#pragma once #include "llama.h" #include "llama-impl.h" #include "llama-arch.h" #include "llama-mmap.h" #include "ggml-cpp.h" #include #include #include #include using llama_buf_map = std::unordered_map; enum llama_fver { GGUF_FILE_VERSION_V1 = 1, GGUF_FILE_VERSION_V2 = 2, GGUF_FILE_VERSION_V3 = 3, }; const char * llama_file_version_name(llama_fver version); struct llama_model_loader { // Holds information on a model weight struct llama_tensor_weight { uint16_t idx; // source file index size_t offs; // tensor data offset in the original file ggml_tensor * tensor; llama_tensor_weight(const llama_file * file, uint16_t idx, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) { const int tensor_idx = gguf_find_tensor(gguf_ctx, ggml_get_name(tensor)); if (tensor_idx < 0) { throw std::runtime_error(format("tensor '%s' not found in the model", ggml_get_name(tensor))); } offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx); if (offs + ggml_nbytes(tensor) < offs || offs + ggml_nbytes(tensor) > file->size()) { throw std::runtime_error(format("tensor '%s' data is not within the file bounds, model is corrupted or incomplete", ggml_get_name(tensor))); } } }; // custom comparator to sort weights more nicely by layer struct weight_name_comparer { bool operator()(const std::string & a, const std::string & b) const { int a_layer = -1; int b_layer = -1; sscanf(a.c_str(), "blk.%d.", &a_layer); sscanf(b.c_str(), "blk.%d.", &b_layer); if (a_layer != b_layer) { return a_layer < b_layer; } return a < b; } }; static const int TENSOR_NOT_REQUIRED = 1; static const int TENSOR_DUPLICATED = 2; int n_kv = 0; int n_tensors = 0; int n_created = 0; uint64_t n_elements = 0; size_t n_bytes = 0; bool use_mmap = false; bool check_tensors; llama_files files; llama_ftype ftype; llama_fver fver; llama_mmaps mappings; std::map weights_map; std::unordered_map kv_overrides; gguf_context_ptr meta; std::vector contexts; std::string arch_name; LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN); size_t size_done = 0; size_t size_data = 0; std::vector> mmaps_used; llama_model_loader(const std::string & fname, bool use_mmap, bool check_tensors, const struct llama_model_kv_override * param_overrides_p); template typename std::enable_if::value, bool>::type get_arr_n(const std::string & key, T & result, bool required = true); template typename std::enable_if::value, bool>::type get_arr_n(enum llm_kv kid, T & result, bool required = true); template bool get_arr(const std::string & key, std::vector & result, bool required = true); template bool get_arr(const std::string & key, std::array & result, bool required = true); template bool get_arr(enum llm_kv kid, T & result, bool required = true); template bool get_key(const std::string & key, T & result, bool required = true); template bool get_key(enum llm_kv kid, T & result, bool required = true); template bool get_key_or_arr(const std::string & key, std::array & result, uint32_t n, bool required = true); template bool get_key_or_arr(enum llm_kv kid, T & result, uint32_t n, bool required = true); std::string get_arch_name() const; enum llm_arch get_arch() const; const llama_tensor_weight * get_weight(const char * name) const; const llama_tensor_weight & require_weight(const char * name) const; struct ggml_tensor * get_tensor_meta(const char * name) const; struct ggml_tensor * require_tensor_meta(const std::string & name) const; const struct ggml_tensor * check_tensor_dims(const std::string & name, const std::vector & ne, bool required) const; struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::initializer_list & ne, int flags = 0); struct ggml_tensor * create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::initializer_list & ne, size_t offset, bool required = true); void done_getting_tensors() const; void init_mappings(bool prefetch = true, llama_mlocks * mlock_mmaps = nullptr); void get_mapping_range(size_t * first, size_t * last, void ** addr, int idx, ggml_context * ctx) const; // for backwards compatibility, does not support ggml-backend void load_data_for(struct ggml_tensor * cur) const; // Returns false if cancelled by progress_callback bool load_all_data( struct ggml_context * ctx, llama_buf_map & bufs, llama_mlocks * lmlocks, llama_progress_callback progress_callback, void * progress_callback_user_data); std::string ftype_name() const; void print_info() const; };