#include "grammar-parser.h" #include <cstdint> #include <cwchar> #include <string> #include <utility> #include <stdexcept> #include <exception> namespace grammar_parser { // NOTE: assumes valid utf8 (but checks for overrun) // copied from llama.cpp static std::pair<uint32_t, const char *> decode_utf8(const char * src) { static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 }; uint8_t first_byte = static_cast<uint8_t>(*src); uint8_t highbits = first_byte >> 4; int len = lookup[highbits]; uint8_t mask = (1 << (8 - len)) - 1; uint32_t value = first_byte & mask; const char * end = src + len; // may overrun! const char * pos = src + 1; for ( ; pos < end && *pos; pos++) { value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F); } return std::make_pair(value, pos); } static uint32_t get_symbol_id(parse_state & state, const char * src, size_t len) { uint32_t next_id = static_cast<uint32_t>(state.symbol_ids.size()); auto result = state.symbol_ids.insert(std::make_pair(std::string(src, len), next_id)); return result.first->second; } static uint32_t generate_symbol_id(parse_state & state, const std::string & base_name) { uint32_t next_id = static_cast<uint32_t>(state.symbol_ids.size()); state.symbol_ids[base_name + '_' + std::to_string(next_id)] = next_id; return next_id; } static void add_rule( parse_state & state, uint32_t rule_id, const std::vector<llama_grammar_element> & rule) { if (state.rules.size() <= rule_id) { state.rules.resize(rule_id + 1); } state.rules[rule_id] = rule; } static bool is_word_char(char c) { return ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z') || c == '-' || ('0' <= c && c <= '9'); } static std::pair<uint32_t, const char *> parse_hex(const char * src, int size) { const char * pos = src; const char * end = src + size; uint32_t value = 0; for ( ; pos < end && *pos; pos++) { value <<= 4; char c = *pos; if ('a' <= c && c <= 'f') { value += c - 'a' + 10; } else if ('A' <= c && c <= 'F') { value += c - 'A' + 10; } else if ('0' <= c && c <= '9') { value += c - '0'; } else { break; } } if (pos != end) { throw std::runtime_error("expecting " + std::to_string(size) + " hex chars at " + src); } return std::make_pair(value, pos); } static const char * parse_space(const char * src, bool newline_ok) { const char * pos = src; while (*pos == ' ' || *pos == '\t' || *pos == '#' || (newline_ok && (*pos == '\r' || *pos == '\n'))) { if (*pos == '#') { while (*pos && *pos != '\r' && *pos != '\n') { pos++; } } else { pos++; } } return pos; } static const char * parse_name(const char * src) { const char * pos = src; while (is_word_char(*pos)) { pos++; } if (pos == src) { throw std::runtime_error(std::string("expecting name at ") + src); } return pos; } static std::pair<uint32_t, const char *> parse_char(const char * src) { if (*src == '\\') { switch (src[1]) { case 'x': return parse_hex(src + 2, 2); case 'u': return parse_hex(src + 2, 4); case 'U': return parse_hex(src + 2, 8); case 't': return std::make_pair('\t', src + 2); case 'r': return std::make_pair('\r', src + 2); case 'n': return std::make_pair('\n', src + 2); case '\\': case '"': case '[': case ']': return std::make_pair(src[1], src + 2); default: throw std::runtime_error(std::string("unknown escape at ") + src); } } else if (*src) { return decode_utf8(src); } throw std::runtime_error("unexpected end of input"); } const char * parse_alternates( parse_state & state, const char * src, const std::string & rule_name, uint32_t rule_id, bool is_nested); static const char * parse_sequence( parse_state & state, const char * src, const std::string & rule_name, std::vector<llama_grammar_element> & out_elements, bool is_nested) { size_t last_sym_start = out_elements.size(); const char * pos = src; while (*pos) { if (*pos == '"') { // literal string pos++; last_sym_start = out_elements.size(); while (*pos != '"') { auto char_pair = parse_char(pos); pos = char_pair.second; out_elements.push_back({LLAMA_GRETYPE_CHAR, char_pair.first}); } pos = parse_space(pos + 1, is_nested); } else if (*pos == '[') { // char range(s) pos++; enum llama_gretype start_type = LLAMA_GRETYPE_CHAR; if (*pos == '^') { pos++; start_type = LLAMA_GRETYPE_CHAR_NOT; } last_sym_start = out_elements.size(); while (*pos != ']') { auto char_pair = parse_char(pos); pos = char_pair.second; enum llama_gretype type = last_sym_start < out_elements.size() ? LLAMA_GRETYPE_CHAR_ALT : start_type; out_elements.push_back({type, char_pair.first}); if (pos[0] == '-' && pos[1] != ']') { auto endchar_pair = parse_char(pos + 1); pos = endchar_pair.second; out_elements.push_back({LLAMA_GRETYPE_CHAR_RNG_UPPER, endchar_pair.first}); } } pos = parse_space(pos + 1, is_nested); } else if (is_word_char(*pos)) { // rule reference const char * name_end = parse_name(pos); uint32_t ref_rule_id = get_symbol_id(state, pos, name_end - pos); pos = parse_space(name_end, is_nested); last_sym_start = out_elements.size(); out_elements.push_back({LLAMA_GRETYPE_RULE_REF, ref_rule_id}); } else if (*pos == '(') { // grouping // parse nested alternates into synthesized rule pos = parse_space(pos + 1, true); uint32_t sub_rule_id = generate_symbol_id(state, rule_name); pos = parse_alternates(state, pos, rule_name, sub_rule_id, true); last_sym_start = out_elements.size(); // output reference to synthesized rule out_elements.push_back({LLAMA_GRETYPE_RULE_REF, sub_rule_id}); if (*pos != ')') { throw std::runtime_error(std::string("expecting ')' at ") + pos); } pos = parse_space(pos + 1, is_nested); } else if (*pos == '*' || *pos == '+' || *pos == '?') { // repetition operator if (last_sym_start == out_elements.size()) { throw std::runtime_error(std::string("expecting preceding item to */+/? at ") + pos); } // apply transformation to previous symbol (last_sym_start to end) according to // rewrite rules: // S* --> S' ::= S S' | // S+ --> S' ::= S S' | S // S? --> S' ::= S | uint32_t sub_rule_id = generate_symbol_id(state, rule_name); std::vector<llama_grammar_element> sub_rule; // add preceding symbol to generated rule sub_rule.insert( sub_rule.end(), out_elements.begin() + last_sym_start, out_elements.end()); if (*pos == '*' || *pos == '+') { // cause generated rule to recurse sub_rule.push_back({LLAMA_GRETYPE_RULE_REF, sub_rule_id}); } // mark start of alternate def sub_rule.push_back({LLAMA_GRETYPE_ALT, 0}); if (*pos == '+') { // add preceding symbol as alternate only for '+' (otherwise empty) sub_rule.insert( sub_rule.end(), out_elements.begin() + last_sym_start, out_elements.end()); } sub_rule.push_back({LLAMA_GRETYPE_END, 0}); add_rule(state, sub_rule_id, sub_rule); // in original rule, replace previous symbol with reference to generated rule out_elements.resize(last_sym_start); out_elements.push_back({LLAMA_GRETYPE_RULE_REF, sub_rule_id}); pos = parse_space(pos + 1, is_nested); } else { break; } } return pos; } const char * parse_alternates( parse_state & state, const char * src, const std::string & rule_name, uint32_t rule_id, bool is_nested) { std::vector<llama_grammar_element> rule; const char * pos = parse_sequence(state, src, rule_name, rule, is_nested); while (*pos == '|') { rule.push_back({LLAMA_GRETYPE_ALT, 0}); pos = parse_space(pos + 1, true); pos = parse_sequence(state, pos, rule_name, rule, is_nested); } rule.push_back({LLAMA_GRETYPE_END, 0}); add_rule(state, rule_id, rule); return pos; } static const char * parse_rule(parse_state & state, const char * src) { const char * name_end = parse_name(src); const char * pos = parse_space(name_end, false); size_t name_len = name_end - src; uint32_t rule_id = get_symbol_id(state, src, name_len); const std::string name(src, name_len); if (!(pos[0] == ':' && pos[1] == ':' && pos[2] == '=')) { throw std::runtime_error(std::string("expecting ::= at ") + pos); } pos = parse_space(pos + 3, true); pos = parse_alternates(state, pos, name, rule_id, false); if (*pos == '\r') { pos += pos[1] == '\n' ? 2 : 1; } else if (*pos == '\n') { pos++; } else if (*pos) { throw std::runtime_error(std::string("expecting newline or end at ") + pos); } return parse_space(pos, true); } parse_state parse(const char * src) { try { parse_state state; const char * pos = parse_space(src, true); while (*pos) { pos = parse_rule(state, pos); } // Validate the state to ensure that all rules are defined for (const auto & rule : state.rules) { for (const auto & elem : rule) { if (elem.type == LLAMA_GRETYPE_RULE_REF) { // Ensure that the rule at that location exists if (elem.value >= state.rules.size() || state.rules[elem.value].empty()) { // Get the name of the rule that is missing for (const auto & kv : state.symbol_ids) { if (kv.second == elem.value) { throw std::runtime_error("Undefined rule identifier '" + kv.first + "'"); } } } } } } return state; } catch (const std::exception & err) { fprintf(stderr, "%s: error parsing grammar: %s\n", __func__, err.what()); return parse_state(); } } static void print_grammar_char(FILE * file, uint32_t c) { if (0x20 <= c && c <= 0x7f) { fprintf(file, "%c", static_cast<char>(c)); } else { // cop out of encoding UTF-8 fprintf(file, "<U+%04X>", c); } } static bool is_char_element(llama_grammar_element elem) { switch (elem.type) { case LLAMA_GRETYPE_CHAR: return true; case LLAMA_GRETYPE_CHAR_NOT: return true; case LLAMA_GRETYPE_CHAR_ALT: return true; case LLAMA_GRETYPE_CHAR_RNG_UPPER: return true; default: return false; } } static void print_rule_binary(FILE * file, const std::vector<llama_grammar_element> & rule) { for (auto elem : rule) { switch (elem.type) { case LLAMA_GRETYPE_END: fprintf(file, "END"); break; case LLAMA_GRETYPE_ALT: fprintf(file, "ALT"); break; case LLAMA_GRETYPE_RULE_REF: fprintf(file, "RULE_REF"); break; case LLAMA_GRETYPE_CHAR: fprintf(file, "CHAR"); break; case LLAMA_GRETYPE_CHAR_NOT: fprintf(file, "CHAR_NOT"); break; case LLAMA_GRETYPE_CHAR_RNG_UPPER: fprintf(file, "CHAR_RNG_UPPER"); break; case LLAMA_GRETYPE_CHAR_ALT: fprintf(file, "CHAR_ALT"); break; } switch (elem.type) { case LLAMA_GRETYPE_END: case LLAMA_GRETYPE_ALT: case LLAMA_GRETYPE_RULE_REF: fprintf(file, "(%u) ", elem.value); break; case LLAMA_GRETYPE_CHAR: case LLAMA_GRETYPE_CHAR_NOT: case LLAMA_GRETYPE_CHAR_RNG_UPPER: case LLAMA_GRETYPE_CHAR_ALT: fprintf(file, "(\""); print_grammar_char(file, elem.value); fprintf(file, "\") "); break; } } fprintf(file, "\n"); } static void print_rule( FILE * file, uint32_t rule_id, const std::vector<llama_grammar_element> & rule, const std::map<uint32_t, std::string> & symbol_id_names) { if (rule.empty() || rule.back().type != LLAMA_GRETYPE_END) { throw std::runtime_error( "malformed rule, does not end with LLAMA_GRETYPE_END: " + std::to_string(rule_id)); } fprintf(file, "%s ::= ", symbol_id_names.at(rule_id).c_str()); for (size_t i = 0, end = rule.size() - 1; i < end; i++) { llama_grammar_element elem = rule[i]; switch (elem.type) { case LLAMA_GRETYPE_END: throw std::runtime_error( "unexpected end of rule: " + std::to_string(rule_id) + "," + std::to_string(i)); case LLAMA_GRETYPE_ALT: fprintf(file, "| "); break; case LLAMA_GRETYPE_RULE_REF: fprintf(file, "%s ", symbol_id_names.at(elem.value).c_str()); break; case LLAMA_GRETYPE_CHAR: fprintf(file, "["); print_grammar_char(file, elem.value); break; case LLAMA_GRETYPE_CHAR_NOT: fprintf(file, "[^"); print_grammar_char(file, elem.value); break; case LLAMA_GRETYPE_CHAR_RNG_UPPER: if (i == 0 || !is_char_element(rule[i - 1])) { throw std::runtime_error( "LLAMA_GRETYPE_CHAR_RNG_UPPER without preceding char: " + std::to_string(rule_id) + "," + std::to_string(i)); } fprintf(file, "-"); print_grammar_char(file, elem.value); break; case LLAMA_GRETYPE_CHAR_ALT: if (i == 0 || !is_char_element(rule[i - 1])) { throw std::runtime_error( "LLAMA_GRETYPE_CHAR_ALT without preceding char: " + std::to_string(rule_id) + "," + std::to_string(i)); } print_grammar_char(file, elem.value); break; } if (is_char_element(elem)) { switch (rule[i + 1].type) { case LLAMA_GRETYPE_CHAR_ALT: case LLAMA_GRETYPE_CHAR_RNG_UPPER: break; default: fprintf(file, "] "); } } } fprintf(file, "\n"); } void print_grammar(FILE * file, const parse_state & state) { try { std::map<uint32_t, std::string> symbol_id_names; for (const auto & kv : state.symbol_ids) { symbol_id_names[kv.second] = kv.first; } for (size_t i = 0, end = state.rules.size(); i < end; i++) { // fprintf(file, "%zu: ", i); // print_rule_binary(file, state.rules[i]); print_rule(file, uint32_t(i), state.rules[i], symbol_id_names); // fprintf(file, "\n"); } } catch (const std::exception & err) { fprintf(stderr, "\n%s: error printing grammar: %s\n", __func__, err.what()); } } std::vector<const llama_grammar_element *> parse_state::c_rules() { std::vector<const llama_grammar_element *> ret; ret.reserve(rules.size()); for (const auto & rule : rules) { ret.push_back(rule.data()); } return ret; } }