// Various helper functions and utilities for training #pragma once #include <string> #include <random> #include <vector> #include "ggml.h" #include "llama.h" typedef std::string mt19937_state; struct train_state { struct ggml_opt_context * opt; uint64_t train_its; uint64_t train_samples; uint64_t train_tokens; uint64_t train_epochs; size_t shuffle_samples_hash; // fn, sample_count, *zip(sample_begins, sample_sizes) mt19937_state shuffle_rng_state_current; mt19937_state shuffle_rng_state_next; size_t shuffle_sample_count; size_t shuffle_next_sample; }; struct train_params_common { const char * fn_train_data; const char * fn_checkpoint_in; const char * fn_checkpoint_out; const char * pattern_fn_it; const char * fn_latest; bool print_usage; int save_every; uint32_t seed; int n_ctx; int n_threads; int n_batch; int n_gradient_accumulation; int n_epochs; int n_gpu_layers; bool custom_n_ctx; bool use_flash; bool use_checkpointing; std::string sample_start; bool include_sample_start; bool escape; bool overlapping_samples; bool fill_with_next_samples; bool separate_with_eos; bool separate_with_bos; bool sample_random_offsets; bool force_reshuffle; int warmup; int cos_decay_steps; float cos_decay_restart; float cos_decay_min; bool enable_restart; int opt_past; float opt_delta; int opt_max_no_improvement; int adam_n_iter; float adam_alpha; float adam_min_alpha; float adam_decay; int adam_decay_min_ndim; float adam_beta1; float adam_beta2; float adam_gclip; float adam_eps_f; }; typedef void (*save_train_files_callback)(void * data, struct train_state * train); struct train_opt_callback_data { struct train_params_common * params; struct train_state * train; save_train_files_callback save_cb; void * save_data; struct llama_context * lctx; int last_save_iter; llama_token * tokens_data; size_t tokens_size; size_t * samples_begin; size_t * samples_size; size_t * shuffled_samples_offs; size_t * shuffled_samples_begin; size_t * shuffled_samples_size; size_t samples_count; struct ggml_tensor * tokens_input; struct ggml_tensor * target_probs; int first_iter; int first_epoch; int iter_at_last_epoch; int64_t last_time; double millis_per_iter; }; struct train_state * init_train_state(); void free_train_state(struct train_state * state); struct train_params_common get_default_train_params_common(); void print_common_train_usage(int /*argc*/, char ** argv, const struct train_params_common * params); bool consume_common_train_arg(int argc, char ** argv, int * idx, struct train_params_common * params, bool * invalid_param); void finish_processing_train_args(struct train_params_common * params); struct random_normal_distribution; struct random_uniform_distribution; struct random_normal_distribution * init_random_normal_distribution (int seed, float mean, float std, float min, float max); struct random_uniform_distribution * init_random_uniform_distribution(int seed, float min, float max); void free_random_normal_distribution (struct random_normal_distribution * rnd); void free_random_uniform_distribution(struct random_uniform_distribution * rnd); struct ggml_tensor * randomize_tensor_normal (struct ggml_tensor * tensor, struct random_normal_distribution * rnd); struct ggml_tensor * randomize_tensor_uniform(struct ggml_tensor * tensor, struct random_uniform_distribution * rnd); // generate random float in interval [0,1) float frand(); float frand_normal (struct random_normal_distribution * rnd); float frand_uniform(struct random_uniform_distribution * rnd); int clamp (const int v, const int min, const int max); float fclamp(const float v, const float min, const float max); void assert_shape_1d(struct ggml_tensor * tensor, int64_t ne0); void assert_shape_2d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1); void assert_shape_3d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2); void assert_shape_4d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3); size_t tokenize_file( struct llama_context * lctx, const char * filename, const std::string & sample_start, bool include_sample_start, bool overlapping_samples, unsigned context_length, std::vector<llama_token> & out_tokens, std::vector<size_t> & out_samples_begin, std::vector<size_t> & out_samples_size); int64_t get_example_targets_batch( struct llama_context * lctx, struct ggml_tensor * tokens_input, struct ggml_tensor * target_probs, int64_t example_id, const size_t * samples_offs, const size_t * samples_begin, const size_t * samples_size, size_t samples_count, const llama_token * train_data, size_t n_train_data, bool separate_with_eos, bool separate_with_bos, bool fill_with_next_samples, bool sample_random_offsets); void mt19937_set_state(std::mt19937& rng, const mt19937_state& rng_state); mt19937_state mt19937_get_state(const std::mt19937& rng); mt19937_state mt19937_seed_to_state(unsigned seed); mt19937_state shuffle_samples( const mt19937_state & rng_state, size_t * shuffled_offs, size_t * shuffled_begins, size_t * shuffled_sizes, const size_t * begins, const size_t * sizes, size_t count); size_t hash_combine(size_t h1, size_t h2); size_t compute_samples_hash( const char* fn, const size_t* samples_begin, const size_t* samples_size, size_t sample_count); std::string replace_str(const char * s, const char * needle, const char * replacement); void print_duration(double milliseconds); float cosine_decay( int64_t step, int64_t decay_steps, float minimum); float cosine_decay_restart( int64_t step, int64_t decay_steps, float minimum, float restart_step_mult); float learning_schedule( int64_t step, int64_t warmup_steps, int64_t decay_steps, float learning_rate, float overall_minimum, float cos_decay_minimum, float cos_decay_restart_step_mult, bool enable_restart); void copy_tensor_by_name(struct ggml_tensor * dst, struct ggml_context * ctx, const char * name); void load_opt_context_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct ggml_opt_context * opt); void save_opt_context_gguf(struct gguf_context * fctx, struct ggml_opt_context * opt); bool load_train_state_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct train_state * train); void save_train_state_gguf(struct gguf_context * fctx, struct train_state * train); std::string get_train_filename(const char * filename, const char * pattern_it, const char * latest, int64_t iteration); void train_opt_callback(void * vdata, int accum_step, float * sched, bool * cancel);