#include "clip.h" #include "common.h" #include "llama.h" #include "minicpmv.h" #include "base64.hpp" #include #include #include #include // RGB uint8 image struct clip_image_u8 { int nx; int ny; std::vector buf; }; // RGB float32 image (NHWC) // Memory layout: RGBRGBRGB... struct clip_image_f32 { int nx; int ny; std::vector buf; }; struct clip_image_grid_shape { int first; int second; }; static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float * image_embd, int * n_img_pos) { // std::vector img_res_v; // format VectN x H x W x RGB (N x 336 x 336 x 3), so interleaved RGB - different to the python implementation which is N x 3 x 336 x 336 clip_image_f32_batch img_res_v; img_res_v.size = 0; img_res_v.data = nullptr; std::pair load_image_size; load_image_size.first = img->nx; load_image_size.second = img->ny; const int64_t t_img_enc_start_us_ip = ggml_time_us(); if (!clip_image_preprocess(ctx_clip, img, &img_res_v)) { LOG_TEE("%s: unable to preprocess image\n", __func__); delete[] img_res_v.data; return false; } const int64_t t_img_enc_end_us_ip = ggml_time_us(); float t_img_enc_ms_ip = (t_img_enc_end_us_ip - t_img_enc_start_us_ip) / 1000.0; LOG_TEE("\n%s: image encoded in %8.2f ms by clip_image_preprocess.\n", __func__, t_img_enc_ms_ip); const int64_t t_img_enc_start_us = ggml_time_us(); const char * mm_patch_merge_type = clip_patch_merge_type(ctx_clip); LOG_TEE("\n%s: mm_patch_merge_type is %s.\n", __func__, mm_patch_merge_type); *n_img_pos = clip_n_patches(ctx_clip); bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[0], image_embd, load_image_size); // image_embd shape is 576 x 4096 delete[] img_res_v.data; if (!encoded) { LOG_TEE("Unable to encode image\n"); return false; } LOG_TEE("%s: image embedding created: %d tokens\n", __func__, *n_img_pos); const int64_t t_img_enc_end_us = ggml_time_us(); float t_img_enc_ms = (t_img_enc_end_us - t_img_enc_start_us) / 1000.0; LOG_TEE("\n%s: image encoded in %8.2f ms by CLIP (%8.2f ms per image patch)\n", __func__, t_img_enc_ms, t_img_enc_ms / *n_img_pos); return true; } bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx * ctx_clip) { // make sure that the correct mmproj was used, i.e., compare apples to apples int n_llama_embd = llama_n_embd(llama_get_model(ctx_llama)); auto n_image_embd = clip_n_mmproj_embd(ctx_clip); if (n_image_embd != n_llama_embd) { LOG_TEE("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_image_embd, n_llama_embd); return false; } return true; } bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out) { float * image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip)*6); // TODO: base on gridsize/llava model if (!image_embd) { LOG_TEE("Unable to allocate memory for image embeddings\n"); return false; } int n_img_pos; if (!encode_image_with_clip(ctx_clip, n_threads, img, image_embd, &n_img_pos)) { LOG_TEE("%s: cannot encode image, aborting\n", __func__); free(image_embd); return false; } *image_embd_out = image_embd; *n_img_pos_out = n_img_pos; return true; } bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_embed * image_embed, int n_batch, int * n_past) { int n_embd = llama_n_embd(llama_get_model(ctx_llama)); for (int i = 0; i < image_embed->n_image_pos; i += n_batch) { int n_eval = image_embed->n_image_pos - i; if (n_eval > n_batch) { n_eval = n_batch; } llama_batch batch = {int32_t(n_eval), nullptr, (image_embed->embed+i*n_embd), nullptr, nullptr, nullptr, nullptr, *n_past, 1, 0, }; if (llama_decode(ctx_llama, batch)) { LOG_TEE("%s : failed to eval\n", __func__); return false; } *n_past += n_eval; } return true; } int ensure_divide(int length, int patch_size) { return std::max(static_cast(std::round(static_cast(length) / patch_size) * patch_size), patch_size); } std::pair find_best_resize(std::pair original_size, int scale_resolution, int patch_size, bool allow_upscale = false) { int width = original_size.first; int height = original_size.second; if ((width * height > scale_resolution * scale_resolution) || allow_upscale) { float r = static_cast(width) / height; height = static_cast(scale_resolution / std::sqrt(r)); width = static_cast(height * r); } int best_width = ensure_divide(width, patch_size); int best_height = ensure_divide(height, patch_size); return std::make_pair(best_width, best_height); } inline float clip(float x, float lower, float upper) { return std::max(lower, std::min(x, upper)); } std::pair get_refine_size(std::pair original_size, std::pair grid, int scale_resolution, int patch_size, bool allow_upscale = false) { int width, height; std::tie(width, height) = original_size; int grid_x, grid_y; std::tie(grid_x, grid_y) = grid; int refine_width = ensure_divide(width, grid_x); int refine_height = ensure_divide(height, grid_y); int grid_width = refine_width / grid_x; int grid_height = refine_height / grid_y; // auto best_grid_size = find_best_resize(std::make_tuple(grid_width, grid_height), scale_resolution, patch_size, allow_upscale); (old line) auto best_grid_size = find_best_resize(std::make_pair(grid_width, grid_height), scale_resolution, patch_size, allow_upscale); // (new line) => fixes conversion for make_tuple to make_pair int best_grid_width, best_grid_height; std::tie(best_grid_width, best_grid_height) = best_grid_size; // std::pair refine_size = std::make_tuple(best_grid_width * grid_x, best_grid_height * grid_y); (old line) std::pair refine_size = std::make_pair(best_grid_width * grid_x, best_grid_height * grid_y); // (new line) return refine_size; } static bool bicubic_resize(const clip_image_u8 &img, clip_image_u8 &dst, int target_width, int target_height) { const int nx = img.nx; const int ny = img.ny; dst.nx = target_width; dst.ny = target_height; dst.buf.resize(3 * target_width * target_height); float Cc; float C[5]; float d0, d2, d3, a0, a1, a2, a3; int i, j, k, jj; int x, y; float dx, dy; float tx, ty; tx = (float)nx / (float)target_width; ty = (float)ny / (float)target_height; // Bicubic interpolation; adapted from ViT.cpp, inspired from : // -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36 // -> https://en.wikipedia.org/wiki/Bicubic_interpolation for (i = 0; i < target_height; i++) { for (j = 0; j < target_width; j++) { x = (int)(tx * j); y = (int)(ty * i); dx = tx * j - x; dy = ty * i - y; for (k = 0; k < 3; k++) { for (jj = 0; jj <= 3; jj++) { d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k]; d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k]; d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k]; a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k]; a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3; a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2; a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3; C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx; d0 = C[0] - C[1]; d2 = C[2] - C[1]; d3 = C[3] - C[1]; a0 = C[1]; a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3; a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2; a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3; Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy; const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f); dst.buf[(i * target_width + j) * 3 + k] = float(Cc2); } } } } return true; } std::vector> slice_image(const clip_image_u8 * img, const int max_slice_nums, const int scale_resolution, const int patch_size, const bool never_split) { const std::pair original_size={img->nx,img->ny}; const int original_width = img->nx; const int original_height = img->ny; const float log_ratio = log(1.0*original_width/original_height); // const float ratio = 1.0 * original_width * original_height/ (scale_resolution * scale_resolution); const int multiple = fmin(ceil(ratio), max_slice_nums); std::vector> images; LOG_TEE("%s: multiple %d\n", __func__, multiple); images.push_back(std::vector()); if(multiple <= 1){ // auto best_resolution = select_best_resolution(image_size, grid_pinpoints); // clip_image_u8 *image_original_resize = clip_image_u8_init(); // bicubic_resize(*img, *image_original_resize, best_resolution.first, best_resolution.second); auto best_size = find_best_resize(original_size, scale_resolution, patch_size, true); clip_image_u8 *source_image = clip_image_u8_init(); bicubic_resize(*img, *source_image, best_size.first, best_size.second); // source_image = image.resize(best_size, Image.Resampling.BICUBIC) images[images.size()-1].push_back(source_image); } else if(multiple > 1){ std::vector candidate_split_grids_nums; for (int i : {multiple - 1, multiple, multiple + 1}) { if (i == 1 || i > max_slice_nums) { continue; } candidate_split_grids_nums.push_back(i); } auto best_size = find_best_resize(original_size, scale_resolution, patch_size); clip_image_u8 *source_image = clip_image_u8_init(); bicubic_resize(*img, *source_image, best_size.first, best_size.second); // source_image = image.copy().resize(best_resize, Image.Resampling.BICUBIC) images[images.size()-1].push_back(source_image); std::vector> candidate_grids; for (int split_grids_nums : candidate_split_grids_nums) { int m = 1; while (m <= split_grids_nums) { if (split_grids_nums % m == 0) { candidate_grids.emplace_back(m, split_grids_nums / m); } ++m; } } std::pair best_grid{1, 1}; float min_error = std::numeric_limits::infinity(); for (const auto& grid : candidate_grids) { float error = std::abs(log_ratio - std::log(1.0 * grid.first / grid.second)); if (error < min_error) { best_grid = grid; min_error = error; } } LOG_TEE("%s: image_size: %d %d; best_grid: %d %d\n", __func__, img->nx, img->ny, best_grid.first, best_grid.second); auto refine_size = get_refine_size(original_size, best_grid, scale_resolution, patch_size, true); clip_image_u8 *refine_image = clip_image_u8_init(); bicubic_resize(*img, *refine_image, refine_size.first, refine_size.second); LOG_TEE("%s: refine_image_size: %d %d; best_grid: %d %d\n", __func__, refine_image->nx, refine_image->ny, best_grid.first, best_grid.second); // split_to_patches int width = refine_image->nx; int height = refine_image->ny; int grid_x = int(width / best_grid.first); int grid_y = int(height / best_grid.second); for (int patches_i = 0, ic = 0; patches_i < height && ic < best_grid.second; patches_i += grid_y, ic += 1){ images.push_back(std::vector()); for(int patches_j = 0, jc = 0; patches_j < width && jc < best_grid.first; patches_j += grid_x, jc += 1){ clip_image_u8 * patch = clip_image_u8_init(); patch->nx = grid_x; patch->ny = grid_y; patch->buf.resize(3 * patch->nx * patch->ny); for (int y = patches_i; y < patches_i + grid_y; ++y) { for (int x = patches_j; x < patches_j + grid_x; ++x) { const int i = 3 * (y * refine_image->nx + x); const int j = 3 * ((y-patches_i) * patch->nx + (x-patches_j)); patch->buf[j] = refine_image->buf[i]; patch->buf[j+1] = refine_image->buf[i+1]; patch->buf[j+2] = refine_image->buf[i+2]; } } images[images.size()-1].push_back(patch); } } } return images; } std::vector> llava_image_embed_make_with_bytes_slice(struct clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img) { std::vector> imgs = slice_image(img); for (size_t i = 0; i < imgs.size(); ++i){ for (size_t j = 0; j < imgs[i].size(); ++j) { LOG_TEE("%s: %d %d\n", __func__,imgs[i][j]->nx,imgs[i][j]->ny); } } std::vector> results; for (size_t i = 0; i < imgs.size(); ++i){ results.push_back(std::vector()); for (size_t j = 0; j < imgs[i].size(); ++j) { float* image_embed = NULL; int n_image_pos = 0; bool image_embed_result = llava_image_embed_make_with_clip_img(ctx_clip, n_threads, imgs[i][j], &image_embed, &n_image_pos); if (!image_embed_result) { LOG_TEE("%s: coulnd't embed the image\n", __func__); return std::vector>(); } auto result = (llava_image_embed*)malloc(sizeof(llava_image_embed)); result->embed = image_embed; result->n_image_pos = n_image_pos; results[i].push_back(result); } } return results; } static bool load_file_to_bytes(const char* path, unsigned char** bytesOut, long *sizeOut) { auto file = fopen(path, "rb"); if (file == NULL) { LOG_TEE("%s: can't read file %s\n", __func__, path); return false; } fseek(file, 0, SEEK_END); auto fileSize = ftell(file); fseek(file, 0, SEEK_SET); auto buffer = (unsigned char *)malloc(fileSize); // Allocate memory to hold the file data if (buffer == NULL) { LOG_TEE("%s: failed to alloc %ld bytes for file %s\n", __func__, fileSize, path); perror("Memory allocation error"); fclose(file); return false; } errno = 0; size_t ret = fread(buffer, 1, fileSize, file); // Read the file into the buffer if (ferror(file)) { die_fmt("read error: %s", strerror(errno)); } if (ret != (size_t) fileSize) { die("unexpectedly reached end of file"); } fclose(file); // Close the file *bytesOut = buffer; *sizeOut = fileSize; return true; } bool llava_image_embed_make_with_clip_img_ollama(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out) { auto image_embed_slices = llava_image_embed_make_with_bytes_slice(ctx_clip, n_threads, img); if (!image_embed_slices[0][0]){ LOG_TEE("%s: failed to embeding image\n", __func__); return false; } std::string fname = "./examples/minicpm-v2.5/slice_token_for_ollama.raw"; unsigned char* slice_token; long image_bytes_length; auto loaded = load_file_to_bytes(fname.c_str(), &slice_token, &image_bytes_length); if (!loaded) { LOG_TEE("%s: failed to load %s\n", __func__, fname.c_str()); return false; } float * all_image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip)*61); int all_n_img_pos=0; int token_len = clip_n_mmproj_embd(ctx_clip)*sizeof(float); std::memcpy(all_image_embd+token_len*all_n_img_pos++, slice_token, token_len); std::memcpy(all_image_embd+token_len*all_n_img_pos, image_embed_slices[0][0]->embed, 96*token_len); all_n_img_pos+=clip_n_patches(ctx_clip); std::memcpy(all_image_embd+token_len*all_n_img_pos++, slice_token+token_len, token_len); if (image_embed_slices.size() > 1) { std::memcpy(all_image_embd+token_len*all_n_img_pos++, slice_token+token_len*2, token_len); for (size_t i = 1; i < image_embed_slices.size(); ++i) { for (size_t j = 0; j < image_embed_slices[i].size(); ++j) { std::memcpy(all_image_embd+token_len*all_n_img_pos++, slice_token, token_len); std::memcpy(all_image_embd+token_len*all_n_img_pos, image_embed_slices[i][j]->embed, 96*token_len); all_n_img_pos+=clip_n_patches(ctx_clip); std::memcpy(all_image_embd+token_len*all_n_img_pos++, slice_token+token_len, token_len); if (j == image_embed_slices[i].size() - 1) { std::memcpy(all_image_embd+token_len*all_n_img_pos++, slice_token+token_len*4, token_len); } } } std::memcpy(all_image_embd+token_len*all_n_img_pos++, slice_token+token_len*3, token_len); } *image_embd_out = all_image_embd; *n_img_pos_out = all_n_img_pos; return true; } std::vector> llava_image_embed_make_with_filename_slice(struct clip_ctx * ctx_clip, int n_threads, const char * image_path) { unsigned char* image_bytes; long image_bytes_length; auto loaded = load_file_to_bytes(image_path, &image_bytes, &image_bytes_length); if (!loaded) { LOG_TEE("%s: failed to load %s\n", __func__, image_path); return std::vector>(); } clip_image_u8 * img = clip_image_u8_init(); if (!clip_image_load_from_bytes(image_bytes, image_bytes_length, img)) { clip_image_u8_free(img); LOG_TEE("%s: can't load image from bytes, is it a valid image?", __func__); return std::vector>(); } std::vector> embeds = llava_image_embed_make_with_bytes_slice(ctx_clip, n_threads, img); clip_image_u8_free(img); free(image_bytes); return embeds; } void llava_image_embed_free_slice(std::vector> embed) { for (size_t i = 0; i < embed.size(); ++i){ for (size_t j = 0; j < embed[i].size(); ++j){ free(embed[i][j]->embed); free(embed[i][j]); } embed[i] = std::vector(); } embed = std::vector>(); }