from __future__ import annotations import json import os import struct import sys from typing import Any, BinaryIO, Sequence import numpy as np import torch from pathlib import Path if 'NO_LOCAL_GGUF' not in os.environ: sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf')) import gguf NUMPY_TYPE_TO_FTYPE: dict[str, int] = {"float32": 0, "float16": 1} def write_file_header(fout: BinaryIO, params: dict[str, Any]) -> None: fout.write(b"ggla"[::-1]) # magic (ggml lora) fout.write(struct.pack("i", 1)) # file version fout.write(struct.pack("i", params["r"])) # https://opendelta.readthedocs.io/en/latest/modules/deltas.html says that `lora_alpha` is an int # but some models ship a float value instead # let's convert to int, but fail if lossless conversion is not possible assert ( int(params["lora_alpha"]) == params["lora_alpha"] ), "cannot convert float to int losslessly" fout.write(struct.pack("i", int(params["lora_alpha"]))) def write_tensor_header(fout: BinaryIO, name: str, shape: Sequence[int], data_type: np.dtype[Any]) -> None: sname = name.encode("utf-8") fout.write( struct.pack( "iii", len(shape), len(sname), NUMPY_TYPE_TO_FTYPE[data_type.name], ) ) fout.write(struct.pack("i" * len(shape), *shape[::-1])) fout.write(sname) fout.seek((fout.tell() + 31) & -32) if __name__ == '__main__': if len(sys.argv) < 2: print(f"Usage: python {sys.argv[0]} <path> [arch]") print( "Path must contain HuggingFace PEFT LoRA files 'adapter_config.json' and 'adapter_model.bin'" ) print(f"Arch must be one of {list(gguf.MODEL_ARCH_NAMES.values())} (default: llama)") sys.exit(1) input_json = os.path.join(sys.argv[1], "adapter_config.json") input_model = os.path.join(sys.argv[1], "adapter_model.bin") output_path = os.path.join(sys.argv[1], "ggml-adapter-model.bin") model = torch.load(input_model, map_location="cpu") arch_name = sys.argv[2] if len(sys.argv) == 3 else "llama" if arch_name not in gguf.MODEL_ARCH_NAMES.values(): print(f"Error: unsupported architecture {arch_name}") sys.exit(1) arch = list(gguf.MODEL_ARCH_NAMES.keys())[list(gguf.MODEL_ARCH_NAMES.values()).index(arch_name)] name_map = gguf.TensorNameMap(arch, 200) # 200 layers ought to be enough for anyone with open(input_json, "r") as f: params = json.load(f) if params["peft_type"] != "LORA": print(f"Error: unsupported adapter type {params['peft_type']}, expected LORA") sys.exit(1) if params["fan_in_fan_out"] is True: print("Error: param fan_in_fan_out is not supported") sys.exit(1) if params["bias"] is not None and params["bias"] != "none": print("Error: param bias is not supported") sys.exit(1) # TODO: these seem to be layers that have been trained but without lora. # doesn't seem widely used but eventually should be supported if params["modules_to_save"] is not None and len(params["modules_to_save"]) > 0: print("Error: param modules_to_save is not supported") sys.exit(1) with open(output_path, "wb") as fout: fout.truncate() write_file_header(fout, params) for k, v in model.items(): orig_k = k if k.endswith(".default.weight"): k = k.replace(".default.weight", ".weight") if k in ["llama_proj.weight", "llama_proj.bias"]: continue if k.endswith("lora_A.weight"): if v.dtype != torch.float16 and v.dtype != torch.float32: v = v.float() v = v.T else: v = v.float() t = v.detach().numpy() prefix = "base_model.model." if k.startswith(prefix): k = k[len(prefix) :] lora_suffixes = (".lora_A.weight", ".lora_B.weight") if k.endswith(lora_suffixes): suffix = k[-len(lora_suffixes[0]):] k = k[: -len(lora_suffixes[0])] else: print(f"Error: unrecognized tensor name {orig_k}") sys.exit(1) tname = name_map.get_name(k) if tname is None: print(f"Error: could not map tensor name {orig_k}") print(" Note: the arch parameter must be specified if the model is not llama") sys.exit(1) if suffix == ".lora_A.weight": tname += ".weight.loraA" elif suffix == ".lora_B.weight": tname += ".weight.loraB" else: assert False print(f"{k} => {tname} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB") write_tensor_header(fout, tname, t.shape, t.dtype) t.tofile(fout) print(f"Converted {input_json} and {input_model} to {output_path}")