#include "llama-quant.h" #include "llama-impl.h" #include "llama-model.h" #include "llama-model-loader.h" #include #include #include #include #include #include #include // TODO: replace with ggml API call #define QK_K 256 static void zeros(std::ofstream & file, size_t n) { char zero = 0; for (size_t i = 0; i < n; ++i) { file.write(&zero, 1); } } struct quantize_state_internal { const llama_model & model; const llama_model_quantize_params * params; int n_attention_wv = 0; int n_ffn_down = 0; int n_ffn_gate = 0; int n_ffn_up = 0; int i_attention_wv = 0; int i_ffn_down = 0; int i_ffn_gate = 0; int i_ffn_up = 0; int n_k_quantized = 0; int n_fallback = 0; bool has_imatrix = false; // used to figure out if a model shares tok_embd with the output weight bool has_output = false; quantize_state_internal(const llama_model & model, const llama_model_quantize_params * params) : model(model) , params(params) {} }; static void llama_tensor_dequantize_internal( struct ggml_tensor * tensor, std::vector> & output, std::vector & workers, const size_t nelements, const int nthread ) { if (output.size() < nelements) { output.resize(nelements); } float * f32_output = (float *) output.data(); const ggml_type_traits * qtype = ggml_get_type_traits(tensor->type); if (ggml_is_quantized(tensor->type)) { if (qtype->to_float == NULL) { throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type))); } } else if (tensor->type != GGML_TYPE_F16 && tensor->type != GGML_TYPE_BF16) { throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type))); } if (nthread < 2) { if (tensor->type == GGML_TYPE_F16) { ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements); } else if (tensor->type == GGML_TYPE_BF16) { ggml_bf16_to_fp32_row((ggml_bf16_t *)tensor->data, f32_output, nelements); } else if (ggml_is_quantized(tensor->type)) { qtype->to_float(tensor->data, f32_output, nelements); } else { GGML_ABORT("fatal error"); // unreachable } return; } size_t block_size; if (tensor->type == GGML_TYPE_F16 || tensor->type == GGML_TYPE_BF16) { block_size = 1; } else { block_size = (size_t)ggml_blck_size(tensor->type); } size_t block_size_bytes = ggml_type_size(tensor->type); GGML_ASSERT(nelements % block_size == 0); size_t nblocks = nelements / block_size; size_t blocks_per_thread = nblocks / nthread; size_t spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count size_t in_buff_offs = 0; size_t out_buff_offs = 0; for (int tnum = 0; tnum < nthread; tnum++) { size_t thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread size_t thr_elems = thr_blocks * block_size; // number of elements for this thread size_t thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) { if (typ == GGML_TYPE_F16) { ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels); } else if (typ == GGML_TYPE_BF16) { ggml_bf16_to_fp32_row((ggml_bf16_t *)inbuf, outbuf, nels); } else { qtype->to_float(inbuf, outbuf, nels); } }; workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems); in_buff_offs += thr_block_bytes; out_buff_offs += thr_elems; } for (auto & w : workers) { w.join(); } workers.clear(); } static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) { const std::string name = ggml_get_name(tensor); // TODO: avoid hardcoded tensor names - use the TN_* constants const llm_arch arch = qs.model.arch; const auto tn = LLM_TN(arch); auto use_more_bits = [](int i_layer, int n_layers) -> bool { return i_layer < n_layers/8 || i_layer >= 7*n_layers/8 || (i_layer - n_layers/8)%3 == 2; }; const int n_expert = std::max(1, (int)qs.model.hparams.n_expert); auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) { if (n_expert > 1) { // Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but occasionally randomly // sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work // for getting the current layer as I initially thought, and we need to resort to parsing the // tensor name. if (sscanf(name, "blk.%d.", &i_layer) != 1) { throw std::runtime_error(format("Failed to determine layer for tensor %s", name)); } if (i_layer < 0 || i_layer >= n_layer) { throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name, n_layer)); } } return std::make_pair(i_layer, n_layer); }; // for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings // with the quantization of the output tensor if (name == tn(LLM_TENSOR_OUTPUT, "weight") || (!qs.has_output && name == tn(LLM_TENSOR_TOKEN_EMBD, "weight"))) { if (qs.params->output_tensor_type < GGML_TYPE_COUNT) { new_type = qs.params->output_tensor_type; } else { int nx = tensor->ne[0]; if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) { new_type = GGML_TYPE_Q8_0; } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) { new_type = GGML_TYPE_Q5_K; } else if (new_type != GGML_TYPE_Q8_0) { new_type = GGML_TYPE_Q6_K; } } } else if (name == "token_embd.weight") { if (qs.params->token_embedding_type < GGML_TYPE_COUNT) { new_type = qs.params->token_embedding_type; } else { if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) { new_type = GGML_TYPE_Q2_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) { new_type = GGML_TYPE_IQ3_S; } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) { new_type = GGML_TYPE_IQ3_S; } else if (ftype == LLAMA_FTYPE_MOSTLY_TQ1_0 || ftype == LLAMA_FTYPE_MOSTLY_TQ2_0) { new_type = GGML_TYPE_Q4_K; } } } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) { if (name.find("attn_v.weight") != std::string::npos) { if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K; else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K; ++qs.i_attention_wv; } else if (qs.model.hparams.n_expert == 8 && name.find("attn_k.weight") != std::string::npos) { new_type = GGML_TYPE_Q4_K; } else if (name.find("ffn_down") != std::string::npos) { if (qs.i_ffn_down < qs.n_ffn_down/8) { new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K; } ++qs.i_ffn_down; } else if (name.find("attn_output.weight") != std::string::npos) { if (qs.model.hparams.n_expert == 8) { new_type = GGML_TYPE_Q5_K; } else { if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) new_type = GGML_TYPE_IQ2_XXS; else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S; } } } else if (name.find("attn_v.weight") != std::string::npos) { if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) { new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && qs.model.hparams.n_gqa() >= 4) { new_type = GGML_TYPE_Q4_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) { new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS; } else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S) && qs.model.hparams.n_gqa() >= 4) { new_type = GGML_TYPE_Q4_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) { new_type = GGML_TYPE_Q4_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) { new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K; else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && qs.model.hparams.n_gqa() >= 4) { new_type = GGML_TYPE_Q5_K; } else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) && use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K; if (qs.model.type == MODEL_70B) { // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with // nearly negligible increase in model size by quantizing this tensor with more bits: if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K; } if (qs.model.hparams.n_expert == 8) { // for the 8-expert model, bumping this to Q8_0 trades just ~128MB // TODO: explore better strategies new_type = GGML_TYPE_Q8_0; } ++qs.i_attention_wv; } else if (name.find("attn_k.weight") != std::string::npos) { if (qs.model.hparams.n_expert == 8) { // for the 8-expert model, bumping this to Q8_0 trades just ~128MB // TODO: explore better strategies new_type = GGML_TYPE_Q8_0; } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) { new_type = GGML_TYPE_IQ3_XXS; } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) { new_type = GGML_TYPE_IQ2_S; } } else if (name.find("attn_q.weight") != std::string::npos) { if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) { new_type = GGML_TYPE_IQ3_XXS; } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) { new_type = GGML_TYPE_IQ2_S; } } else if (name.find("ffn_down") != std::string::npos) { auto info = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str()); int i_layer = info.first, n_layer = info.second; if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) { if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS && !qs.has_imatrix) { new_type = i_layer < n_layer/8 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) { new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K : arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M && (i_layer < n_layer/8 || (qs.model.hparams.n_expert == 8 && use_more_bits(i_layer, n_layer)))) { new_type = GGML_TYPE_Q4_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) { new_type = arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) { if (arch == LLM_ARCH_FALCON) { new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K : use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K; } else { if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K; } } else if (i_layer < n_layer/8 && (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && !qs.has_imatrix) { new_type = GGML_TYPE_Q5_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) { new_type = GGML_TYPE_Q5_K; } else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || ftype == LLAMA_FTYPE_MOSTLY_Q5_0) && qs.has_imatrix && i_layer < n_layer/8) { // Guard against craziness in the first few ffn_down layers that can happen even with imatrix for Q4_0/Q5_0. // We only do it when an imatrix is provided because a) we want to make sure that one can always get the // same quantization as before imatrix stuff, and b) Q4_1/Q5_1 do go crazy on ffn_down without an imatrix. new_type = ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q5_1; } ++qs.i_ffn_down; } else if (name.find("attn_output.weight") != std::string::npos) { if (arch != LLM_ARCH_FALCON) { if (qs.model.hparams.n_expert == 8) { if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) { new_type = GGML_TYPE_Q5_K; } } else { if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K; else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_IQ3_S; else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ) new_type = GGML_TYPE_Q4_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q5_K; else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M ) new_type = GGML_TYPE_Q4_K; } } else { if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K; } } else if (name.find("attn_qkv.weight") != std::string::npos) { if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) { new_type = GGML_TYPE_Q4_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K; } else if (name.find("ffn_gate") != std::string::npos) { auto info = layer_info(qs.i_ffn_gate, qs.n_ffn_gate, name.c_str()); int i_layer = info.first, n_layer = info.second; if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) { new_type = GGML_TYPE_IQ3_XXS; } ++qs.i_ffn_gate; } else if (name.find("ffn_up") != std::string::npos) { auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str()); int i_layer = info.first, n_layer = info.second; if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) { new_type = GGML_TYPE_IQ3_XXS; } ++qs.i_ffn_up; } // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K; //} // IK: let's remove this, else Q2_K is almost the same as Q3_K_S //else if (name.find("ffn_gate") != std::string::npos || name.find("ffn_up") != std::string::npos) { // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K; //} // This can be used to reduce the size of the Q5_K_S model. // The associated PPL increase is fully in line with the size reduction //else { // if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K; //} bool convert_incompatible_tensor = false; if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K || new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K || new_type == GGML_TYPE_IQ4_XS || new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_S || new_type == GGML_TYPE_IQ3_XXS || new_type == GGML_TYPE_IQ1_S || new_type == GGML_TYPE_IQ3_S || new_type == GGML_TYPE_IQ1_M) { int nx = tensor->ne[0]; int ny = tensor->ne[1]; if (nx % QK_K != 0) { LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for %s", __func__, nx, ny, QK_K, ggml_type_name(new_type)); convert_incompatible_tensor = true; } else { ++qs.n_k_quantized; } } if (convert_incompatible_tensor) { switch (new_type) { case GGML_TYPE_TQ1_0: case GGML_TYPE_TQ2_0: new_type = GGML_TYPE_Q4_0; break; // TODO: use a symmetric type instead case GGML_TYPE_IQ2_XXS: case GGML_TYPE_IQ2_XS: case GGML_TYPE_IQ2_S: case GGML_TYPE_IQ3_XXS: case GGML_TYPE_IQ3_S: case GGML_TYPE_IQ1_S: case GGML_TYPE_IQ1_M: case GGML_TYPE_Q2_K: case GGML_TYPE_Q3_K: case GGML_TYPE_IQ4_XS: new_type = GGML_TYPE_IQ4_NL; break; case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break; case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break; case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break; default: throw std::runtime_error("\nUnsupported tensor size encountered\n"); } if (tensor->ne[0] % ggml_blck_size(new_type) != 0) { new_type = GGML_TYPE_F16; } LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type)); ++qs.n_fallback; } return new_type; } static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector & workers, const int nthread) { if (nthread < 2) { // single-thread size_t new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix); if (!ggml_validate_row_data(new_type, new_data, new_size)) { throw std::runtime_error("quantized data validation failed"); } return new_size; } std::mutex mutex; int64_t counter = 0; size_t new_size = 0; bool valid = true; auto compute = [&mutex, &counter, &new_size, &valid, new_type, f32_data, new_data, chunk_size, nrows, n_per_row, imatrix]() { const int64_t nrows_per_chunk = chunk_size / n_per_row; size_t local_size = 0; while (true) { std::unique_lock lock(mutex); int64_t first_row = counter; counter += nrows_per_chunk; if (first_row >= nrows) { if (local_size > 0) { new_size += local_size; } break; } lock.unlock(); const int64_t this_nrow = std::min(nrows - first_row, nrows_per_chunk); size_t this_size = ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix); local_size += this_size; // validate the quantized data const size_t row_size = ggml_row_size(new_type, n_per_row); void * this_data = (char *) new_data + first_row * row_size; if (!ggml_validate_row_data(new_type, this_data, this_size)) { std::unique_lock lock(mutex); valid = false; break; } } }; for (int it = 0; it < nthread - 1; ++it) { workers.emplace_back(compute); } compute(); for (auto & w : workers) { w.join(); } workers.clear(); if (!valid) { throw std::runtime_error("quantized data validation failed"); } return new_size; } static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) { ggml_type default_type; llama_ftype ftype = params->ftype; switch (params->ftype) { case LLAMA_FTYPE_MOSTLY_Q4_0: default_type = GGML_TYPE_Q4_0; break; case LLAMA_FTYPE_MOSTLY_Q4_1: default_type = GGML_TYPE_Q4_1; break; case LLAMA_FTYPE_MOSTLY_Q5_0: default_type = GGML_TYPE_Q5_0; break; case LLAMA_FTYPE_MOSTLY_Q5_1: default_type = GGML_TYPE_Q5_1; break; case LLAMA_FTYPE_MOSTLY_Q8_0: default_type = GGML_TYPE_Q8_0; break; case LLAMA_FTYPE_MOSTLY_F16: default_type = GGML_TYPE_F16; break; case LLAMA_FTYPE_MOSTLY_BF16: default_type = GGML_TYPE_BF16; break; case LLAMA_FTYPE_ALL_F32: default_type = GGML_TYPE_F32; break; // K-quants case LLAMA_FTYPE_MOSTLY_Q2_K_S: case LLAMA_FTYPE_MOSTLY_Q2_K: default_type = GGML_TYPE_Q2_K; break; case LLAMA_FTYPE_MOSTLY_IQ3_XS: default_type = GGML_TYPE_IQ3_S; break; case LLAMA_FTYPE_MOSTLY_Q3_K_S: case LLAMA_FTYPE_MOSTLY_Q3_K_M: case LLAMA_FTYPE_MOSTLY_Q3_K_L: default_type = GGML_TYPE_Q3_K; break; case LLAMA_FTYPE_MOSTLY_Q4_K_S: case LLAMA_FTYPE_MOSTLY_Q4_K_M: default_type = GGML_TYPE_Q4_K; break; case LLAMA_FTYPE_MOSTLY_Q5_K_S: case LLAMA_FTYPE_MOSTLY_Q5_K_M: default_type = GGML_TYPE_Q5_K; break; case LLAMA_FTYPE_MOSTLY_Q6_K: default_type = GGML_TYPE_Q6_K; break; case LLAMA_FTYPE_MOSTLY_TQ1_0: default_type = GGML_TYPE_TQ1_0; break; case LLAMA_FTYPE_MOSTLY_TQ2_0: default_type = GGML_TYPE_TQ2_0; break; case LLAMA_FTYPE_MOSTLY_IQ2_XXS: default_type = GGML_TYPE_IQ2_XXS; break; case LLAMA_FTYPE_MOSTLY_IQ2_XS: default_type = GGML_TYPE_IQ2_XS; break; case LLAMA_FTYPE_MOSTLY_IQ2_S: default_type = GGML_TYPE_IQ2_XS; break; case LLAMA_FTYPE_MOSTLY_IQ2_M: default_type = GGML_TYPE_IQ2_S; break; case LLAMA_FTYPE_MOSTLY_IQ3_XXS: default_type = GGML_TYPE_IQ3_XXS; break; case LLAMA_FTYPE_MOSTLY_IQ1_S: default_type = GGML_TYPE_IQ1_S; break; case LLAMA_FTYPE_MOSTLY_IQ1_M: default_type = GGML_TYPE_IQ1_M; break; case LLAMA_FTYPE_MOSTLY_IQ4_NL: default_type = GGML_TYPE_IQ4_NL; break; case LLAMA_FTYPE_MOSTLY_IQ4_XS: default_type = GGML_TYPE_IQ4_XS; break; case LLAMA_FTYPE_MOSTLY_IQ3_S: default_type = GGML_TYPE_IQ3_S; break; case LLAMA_FTYPE_MOSTLY_IQ3_M: default_type = GGML_TYPE_IQ3_S; break; default: throw std::runtime_error(format("invalid output file type %d\n", ftype)); } int nthread = params->nthread; if (nthread <= 0) { nthread = std::thread::hardware_concurrency(); } // mmap consistently increases speed Linux, and also increases speed on Windows with // hot cache. It may cause a slowdown on macOS, possibly related to free memory. #if defined(__linux__) || defined(_WIN32) constexpr bool use_mmap = true; #else constexpr bool use_mmap = false; #endif llama_model_kv_override * kv_overrides = nullptr; if (params->kv_overrides) { auto v = (std::vector*)params->kv_overrides; kv_overrides = v->data(); } llama_model_loader ml(fname_inp, use_mmap, /*check_tensors*/ true, kv_overrides); ml.init_mappings(false); // no prefetching llama_model model; llm_load_arch (ml, model); llm_load_hparams(ml, model); llm_load_stats (ml, model); struct quantize_state_internal qs(model, params); if (params->only_copy) { ftype = model.ftype; } const std::unordered_map> * imatrix_data = nullptr; if (params->imatrix) { imatrix_data = static_cast>*>(params->imatrix); if (imatrix_data) { LLAMA_LOG_INFO("================================ Have weights data with %d entries\n",int(imatrix_data->size())); qs.has_imatrix = true; // check imatrix for nans or infs for (const auto & kv : *imatrix_data) { for (float f : kv.second) { if (!std::isfinite(f)) { throw std::runtime_error(format("imatrix contains non-finite value %f\n", f)); } } } } } const size_t align = GGUF_DEFAULT_ALIGNMENT; gguf_context_ptr ctx_out { gguf_init_empty() }; // copy the KV pairs from the input file gguf_set_kv (ctx_out.get(), ml.meta.get()); gguf_set_val_u32(ctx_out.get(), "general.quantization_version", GGML_QNT_VERSION); // TODO: use LLM_KV gguf_set_val_u32(ctx_out.get(), "general.file_type", ftype); // TODO: use LLM_KV // Remove split metadata gguf_remove_key(ctx_out.get(), ml.llm_kv(LLM_KV_SPLIT_NO).c_str()); gguf_remove_key(ctx_out.get(), ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str()); gguf_remove_key(ctx_out.get(), ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str()); if (params->kv_overrides) { const std::vector & overrides = *(const std::vector *)params->kv_overrides; for (const auto & o : overrides) { if (o.key[0] == 0) break; if (o.tag == LLAMA_KV_OVERRIDE_TYPE_FLOAT) { gguf_set_val_f32(ctx_out.get(), o.key, o.val_f64); } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) { gguf_set_val_i32(ctx_out.get(), o.key, o.val_i64); } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) { gguf_set_val_bool(ctx_out.get(), o.key, o.val_bool); } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_STR) { gguf_set_val_str(ctx_out.get(), o.key, o.val_str); } else { LLAMA_LOG_WARN("%s: unknown KV override type for key %s\n", __func__, o.key); } } } // make a list of weights std::vector tensors; tensors.reserve(ml.weights_map.size()); for (const auto & it : ml.weights_map) { tensors.push_back(&it.second); } // keep_split requires that the weights are sorted by split index if (params->keep_split) { std::sort(tensors.begin(), tensors.end(), [](const llama_model_loader::llama_tensor_weight * a, const llama_model_loader::llama_tensor_weight * b) { if (a->idx == b->idx) { return a->offs < b->offs; } return a->idx < b->idx; }); } for (const auto * it : tensors) { const struct ggml_tensor * tensor = it->tensor; const std::string name = ggml_get_name(tensor); // TODO: avoid hardcoded tensor names - use the TN_* constants if (name.find("attn_v.weight") != std::string::npos || name.find("attn_qkv.weight") != std::string::npos || name.find("attn_kv_b.weight")!= std::string::npos) { ++qs.n_attention_wv; } else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) { qs.has_output = true; } } qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer; // sanity checks { const auto & n_head_kv_iter = model.hparams.n_head_kv_arr.begin(); // attention layers have a non-zero number of kv heads int32_t n_attn_layer = model.hparams.n_layer - std::count(n_head_kv_iter, n_head_kv_iter + model.hparams.n_layer, 0); if (llama_model_has_encoder(&model)) { n_attn_layer *= 3; } GGML_ASSERT((qs.n_attention_wv == n_attn_layer) && "n_attention_wv is unexpected"); } size_t total_size_org = 0; size_t total_size_new = 0; std::vector workers; workers.reserve(nthread); int idx = 0; std::vector> read_data; std::vector> work; std::vector> f32_conv_buf; uint16_t n_split = 1; // Assume split index is continuous if (params->keep_split) { for (const auto * it : tensors) { n_split = std::max(uint16_t(it->idx + 1), n_split); } } std::vector ctx_outs(n_split); ctx_outs[0] = std::move(ctx_out); // populate the original tensors so we get an initial meta data for (const auto * it : tensors) { uint16_t i_split = params->keep_split ? it->idx : 0; struct ggml_tensor * tensor = it->tensor; if (!ctx_outs[i_split]) { ctx_outs[i_split].reset(gguf_init_empty()); } gguf_add_tensor(ctx_outs[i_split].get(), tensor); } // Set split info if needed if (n_split > 1) { for (size_t i = 0; i < ctx_outs.size(); ++i) { gguf_set_val_u16(ctx_outs[i].get(), ml.llm_kv(LLM_KV_SPLIT_NO).c_str(), i); gguf_set_val_u16(ctx_outs[i].get(), ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str(), n_split); gguf_set_val_i32(ctx_outs[i].get(), ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str(), ml.n_tensors); } } int cur_split = -1; std::ofstream fout; auto close_ofstream = [&]() { // Write metadata and close file handler if (fout.is_open()) { fout.seekp(0); std::vector data(gguf_get_meta_size(ctx_outs[cur_split].get())); gguf_get_meta_data(ctx_outs[cur_split].get(), data.data()); fout.write((const char *) data.data(), data.size()); fout.close(); } }; auto new_ofstream = [&](int index) { cur_split = index; GGML_ASSERT(ctx_outs[cur_split] && "Find uninitialized gguf_context"); std::string fname = fname_out; if (params->keep_split) { std::vector split_path(llama_path_max(), 0); llama_split_path(split_path.data(), split_path.size(), fname_out.c_str(), cur_split, n_split); fname = std::string(split_path.data()); } fout = std::ofstream(fname, std::ios::binary); fout.exceptions(std::ofstream::failbit); // fail fast on write errors const size_t meta_size = gguf_get_meta_size(ctx_outs[cur_split].get()); // placeholder for the meta data ::zeros(fout, meta_size); }; const auto tn = LLM_TN(model.arch); new_ofstream(0); for (const auto * it : tensors) { const auto & weight = *it; struct ggml_tensor * tensor = weight.tensor; if (weight.idx != cur_split && params->keep_split) { close_ofstream(); new_ofstream(weight.idx); } const std::string name = ggml_get_name(tensor); if (!ml.use_mmap) { if (read_data.size() < ggml_nbytes(tensor)) { read_data.resize(ggml_nbytes(tensor)); } tensor->data = read_data.data(); } ml.load_data_for(tensor); LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ", ++idx, ml.n_tensors, ggml_get_name(tensor), llama_format_tensor_shape(tensor).c_str(), ggml_type_name(tensor->type)); // This used to be a regex, but has an extreme cost to compile times. bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'? // quantize only 2D and 3D tensors (experts) quantize &= (ggml_n_dims(tensor) >= 2); // do not quantize norm tensors quantize &= name.find("_norm.weight") == std::string::npos; quantize &= params->quantize_output_tensor || name != "output.weight"; quantize &= !params->only_copy; // do not quantize expert gating tensors // NOTE: can't use LLM_TN here because the layer number is not known quantize &= name.find("ffn_gate_inp.weight") == std::string::npos; // do not quantize positional embeddings and token types (BERT) quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_POS_EMBD, "weight"); quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_TOKEN_TYPES, "weight"); // do not quantize Mamba's small yet 2D weights // NOTE: can't use LLM_TN here because the layer number is not known quantize &= name.find("ssm_conv1d.weight") == std::string::npos; // do not quantize RWKV's time_mix_first tensors quantize &= name.find("time_mix_first.weight") == std::string::npos; quantize &= name.find("time_mix_w1.weight") == std::string::npos; quantize &= name.find("time_mix_w2.weight") == std::string::npos; quantize &= name.find("time_mix_decay_w1.weight") == std::string::npos; quantize &= name.find("time_mix_decay_w2.weight") == std::string::npos; // do not quantize relative position bias (T5) quantize &= name.find("attn_rel_b.weight") == std::string::npos; enum ggml_type new_type; void * new_data; size_t new_size; if (quantize) { new_type = default_type; // get more optimal quantization type based on the tensor shape, layer, etc. if (!params->pure && ggml_is_quantized(default_type)) { new_type = llama_tensor_get_type(qs, new_type, tensor, ftype); } if (params->token_embedding_type < GGML_TYPE_COUNT && strcmp(tensor->name, "token_embd.weight") == 0) { new_type = params->token_embedding_type; } if (params->output_tensor_type < GGML_TYPE_COUNT && strcmp(tensor->name, "output.weight") == 0) { new_type = params->output_tensor_type; } // If we've decided to quantize to the same type the tensor is already // in then there's nothing to do. quantize = tensor->type != new_type; } if (!quantize) { new_type = tensor->type; new_data = tensor->data; new_size = ggml_nbytes(tensor); LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0); } else { const int64_t nelements = ggml_nelements(tensor); const float * imatrix = nullptr; if (imatrix_data) { auto it = imatrix_data->find(tensor->name); if (it == imatrix_data->end()) { LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name); } else { if (it->second.size() == (size_t)tensor->ne[0]*tensor->ne[2]) { imatrix = it->second.data(); } else { LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__, int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name); // this can happen when quantizing an old mixtral model with split tensors with a new incompatible imatrix // this is a significant error and it may be good idea to abort the process if this happens, // since many people will miss the error and not realize that most of the model is being quantized without an imatrix // tok_embd should be ignored in this case, since it always causes this warning if (name != tn(LLM_TENSOR_TOKEN_EMBD, "weight")) { throw std::runtime_error(format("imatrix size %d is different from tensor size %d for %s", int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name)); } } } } if ((new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_S || new_type == GGML_TYPE_IQ1_S || (new_type == GGML_TYPE_IQ1_M && strcmp(tensor->name, "token_embd.weight") && strcmp(tensor->name, "output.weight")) || (new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) { LLAMA_LOG_ERROR("\n\n============================================================\n"); LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name); LLAMA_LOG_ERROR("The result will be garbage, so bailing out\n"); LLAMA_LOG_ERROR("============================================================\n\n"); throw std::runtime_error(format("Missing importance matrix for tensor %s in a very low-bit quantization", tensor->name)); } float * f32_data; if (tensor->type == GGML_TYPE_F32) { f32_data = (float *) tensor->data; } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) { throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type))); } else { llama_tensor_dequantize_internal(tensor, f32_conv_buf, workers, nelements, nthread); f32_data = (float *) f32_conv_buf.data(); } LLAMA_LOG_INFO("converting to %s .. ", ggml_type_name(new_type)); fflush(stdout); if (work.size() < (size_t)nelements * 4) { work.resize(nelements * 4); // upper bound on size } new_data = work.data(); const int64_t n_per_row = tensor->ne[0]; const int64_t nrows = tensor->ne[1]; static const int64_t min_chunk_size = 32 * 512; const int64_t chunk_size = (n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row)); const int64_t nelements_matrix = tensor->ne[0] * tensor->ne[1]; const int64_t nchunk = (nelements_matrix + chunk_size - 1)/chunk_size; const int64_t nthread_use = nthread > 1 ? std::max((int64_t)1, std::min((int64_t)nthread, nchunk)) : 1; // quantize each expert separately since they have different importance matrices new_size = 0; for (int64_t i03 = 0; i03 < tensor->ne[2]; ++i03) { const float * f32_data_03 = f32_data + i03 * nelements_matrix; void * new_data_03 = (char *)new_data + ggml_row_size(new_type, n_per_row) * i03 * nrows; const float * imatrix_03 = imatrix ? imatrix + i03 * n_per_row : nullptr; new_size += llama_tensor_quantize_internal(new_type, f32_data_03, new_data_03, chunk_size, nrows, n_per_row, imatrix_03, workers, nthread_use); } LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB\n", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0); } total_size_org += ggml_nbytes(tensor); total_size_new += new_size; // update the gguf meta data as we go gguf_set_tensor_type(ctx_outs[cur_split].get(), name.c_str(), new_type); gguf_set_tensor_data(ctx_outs[cur_split].get(), name.c_str(), new_data, new_size); // write tensor data + padding fout.write((const char *) new_data, new_size); zeros(fout, GGML_PAD(new_size, align) - new_size); } close_ofstream(); LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0); LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0); if (qs.n_fallback > 0) { LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) required fallback quantization\n", __func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback); } } // // interface implementation // struct llama_model_quantize_params llama_model_quantize_default_params() { struct llama_model_quantize_params result = { /*.nthread =*/ 0, /*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1, /*.output_tensor_type =*/ GGML_TYPE_COUNT, /*.token_embedding_type =*/ GGML_TYPE_COUNT, /*.allow_requantize =*/ false, /*.quantize_output_tensor =*/ true, /*.only_copy =*/ false, /*.pure =*/ false, /*.keep_split =*/ false, /*.imatrix =*/ nullptr, /*.kv_overrides =*/ nullptr, }; return result; } uint32_t llama_model_quantize( const char * fname_inp, const char * fname_out, const llama_model_quantize_params * params) { try { llama_model_quantize_internal(fname_inp, fname_out, params); } catch (const std::exception & err) { LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what()); return 1; } return 0; }