#include "ggml-impl.h" #include "opt-step-adamw.cuh" #include static __global__ void opt_step_adamw_f32( float * __restrict__ x, const float * __restrict__ g, float * __restrict__ g_m, float * __restrict__ g_v, const float * __restrict__ pars, const int64_t k) { const int64_t i = (int64_t) blockIdx.x*blockDim.x + threadIdx.x; if (i >= k) { return; } const float alpha = pars[0]; const float beta1 = pars[1]; const float beta2 = pars[2]; const float eps = pars[3]; const float wd = pars[4]; const float beta1h = pars[5]; const float beta2h = pars[6]; const float gi = g[i]; const float gmi = g_m[i]*beta1 + gi*(1.0f - beta1); const float gvi = g_v[i]*beta2 + gi*gi*(1.0f - beta2); g_m[i] = gmi; g_v[i] = gvi; const float mh = gmi*beta1h; const float vh = sqrtf(gvi*beta2h) + eps; x[i] = x[i]*(1.0f - alpha*wd) - alpha*mh/vh; } static void opt_step_adamw_f32_cuda( float * x, const float * g, float * g_m, float * g_v, const float * pars, const int64_t k, cudaStream_t stream) { const dim3 block_dims(CUDA_OPT_STEP_ADAMW_BLOCK_SIZE, 1, 1); const dim3 block_nums((k + CUDA_OPT_STEP_ADAMW_BLOCK_SIZE - 1) / CUDA_OPT_STEP_ADAMW_BLOCK_SIZE, 1, 1); opt_step_adamw_f32<<>>(x, g, g_m, g_v, pars, k); } void ggml_cuda_opt_step_adamw(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src0_grad = dst->src[1]; const ggml_tensor * src0_grad_m = dst->src[2]; const ggml_tensor * src0_grad_v = dst->src[3]; const ggml_tensor * adamw_params = dst->src[4]; GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT(src0_grad->type == GGML_TYPE_F32); GGML_ASSERT(src0_grad_m->type == GGML_TYPE_F32); GGML_ASSERT(src0_grad_v->type == GGML_TYPE_F32); GGML_ASSERT(adamw_params->type == GGML_TYPE_F32); GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(ggml_is_contiguous(src0_grad)); GGML_ASSERT(ggml_is_contiguous(src0_grad_m)); GGML_ASSERT(ggml_is_contiguous(src0_grad_v)); GGML_ASSERT(ggml_is_contiguous(adamw_params)); GGML_ASSERT(ggml_are_same_shape(src0, src0_grad)); GGML_ASSERT(ggml_are_same_shape(src0, src0_grad_m)); GGML_ASSERT(ggml_are_same_shape(src0, src0_grad_v)); GGML_ASSERT(ggml_nelements(adamw_params) == 7); float * src0_d = (float *) src0->data; const float * src0_grad_d = (const float *) src0_grad->data; float * src0_grad_m_d = (float *) src0_grad_m->data; float * src0_grad_v_d = (float *) src0_grad_v->data; const float * adamw_params_d = (const float *) adamw_params->data; cudaStream_t stream = ctx.stream(); const int64_t ne = ggml_nelements(src0); opt_step_adamw_f32_cuda(src0_d, src0_grad_d, src0_grad_m_d, src0_grad_v_d, adamw_params_d, ne, stream); }