from __future__ import annotations import re import json import yaml import logging from pathlib import Path from typing import Any, Literal, Optional from dataclasses import dataclass from .constants import Keys import gguf logger = logging.getLogger("metadata") @dataclass class Metadata: # Authorship Metadata to be written to GGUF KV Store name: Optional[str] = None author: Optional[str] = None version: Optional[str] = None organization: Optional[str] = None finetune: Optional[str] = None basename: Optional[str] = None description: Optional[str] = None quantized_by: Optional[str] = None size_label: Optional[str] = None url: Optional[str] = None doi: Optional[str] = None uuid: Optional[str] = None repo_url: Optional[str] = None source_url: Optional[str] = None source_doi: Optional[str] = None source_uuid: Optional[str] = None source_repo_url: Optional[str] = None license: Optional[str] = None license_name: Optional[str] = None license_link: Optional[str] = None base_models: Optional[list[dict]] = None tags: Optional[list[str]] = None languages: Optional[list[str]] = None datasets: Optional[list[dict]] = None @staticmethod def load(metadata_override_path: Optional[Path] = None, model_path: Optional[Path] = None, model_name: Optional[str] = None, total_params: int = 0) -> Metadata: # This grabs as many contextual authorship metadata as possible from the model repository # making any conversion as required to match the gguf kv store metadata format # as well as giving users the ability to override any authorship metadata that may be incorrect # Create a new Metadata instance metadata = Metadata() model_card = Metadata.load_model_card(model_path) hf_params = Metadata.load_hf_parameters(model_path) # TODO: load adapter_config.json when possible, it usually contains the base model of the LoRA adapter # heuristics metadata = Metadata.apply_metadata_heuristic(metadata, model_card, hf_params, model_path, total_params) # Metadata Override File Provided # This is based on LLM_KV_NAMES mapping in llama.cpp metadata_override = Metadata.load_metadata_override(metadata_override_path) metadata.name = metadata_override.get(Keys.General.NAME, metadata.name) metadata.author = metadata_override.get(Keys.General.AUTHOR, metadata.author) metadata.version = metadata_override.get(Keys.General.VERSION, metadata.version) metadata.organization = metadata_override.get(Keys.General.ORGANIZATION, metadata.organization) metadata.finetune = metadata_override.get(Keys.General.FINETUNE, metadata.finetune) metadata.basename = metadata_override.get(Keys.General.BASENAME, metadata.basename) metadata.description = metadata_override.get(Keys.General.DESCRIPTION, metadata.description) metadata.quantized_by = metadata_override.get(Keys.General.QUANTIZED_BY, metadata.quantized_by) metadata.size_label = metadata_override.get(Keys.General.SIZE_LABEL, metadata.size_label) metadata.license_name = metadata_override.get(Keys.General.LICENSE_NAME, metadata.license_name) metadata.license_link = metadata_override.get(Keys.General.LICENSE_LINK, metadata.license_link) metadata.url = metadata_override.get(Keys.General.URL, metadata.url) metadata.doi = metadata_override.get(Keys.General.DOI, metadata.doi) metadata.uuid = metadata_override.get(Keys.General.UUID, metadata.uuid) metadata.repo_url = metadata_override.get(Keys.General.REPO_URL, metadata.repo_url) metadata.source_url = metadata_override.get(Keys.General.SOURCE_URL, metadata.source_url) metadata.source_doi = metadata_override.get(Keys.General.SOURCE_DOI, metadata.source_doi) metadata.source_uuid = metadata_override.get(Keys.General.SOURCE_UUID, metadata.source_uuid) metadata.source_repo_url = metadata_override.get(Keys.General.SOURCE_REPO_URL, metadata.source_repo_url) # Base Models is received here as an array of models metadata.base_models = metadata_override.get("general.base_models", metadata.base_models) # Datasets is received here as an array of datasets metadata.datasets = metadata_override.get("general.datasets", metadata.datasets) metadata.tags = metadata_override.get(Keys.General.TAGS, metadata.tags) metadata.languages = metadata_override.get(Keys.General.LANGUAGES, metadata.languages) # Direct Metadata Override (via direct cli argument) if model_name is not None: metadata.name = model_name return metadata @staticmethod def load_metadata_override(metadata_override_path: Optional[Path] = None) -> dict[str, Any]: if metadata_override_path is None or not metadata_override_path.is_file(): return {} with open(metadata_override_path, "r", encoding="utf-8") as f: return json.load(f) @staticmethod def load_model_card(model_path: Optional[Path] = None) -> dict[str, Any]: if model_path is None or not model_path.is_dir(): return {} model_card_path = model_path / "README.md" if not model_card_path.is_file(): return {} # The model card metadata is assumed to always be in YAML # ref: https://github.com/huggingface/transformers/blob/a5c642fe7a1f25d3bdcd76991443ba6ff7ee34b2/src/transformers/modelcard.py#L468-L473 with open(model_card_path, "r", encoding="utf-8") as f: if f.readline() == "---\n": raw = f.read().partition("---\n")[0] data = yaml.safe_load(raw) if isinstance(data, dict): return data else: logger.error(f"while reading YAML model card frontmatter, data is {type(data)} instead of dict") return {} else: return {} @staticmethod def load_hf_parameters(model_path: Optional[Path] = None) -> dict[str, Any]: if model_path is None or not model_path.is_dir(): return {} config_path = model_path / "config.json" if not config_path.is_file(): return {} with open(config_path, "r", encoding="utf-8") as f: return json.load(f) @staticmethod def id_to_title(string): # Convert capitalization into title form unless acronym or version number return ' '.join([w.title() if w.islower() and not re.match(r'^(v\d+(?:\.\d+)*|\d.*)$', w) else w for w in string.strip().replace('-', ' ').split()]) @staticmethod def get_model_id_components(model_id: Optional[str] = None, total_params: int = 0) -> tuple[str | None, str | None, str | None, str | None, str | None, str | None]: # Huggingface often store model id as '<org>/<model name>' # so let's parse it and apply some heuristics if possible for model name components if model_id is None: # model ID missing return None, None, None, None, None, None if ' ' in model_id: # model ID is actually a normal human sentence # which means its most likely a normal model name only # not part of the hugging face naming standard, but whatever return model_id, None, None, None, None, None if '/' in model_id: # model ID (huggingface style) org_component, model_full_name_component = model_id.split('/', 1) else: # model ID but missing org components org_component, model_full_name_component = None, model_id # Check if we erroneously matched against './' or '../' etc... if org_component is not None and len(org_component) > 0 and org_component[0] == '.': org_component = None name_parts: list[str] = model_full_name_component.split('-') # Remove empty parts for i in reversed(range(len(name_parts))): if len(name_parts[i]) == 0: del name_parts[i] name_types: list[ set[Literal["basename", "size_label", "finetune", "version", "type"]] ] = [set() for _ in name_parts] # Annotate the name for i, part in enumerate(name_parts): # Version if re.fullmatch(r'(v|iter)?\d+([.]\d+)*', part, re.IGNORECASE): name_types[i].add("version") # Quant type (should not be there for base models, but still annotated) elif re.fullmatch(r'i?q\d(_\w)*|b?fp?(16|32)', part, re.IGNORECASE): name_types[i].add("type") name_parts[i] = part.upper() # Model size elif i > 0 and re.fullmatch(r'(([A]|\d+[x])?\d+([._]\d+)?[KMBT][\d]?|small|mini|medium|large|x?xl)', part, re.IGNORECASE): part = part.replace("_", ".") # Handle weird bloom-7b1 notation if part[-1].isdecimal(): part = part[:-2] + "." + part[-1] + part[-2] # Normalize the size suffixes if len(part) > 1 and part[-2].isdecimal(): if part[-1] in "kmbt": part = part[:-1] + part[-1].upper() if total_params != 0: try: label_params = float(part[:-1]) * pow(1000, " KMBT".find(part[-1])) # Only use it as a size label if it's close or bigger than the model size # Note that LoRA adapters don't necessarily include all layers, # so this is why bigger label sizes are accepted. # Do not use the size label when it's smaller than 1/8 of the model size if (total_params < 0 and label_params < abs(total_params) // 8) or ( # Check both directions when the current model isn't a LoRA adapter total_params > 0 and abs(label_params - total_params) > 7 * total_params // 8 ): # Likely a context length name_types[i].add("finetune") # Lowercase the size when it's a context length part = part[:-1] + part[-1].lower() except ValueError: # Failed to convert the size label to float, use it anyway pass if len(name_types[i]) == 0: name_types[i].add("size_label") name_parts[i] = part # Some easy to recognize finetune names elif i > 0 and re.fullmatch(r'chat|instruct|vision|lora', part, re.IGNORECASE): if total_params < 0 and part.lower() == "lora": # ignore redundant "lora" in the finetune part when the output is a lora adapter name_types[i].add("type") else: name_types[i].add("finetune") # Ignore word-based size labels when there is at least a number-based one present # TODO: should word-based size labels always be removed instead? if any(c.isdecimal() for n, t in zip(name_parts, name_types) if "size_label" in t for c in n): for n, t in zip(name_parts, name_types): if "size_label" in t: if all(c.isalpha() for c in n): t.remove("size_label") at_start = True # Find the basename through the annotated name for part, t in zip(name_parts, name_types): if at_start and ((len(t) == 0 and part[0].isalpha()) or "version" in t): t.add("basename") else: if at_start: at_start = False if len(t) == 0: t.add("finetune") # Remove the basename annotation from trailing version for part, t in zip(reversed(name_parts), reversed(name_types)): if "basename" in t and len(t) > 1: t.remove("basename") else: break basename = "-".join(n for n, t in zip(name_parts, name_types) if "basename" in t) or None # Deduplicate size labels using order-preserving 'dict' ('set' seems to sort the keys) size_label = "-".join(dict.fromkeys(s for s, t in zip(name_parts, name_types) if "size_label" in t).keys()) or None finetune = "-".join(f for f, t in zip(name_parts, name_types) if "finetune" in t) or None # TODO: should the basename version always be excluded? # NOTE: multiple finetune versions are joined together version = "-".join(v for v, t, in zip(name_parts, name_types) if "version" in t and "basename" not in t) or None if size_label is None and finetune is None and version is None: # Too ambiguous, output nothing basename = None return model_full_name_component, org_component, basename, finetune, version, size_label @staticmethod def apply_metadata_heuristic(metadata: Metadata, model_card: Optional[dict] = None, hf_params: Optional[dict] = None, model_path: Optional[Path] = None, total_params: int = 0) -> Metadata: # Reference Model Card Metadata: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Model Card Heuristics ######################## if model_card is not None: def use_model_card_metadata(metadata_key: str, model_card_key: str): if model_card_key in model_card and getattr(metadata, metadata_key, None) is None: setattr(metadata, metadata_key, model_card.get(model_card_key)) def use_array_model_card_metadata(metadata_key: str, model_card_key: str): # Note: Will append rather than replace if already exist tags_value = model_card.get(model_card_key, None) if tags_value is None: return current_value = getattr(metadata, metadata_key, None) if current_value is None: current_value = [] if isinstance(tags_value, str): current_value.append(tags_value) elif isinstance(tags_value, list): current_value.extend(tags_value) setattr(metadata, metadata_key, current_value) # LLAMA.cpp's direct internal convention # (Definitely not part of hugging face formal/informal standard) ######################################### use_model_card_metadata("name", "name") use_model_card_metadata("author", "author") use_model_card_metadata("version", "version") use_model_card_metadata("organization", "organization") use_model_card_metadata("description", "description") use_model_card_metadata("finetune", "finetune") use_model_card_metadata("basename", "basename") use_model_card_metadata("size_label", "size_label") use_model_card_metadata("source_url", "url") use_model_card_metadata("source_doi", "doi") use_model_card_metadata("source_uuid", "uuid") use_model_card_metadata("source_repo_url", "repo_url") # LLAMA.cpp's huggingface style convention # (Definitely not part of hugging face formal/informal standard... but with model_ appended to match their style) ########################################### use_model_card_metadata("name", "model_name") use_model_card_metadata("author", "model_author") use_model_card_metadata("version", "model_version") use_model_card_metadata("organization", "model_organization") use_model_card_metadata("description", "model_description") use_model_card_metadata("finetune", "model_finetune") use_model_card_metadata("basename", "model_basename") use_model_card_metadata("size_label", "model_size_label") use_model_card_metadata("source_url", "model_url") use_model_card_metadata("source_doi", "model_doi") use_model_card_metadata("source_uuid", "model_uuid") use_model_card_metadata("source_repo_url", "model_repo_url") # Hugging Face Direct Convention ################################# # Not part of huggingface model card standard but notice some model creator using it # such as TheBloke in 'TheBloke/Mistral-7B-Instruct-v0.2-GGUF' use_model_card_metadata("name", "model_name") use_model_card_metadata("author", "model_creator") use_model_card_metadata("basename", "model_type") if "base_model" in model_card or "base_models" in model_card or "base_model_sources" in model_card: # This represents the parent models that this is based on # Example: stabilityai/stable-diffusion-xl-base-1.0. Can also be a list (for merges) # Example of merges: https://huggingface.co/EmbeddedLLM/Mistral-7B-Merge-14-v0.1/blob/main/README.md metadata_base_models = [] base_model_value = model_card.get("base_model", model_card.get("base_models", model_card.get("base_model_sources", None))) if base_model_value is not None: if isinstance(base_model_value, str): metadata_base_models.append(base_model_value) elif isinstance(base_model_value, list): metadata_base_models.extend(base_model_value) if metadata.base_models is None: metadata.base_models = [] for model_id in metadata_base_models: # NOTE: model size of base model is assumed to be similar to the size of the current model base_model = {} if isinstance(model_id, str): if model_id.startswith("http://") or model_id.startswith("https://") or model_id.startswith("ssh://"): base_model["repo_url"] = model_id # Check if Hugging Face ID is present in URL if "huggingface.co" in model_id: match = re.match(r"https?://huggingface.co/([^/]+/[^/]+)$", model_id) if match: model_id_component = match.group(1) model_full_name_component, org_component, basename, finetune, version, size_label = Metadata.get_model_id_components(model_id_component, total_params) # Populate model dictionary with extracted components if model_full_name_component is not None: base_model["name"] = Metadata.id_to_title(model_full_name_component) if org_component is not None: base_model["organization"] = Metadata.id_to_title(org_component) if version is not None: base_model["version"] = version else: # Likely a Hugging Face ID model_full_name_component, org_component, basename, finetune, version, size_label = Metadata.get_model_id_components(model_id, total_params) # Populate model dictionary with extracted components if model_full_name_component is not None: base_model["name"] = Metadata.id_to_title(model_full_name_component) if org_component is not None: base_model["organization"] = Metadata.id_to_title(org_component) if version is not None: base_model["version"] = version if org_component is not None and model_full_name_component is not None: base_model["repo_url"] = f"https://huggingface.co/{org_component}/{model_full_name_component}" elif isinstance(model_id, dict): base_model = model_id else: logger.error(f"base model entry '{str(model_id)}' not in a known format") metadata.base_models.append(base_model) if "datasets" in model_card or "dataset" in model_card or "dataset_sources" in model_card: # This represents the datasets that this was trained from metadata_datasets = [] dataset_value = model_card.get("datasets", model_card.get("dataset", model_card.get("dataset_sources", None))) if dataset_value is not None: if isinstance(dataset_value, str): metadata_datasets.append(dataset_value) elif isinstance(dataset_value, list): metadata_datasets.extend(dataset_value) if metadata.datasets is None: metadata.datasets = [] for dataset_id in metadata_datasets: # NOTE: model size of base model is assumed to be similar to the size of the current model dataset = {} if isinstance(dataset_id, str): if dataset_id.startswith(("http://", "https://", "ssh://")): dataset["repo_url"] = dataset_id # Check if Hugging Face ID is present in URL if "huggingface.co" in dataset_id: match = re.match(r"https?://huggingface.co/([^/]+/[^/]+)$", dataset_id) if match: dataset_id_component = match.group(1) dataset_name_component, org_component, basename, finetune, version, size_label = Metadata.get_model_id_components(dataset_id_component, total_params) # Populate dataset dictionary with extracted components if dataset_name_component is not None: dataset["name"] = Metadata.id_to_title(dataset_name_component) if org_component is not None: dataset["organization"] = Metadata.id_to_title(org_component) if version is not None: dataset["version"] = version else: # Likely a Hugging Face ID dataset_name_component, org_component, basename, finetune, version, size_label = Metadata.get_model_id_components(dataset_id, total_params) # Populate dataset dictionary with extracted components if dataset_name_component is not None: dataset["name"] = Metadata.id_to_title(dataset_name_component) if org_component is not None: dataset["organization"] = Metadata.id_to_title(org_component) if version is not None: dataset["version"] = version if org_component is not None and dataset_name_component is not None: dataset["repo_url"] = f"https://huggingface.co/{org_component}/{dataset_name_component}" elif isinstance(dataset_id, dict): dataset = dataset_id else: logger.error(f"dataset entry '{str(dataset_id)}' not in a known format") metadata.datasets.append(dataset) use_model_card_metadata("license", "license") use_model_card_metadata("license_name", "license_name") use_model_card_metadata("license_link", "license_link") use_array_model_card_metadata("tags", "tags") use_array_model_card_metadata("tags", "pipeline_tag") use_array_model_card_metadata("languages", "languages") use_array_model_card_metadata("languages", "language") # Hugging Face Parameter Heuristics #################################### if hf_params is not None: hf_name_or_path = hf_params.get("_name_or_path") if hf_name_or_path is not None and hf_name_or_path.count('/') <= 1: # Use _name_or_path only if its actually a model name and not some computer path # e.g. 'meta-llama/Llama-2-7b-hf' model_id = hf_name_or_path model_full_name_component, org_component, basename, finetune, version, size_label = Metadata.get_model_id_components(model_id, total_params) if metadata.name is None and model_full_name_component is not None: metadata.name = Metadata.id_to_title(model_full_name_component) if metadata.organization is None and org_component is not None: metadata.organization = Metadata.id_to_title(org_component) if metadata.basename is None and basename is not None: metadata.basename = basename if metadata.finetune is None and finetune is not None: metadata.finetune = finetune if metadata.version is None and version is not None: metadata.version = version if metadata.size_label is None and size_label is not None: metadata.size_label = size_label # Directory Folder Name Fallback Heuristics ############################################ if model_path is not None: model_id = model_path.name model_full_name_component, org_component, basename, finetune, version, size_label = Metadata.get_model_id_components(model_id, total_params) if metadata.name is None and model_full_name_component is not None: metadata.name = Metadata.id_to_title(model_full_name_component) if metadata.organization is None and org_component is not None: metadata.organization = Metadata.id_to_title(org_component) if metadata.basename is None and basename is not None: metadata.basename = basename if metadata.finetune is None and finetune is not None: metadata.finetune = finetune if metadata.version is None and version is not None: metadata.version = version if metadata.size_label is None and size_label is not None: metadata.size_label = size_label return metadata def set_gguf_meta_model(self, gguf_writer: gguf.GGUFWriter): assert self.name is not None gguf_writer.add_name(self.name) if self.author is not None: gguf_writer.add_author(self.author) if self.version is not None: gguf_writer.add_version(self.version) if self.organization is not None: gguf_writer.add_organization(self.organization) if self.finetune is not None: gguf_writer.add_finetune(self.finetune) if self.basename is not None: gguf_writer.add_basename(self.basename) if self.description is not None: gguf_writer.add_description(self.description) if self.quantized_by is not None: gguf_writer.add_quantized_by(self.quantized_by) if self.size_label is not None: gguf_writer.add_size_label(self.size_label) if self.license is not None: if isinstance(self.license, list): gguf_writer.add_license(",".join(self.license)) else: gguf_writer.add_license(self.license) if self.license_name is not None: gguf_writer.add_license_name(self.license_name) if self.license_link is not None: gguf_writer.add_license_link(self.license_link) if self.url is not None: gguf_writer.add_url(self.url) if self.doi is not None: gguf_writer.add_doi(self.doi) if self.uuid is not None: gguf_writer.add_uuid(self.uuid) if self.repo_url is not None: gguf_writer.add_repo_url(self.repo_url) if self.source_url is not None: gguf_writer.add_source_url(self.source_url) if self.source_doi is not None: gguf_writer.add_source_doi(self.source_doi) if self.source_uuid is not None: gguf_writer.add_source_uuid(self.source_uuid) if self.source_repo_url is not None: gguf_writer.add_source_repo_url(self.source_repo_url) if self.base_models is not None: gguf_writer.add_base_model_count(len(self.base_models)) for key, base_model_entry in enumerate(self.base_models): if "name" in base_model_entry: gguf_writer.add_base_model_name(key, base_model_entry["name"]) if "author" in base_model_entry: gguf_writer.add_base_model_author(key, base_model_entry["author"]) if "version" in base_model_entry: gguf_writer.add_base_model_version(key, base_model_entry["version"]) if "organization" in base_model_entry: gguf_writer.add_base_model_organization(key, base_model_entry["organization"]) if "description" in base_model_entry: gguf_writer.add_base_model_description(key, base_model_entry["description"]) if "url" in base_model_entry: gguf_writer.add_base_model_url(key, base_model_entry["url"]) if "doi" in base_model_entry: gguf_writer.add_base_model_doi(key, base_model_entry["doi"]) if "uuid" in base_model_entry: gguf_writer.add_base_model_uuid(key, base_model_entry["uuid"]) if "repo_url" in base_model_entry: gguf_writer.add_base_model_repo_url(key, base_model_entry["repo_url"]) if self.datasets is not None: gguf_writer.add_dataset_count(len(self.datasets)) for key, dataset_entry in enumerate(self.datasets): if "name" in dataset_entry: gguf_writer.add_dataset_name(key, dataset_entry["name"]) if "author" in dataset_entry: gguf_writer.add_dataset_author(key, dataset_entry["author"]) if "version" in dataset_entry: gguf_writer.add_dataset_version(key, dataset_entry["version"]) if "organization" in dataset_entry: gguf_writer.add_dataset_organization(key, dataset_entry["organization"]) if "description" in dataset_entry: gguf_writer.add_dataset_description(key, dataset_entry["description"]) if "url" in dataset_entry: gguf_writer.add_dataset_url(key, dataset_entry["url"]) if "doi" in dataset_entry: gguf_writer.add_dataset_doi(key, dataset_entry["doi"]) if "uuid" in dataset_entry: gguf_writer.add_dataset_uuid(key, dataset_entry["uuid"]) if "repo_url" in dataset_entry: gguf_writer.add_dataset_repo_url(key, dataset_entry["repo_url"]) if self.tags is not None: gguf_writer.add_tags(self.tags) if self.languages is not None: gguf_writer.add_languages(self.languages)