// // MIT license // Copyright (C) 2024 Intel Corporation // SPDX-License-Identifier: MIT // // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // #include "mmq.hpp" #include "vecdotq.hpp" typedef void (*allocate_tiles_sycl_t)( int** x_ql, sycl::half2** x_dm, int** x_qh, int** x_sc); typedef void (*load_tiles_sycl_t)( const void* __restrict__ vx, int* __restrict__ x_ql, sycl::half2* __restrict__ x_dm, int* __restrict__ x_qh, int* __restrict__ x_sc, const int& i_offset, const int& i_max, const int& k, const int& blocks_per_row); typedef float (*vec_dot_q_mul_mat_sycl_t)( const int* __restrict__ x_ql, const sycl::half2* __restrict__ x_dm, const int* __restrict__ x_qh, const int* __restrict__ x_sc, const int* __restrict__ y_qs, const sycl::half2* __restrict__ y_ms, const int& i, const int& j, const int& k); template <int mmq_y> static __dpct_inline__ void allocate_tiles_q4_0(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc, int *tile_x_qs_q4_0, float *tile_x_d_q4_0) { (void)x_qh; (void)x_sc; *x_ql = tile_x_qs_q4_0; *x_dm = (sycl::half2 *)tile_x_d_q4_0; } template <int mmq_y, int nwarps, bool need_check> static __dpct_inline__ void load_tiles_q4_0(const void *__restrict__ vx, int *__restrict__ x_ql, sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh, int *__restrict__ x_sc, const int &i_offset, const int &i_max, const int &k, const int &blocks_per_row) { (void)x_qh; (void)x_sc; GGML_SYCL_ASSUME(i_offset >= 0); GGML_SYCL_ASSUME(i_offset < nwarps); GGML_SYCL_ASSUME(k >= 0); GGML_SYCL_ASSUME(k < WARP_SIZE); const int kbx = k / QI4_0; const int kqsx = k % QI4_0; const block_q4_0 * bx0 = (const block_q4_0 *) vx; float * x_dmf = (float *) x_dm; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { int i = i0 + i_offset; if (need_check) { i = sycl::min(i, i_max); } const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbx; x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx); // x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbx] = bxi->d; } const int blocks_per_tile_x_row = WARP_SIZE / QI4_0; const int kbxd = k % blocks_per_tile_x_row; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_0) { int i = i0 + i_offset * QI4_0 + k / blocks_per_tile_x_row; if (need_check) { i = sycl::min(i, i_max); } const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbxd; x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbxd] = bxi->d; } } static __dpct_inline__ float vec_dot_q4_0_q8_1_mul_mat( const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm, const int *__restrict__ x_qh, const int *__restrict__ x_sc, const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds, const int &i, const int &j, const int &k) { (void)x_qh; (void)x_sc; const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2)); const float * x_dmf = (const float *) x_dm; int u[2*VDR_Q4_0_Q8_1_MMQ]; #pragma unroll for (int l = 0; l < VDR_Q4_0_Q8_1_MMQ; ++l) { u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE]; u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_0) % WARP_SIZE]; } return vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMQ> (&x_ql[i * (WARP_SIZE + 1) + k], u, x_dmf[i * (WARP_SIZE/QI4_0) + i/QI4_0 + k/QI4_0], y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]); } template <int mmq_y> static __dpct_inline__ void allocate_tiles_q4_1(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc, int *tile_x_qs_q4_1, sycl::half2 *tile_x_dm_q4_1) { (void)x_qh; (void)x_sc; *x_ql = tile_x_qs_q4_1; *x_dm = tile_x_dm_q4_1; } template <int mmq_y, int nwarps, bool need_check> static __dpct_inline__ void load_tiles_q4_1(const void *__restrict__ vx, int *__restrict__ x_ql, sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh, int *__restrict__ x_sc, const int &i_offset, const int &i_max, const int &k, const int &blocks_per_row) { (void)x_qh; (void)x_sc; GGML_SYCL_ASSUME(i_offset >= 0); GGML_SYCL_ASSUME(i_offset < nwarps); GGML_SYCL_ASSUME(k >= 0); GGML_SYCL_ASSUME(k < WARP_SIZE); const int kbx = k / QI4_1; const int kqsx = k % QI4_1; const block_q4_1 * bx0 = (const block_q4_1 *) vx; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { int i = i0 + i_offset; if (need_check) { i = sycl::min(i, i_max); } const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbx; x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx); } const int blocks_per_tile_x_row = WARP_SIZE / QI4_1; const int kbxd = k % blocks_per_tile_x_row; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_1) { int i = i0 + i_offset * QI4_1 + k / blocks_per_tile_x_row; if (need_check) { i = sycl::min(i, i_max); } const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbxd; x_dm[i * (WARP_SIZE/QI4_1) + i / QI4_1 + kbxd] = bxi->dm; } } static __dpct_inline__ float vec_dot_q4_1_q8_1_mul_mat( const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm, const int *__restrict__ x_qh, const int *__restrict__ x_sc, const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds, const int &i, const int &j, const int &k) { (void)x_qh; (void)x_sc; const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2)); int u[2*VDR_Q4_1_Q8_1_MMQ]; #pragma unroll for (int l = 0; l < VDR_Q4_1_Q8_1_MMQ; ++l) { u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE]; u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_1) % WARP_SIZE]; } return vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMQ> (&x_ql[i * (WARP_SIZE + 1) + k], u, x_dm[i * (WARP_SIZE/QI4_1) + i/QI4_1 + k/QI4_1], y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]); } template <int mmq_y> static __dpct_inline__ void allocate_tiles_q5_0(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc, int *tile_x_ql_q5_0, float *tile_x_d_q5_0) { (void)x_qh; (void)x_sc; *x_ql = tile_x_ql_q5_0; *x_dm = (sycl::half2 *)tile_x_d_q5_0; } template <int mmq_y, int nwarps, bool need_check> static __dpct_inline__ void load_tiles_q5_0(const void *__restrict__ vx, int *__restrict__ x_ql, sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh, int *__restrict__ x_sc, const int &i_offset, const int &i_max, const int &k, const int &blocks_per_row) { (void)x_qh; (void)x_sc; GGML_SYCL_ASSUME(i_offset >= 0); GGML_SYCL_ASSUME(i_offset < nwarps); GGML_SYCL_ASSUME(k >= 0); GGML_SYCL_ASSUME(k < WARP_SIZE); const int kbx = k / QI5_0; const int kqsx = k % QI5_0; const block_q5_0 * bx0 = (const block_q5_0 *) vx; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { int i = i0 + i_offset; if (need_check) { i = sycl::min(i, i_max); } const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbx; const int ql = get_int_from_uint8(bxi->qs, kqsx); const int qh = get_int_from_uint8(bxi->qh, 0) >> (4 * (k % QI5_0)); int qs0 = (ql >> 0) & 0x0F0F0F0F; qs0 |= (qh << 4) & 0x00000010; // 0 -> 4 qs0 |= (qh << 11) & 0x00001000; // 1 -> 12 qs0 |= (qh << 18) & 0x00100000; // 2 -> 20 qs0 |= (qh << 25) & 0x10000000; // 3 -> 28 qs0 = dpct::vectorized_binary<sycl::char4>( qs0, 0x10101010, dpct::sub_sat()); // subtract 16 x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0; int qs1 = (ql >> 4) & 0x0F0F0F0F; qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4 qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12 qs1 |= (qh << 2) & 0x00100000; // 18 -> 20 qs1 |= (qh << 9) & 0x10000000; // 19 -> 28 qs1 = dpct::vectorized_binary<sycl::char4>( qs1, 0x10101010, dpct::sub_sat()); // subtract 16 x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1; } const int blocks_per_tile_x_row = WARP_SIZE / QI5_0; const int kbxd = k % blocks_per_tile_x_row; float * x_dmf = (float *) x_dm; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_0) { int i = i0 + i_offset * QI5_0 + k / blocks_per_tile_x_row; if (need_check) { i = sycl::min(i, i_max); } const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbxd; x_dmf[i * (WARP_SIZE/QI5_0) + i / QI5_0 + kbxd] = bxi->d; } } static __dpct_inline__ float vec_dot_q5_0_q8_1_mul_mat( const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm, const int *__restrict__ x_qh, const int *__restrict__ x_sc, const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds, const int &i, const int &j, const int &k) { (void)x_qh; (void)x_sc; const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2)); const int index_bx = i * (WARP_SIZE/QI5_0) + i/QI5_0 + k/QI5_0; const float * x_dmf = (const float *) x_dm; const float * y_df = (const float *) y_ds; int u[2*VDR_Q5_0_Q8_1_MMQ]; #pragma unroll for (int l = 0; l < VDR_Q5_0_Q8_1_MMQ; ++l) { u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE]; u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_0) % WARP_SIZE]; } return vec_dot_q8_0_q8_1_impl<QR5_0*VDR_Q5_0_Q8_1_MMQ> (&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dmf[index_bx], y_df[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]); } template <int mmq_y> static __dpct_inline__ void allocate_tiles_q5_1(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc, int *tile_x_ql_q5_1, sycl::half2 *tile_x_dm_q5_1) { (void)x_qh; (void)x_sc; *x_ql = tile_x_ql_q5_1; *x_dm = tile_x_dm_q5_1; } template <int mmq_y, int nwarps, bool need_check> static __dpct_inline__ void load_tiles_q5_1(const void *__restrict__ vx, int *__restrict__ x_ql, sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh, int *__restrict__ x_sc, const int &i_offset, const int &i_max, const int &k, const int &blocks_per_row) { (void)x_qh; (void)x_sc; GGML_SYCL_ASSUME(i_offset >= 0); GGML_SYCL_ASSUME(i_offset < nwarps); GGML_SYCL_ASSUME(k >= 0); GGML_SYCL_ASSUME(k < WARP_SIZE); const int kbx = k / QI5_1; const int kqsx = k % QI5_1; const block_q5_1 * bx0 = (const block_q5_1 *) vx; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { int i = i0 + i_offset; if (need_check) { i = sycl::min(i, i_max); } const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbx; const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx); const int qh = get_int_from_uint8_aligned(bxi->qh, 0) >> (4 * (k % QI5_1)); int qs0 = (ql >> 0) & 0x0F0F0F0F; qs0 |= (qh << 4) & 0x00000010; // 0 -> 4 qs0 |= (qh << 11) & 0x00001000; // 1 -> 12 qs0 |= (qh << 18) & 0x00100000; // 2 -> 20 qs0 |= (qh << 25) & 0x10000000; // 3 -> 28 x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0; int qs1 = (ql >> 4) & 0x0F0F0F0F; qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4 qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12 qs1 |= (qh << 2) & 0x00100000; // 18 -> 20 qs1 |= (qh << 9) & 0x10000000; // 19 -> 28 x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1; } const int blocks_per_tile_x_row = WARP_SIZE / QI5_1; const int kbxd = k % blocks_per_tile_x_row; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_1) { int i = i0 + i_offset * QI5_1 + k / blocks_per_tile_x_row; if (need_check) { i = sycl::min(i, i_max); } const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbxd; x_dm[i * (WARP_SIZE/QI5_1) + i / QI5_1 + kbxd] = bxi->dm; } } static __dpct_inline__ float vec_dot_q5_1_q8_1_mul_mat( const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm, const int *__restrict__ x_qh, const int *__restrict__ x_sc, const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds, const int &i, const int &j, const int &k) { (void)x_qh; (void)x_sc; const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2)); const int index_bx = i * (WARP_SIZE/QI5_1) + + i/QI5_1 + k/QI5_1; int u[2*VDR_Q5_1_Q8_1_MMQ]; #pragma unroll for (int l = 0; l < VDR_Q5_1_Q8_1_MMQ; ++l) { u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE]; u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_1) % WARP_SIZE]; } return vec_dot_q8_1_q8_1_impl<QR5_1*VDR_Q5_1_Q8_1_MMQ> (&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dm[index_bx], y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]); } template <int mmq_y> static __dpct_inline__ void allocate_tiles_q8_0(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc, int *tile_x_qs_q8_0, float *tile_x_d_q8_0) { (void)x_qh; (void)x_sc; *x_ql = tile_x_qs_q8_0; *x_dm = (sycl::half2 *)tile_x_d_q8_0; } template <int mmq_y, int nwarps, bool need_check> static __dpct_inline__ void load_tiles_q8_0(const void *__restrict__ vx, int *__restrict__ x_ql, sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh, int *__restrict__ x_sc, const int &i_offset, const int &i_max, const int &k, const int &blocks_per_row) { (void)x_qh; (void)x_sc; GGML_SYCL_ASSUME(i_offset >= 0); GGML_SYCL_ASSUME(i_offset < nwarps); GGML_SYCL_ASSUME(k >= 0); GGML_SYCL_ASSUME(k < WARP_SIZE); const int kbx = k / QI8_0; const int kqsx = k % QI8_0; float * x_dmf = (float *) x_dm; const block_q8_0 * bx0 = (const block_q8_0 *) vx; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { int i = i0 + i_offset; if (need_check) { i = sycl::min(i, i_max); } const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbx; x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_int8(bxi->qs, kqsx); } const int blocks_per_tile_x_row = WARP_SIZE / QI8_0; const int kbxd = k % blocks_per_tile_x_row; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI8_0) { int i = i0 + i_offset * QI8_0 + k / blocks_per_tile_x_row; if (need_check) { i = sycl::min(i, i_max); } const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbxd; x_dmf[i * (WARP_SIZE/QI8_0) + i / QI8_0 + kbxd] = bxi->d; } } static __dpct_inline__ float vec_dot_q8_0_q8_1_mul_mat( const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm, const int *__restrict__ x_qh, const int *__restrict__ x_sc, const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds, const int &i, const int &j, const int &k) { (void)x_qh; (void)x_sc; const float * x_dmf = (const float *) x_dm; const float * y_df = (const float *) y_ds; return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMQ> (&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[j * WARP_SIZE + k], x_dmf[i * (WARP_SIZE/QI8_0) + i/QI8_0 + k/QI8_0], y_df[j * (WARP_SIZE/QI8_1) + k/QI8_1]); } template <int mmq_y> static __dpct_inline__ void allocate_tiles_q2_K(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc, int *tile_x_ql_q2_K, sycl::half2 *tile_x_dm_q2_K, int *tile_x_sc_q2_K) { (void)x_qh; *x_ql = tile_x_ql_q2_K; *x_dm = tile_x_dm_q2_K; *x_sc = tile_x_sc_q2_K; } template <int mmq_y, int nwarps, bool need_check> static __dpct_inline__ void load_tiles_q2_K(const void *__restrict__ vx, int *__restrict__ x_ql, sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh, int *__restrict__ x_sc, const int &i_offset, const int &i_max, const int &k, const int &blocks_per_row) { (void)x_qh; GGML_SYCL_ASSUME(i_offset >= 0); GGML_SYCL_ASSUME(i_offset < nwarps); GGML_SYCL_ASSUME(k >= 0); GGML_SYCL_ASSUME(k < WARP_SIZE); const int kbx = k / QI2_K; const int kqsx = k % QI2_K; const block_q2_K * bx0 = (const block_q2_K *) vx; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { int i = i0 + i_offset; if (need_check) { i = sycl::min(i, i_max); } const block_q2_K * bxi = bx0 + i*blocks_per_row + kbx; x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx); } const int blocks_per_tile_x_row = WARP_SIZE / QI2_K; const int kbxd = k % blocks_per_tile_x_row; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI2_K) { int i = (i0 + i_offset * QI2_K + k / blocks_per_tile_x_row) % mmq_y; if (need_check) { i = sycl::min(i, i_max); } const block_q2_K * bxi = bx0 + i*blocks_per_row + kbxd; x_dm[i * (WARP_SIZE/QI2_K) + i / QI2_K + kbxd] = bxi->dm; } #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) { int i = i0 + i_offset * 4 + k / (WARP_SIZE/4); if (need_check) { i = sycl::min(i, i_max); } const block_q2_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI2_K/4); x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = get_int_from_uint8_aligned(bxi->scales, k % (QI2_K/4)); } } #define VDR_Q2_K_Q8_1_MMQ 2 // contiguous u/y values static __dpct_inline__ float vec_dot_q2_K_q8_1_impl_mmq(const int *__restrict__ v, const int *__restrict__ u, const uint8_t *__restrict__ scales, const sycl::half2 &dm2, const float &d8) { int sumi_d = 0; int sumi_m = 0; #pragma unroll for (int i0 = 0; i0 < QI8_1; i0 += QI8_1/2) { int sumi_d_sc = 0; const int sc = scales[i0 / (QI8_1/2)]; // fill int with 4x m int m = sc >> 4; m |= m << 8; m |= m << 16; #pragma unroll for (int i = i0; i < i0 + QI8_1/2; ++i) { sumi_d_sc = dpct::dp4a(v[i], u[i], sumi_d_sc); // SIMD dot product sumi_m = dpct::dp4a(m, u[i], sumi_m); // multiply sum of q8_1 values with m } sumi_d += sumi_d_sc * (sc & 0xF); } const sycl::float2 dm2f = dm2.convert<float, sycl::rounding_mode::automatic>(); return d8 * (dm2f.x() * sumi_d - dm2f.y() * sumi_m); } static __dpct_inline__ float vec_dot_q2_K_q8_1_mul_mat( const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm, const int *__restrict__ x_qh, const int *__restrict__ x_sc, const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds, const int &i, const int &j, const int &k) { (void)x_qh; const int kbx = k / QI2_K; const int ky = (k % QI2_K) * QR2_K; const float * y_df = (const float *) y_ds; int v[QR2_K*VDR_Q2_K_Q8_1_MMQ]; const int kqsx = i * (WARP_SIZE + 1) + kbx*QI2_K + (QI2_K/2) * (ky/(2*QI2_K)) + ky % (QI2_K/2); const int shift = 2 * ((ky % (2*QI2_K)) / (QI2_K/2)); #pragma unroll for (int l = 0; l < QR2_K*VDR_Q2_K_Q8_1_MMQ; ++l) { v[l] = (x_ql[kqsx + l] >> shift) & 0x03030303; } const uint8_t * scales = ((const uint8_t *) &x_sc[i * (WARP_SIZE/4) + i/4 + kbx*4]) + ky/4; const int index_y = j * WARP_SIZE + (QR2_K*k) % WARP_SIZE; return vec_dot_q2_K_q8_1_impl_mmq(v, &y_qs[index_y], scales, x_dm[i * (WARP_SIZE/QI2_K) + i/QI2_K + kbx], y_df[index_y/QI8_1]); } template <int mmq_y> static __dpct_inline__ void allocate_tiles_q3_K(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc, int *tile_x_ql_q3_K, sycl::half2 *tile_x_dm_q3_K, int *tile_x_qh_q3_K, int *tile_x_sc_q3_K) { *x_ql = tile_x_ql_q3_K; *x_dm = tile_x_dm_q3_K; *x_qh = tile_x_qh_q3_K; *x_sc = tile_x_sc_q3_K; } template <int mmq_y, int nwarps, bool need_check> static __dpct_inline__ void load_tiles_q3_K(const void *__restrict__ vx, int *__restrict__ x_ql, sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh, int *__restrict__ x_sc, const int &i_offset, const int &i_max, const int &k, const int &blocks_per_row) { GGML_SYCL_ASSUME(i_offset >= 0); GGML_SYCL_ASSUME(i_offset < nwarps); GGML_SYCL_ASSUME(k >= 0); GGML_SYCL_ASSUME(k < WARP_SIZE); const int kbx = k / QI3_K; const int kqsx = k % QI3_K; const block_q3_K * bx0 = (const block_q3_K *) vx; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { int i = i0 + i_offset; if (need_check) { i = sycl::min(i, i_max); } const block_q3_K * bxi = bx0 + i*blocks_per_row + kbx; x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx); } const int blocks_per_tile_x_row = WARP_SIZE / QI3_K; const int kbxd = k % blocks_per_tile_x_row; float * x_dmf = (float *) x_dm; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI3_K) { int i = (i0 + i_offset * QI3_K + k / blocks_per_tile_x_row) % mmq_y; if (need_check) { i = sycl::min(i, i_max); } const block_q3_K * bxi = bx0 + i*blocks_per_row + kbxd; x_dmf[i * (WARP_SIZE/QI3_K) + i / QI3_K + kbxd] = bxi->d; } #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 2) { int i = i0 + i_offset * 2 + k / (WARP_SIZE/2); if (need_check) { i = sycl::min(i, i_max); } const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/2)) / (QI3_K/2); // invert the mask with ~ so that a 0/1 results in 4/0 being subtracted x_qh[i * (WARP_SIZE/2) + i / 2 + k % (WARP_SIZE/2)] = ~get_int_from_uint8(bxi->hmask, k % (QI3_K/2)); } #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) { int i = i0 + i_offset * 4 + k / (WARP_SIZE/4); if (need_check) { i = sycl::min(i, i_max); } const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI3_K/4); const int ksc = k % (QI3_K/4); const int ksc_low = ksc % (QI3_K/8); const int shift_low = 4 * (ksc / (QI3_K/8)); const int sc_low = (get_int_from_uint8(bxi->scales, ksc_low) >> shift_low) & 0x0F0F0F0F; const int ksc_high = QI3_K/8; const int shift_high = 2 * ksc; const int sc_high = ((get_int_from_uint8(bxi->scales, ksc_high) >> shift_high) << 4) & 0x30303030; const int sc = dpct::vectorized_binary<sycl::char4>( sc_low | sc_high, 0x20202020, dpct::sub_sat()); x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = sc; } } #define VDR_Q3_K_Q8_1_MMQ 2 // contiguous u/y values static __dpct_inline__ float vec_dot_q3_K_q8_1_impl_mmq(const int *__restrict__ v, const int *__restrict__ u, const int8_t *__restrict__ scales, const float &d3, const float &d8) { int sumi = 0; #pragma unroll for (int i0 = 0; i0 < QR3_K*VDR_Q3_K_Q8_1_MMQ; i0 += QI8_1/2) { int sumi_sc = 0; for (int i = i0; i < i0 + QI8_1/2; ++i) { sumi_sc = dpct::dp4a(v[i], u[i], sumi_sc); // SIMD dot product } sumi += sumi_sc * scales[i0 / (QI8_1/2)]; } return d3*d8 * sumi; } static __dpct_inline__ float vec_dot_q3_K_q8_1_mul_mat( const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm, const int *__restrict__ x_qh, const int *__restrict__ x_sc, const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds, const int &i, const int &j, const int &k) { const int kbx = k / QI3_K; const int ky = (k % QI3_K) * QR3_K; const float * x_dmf = (const float *) x_dm; const float * y_df = (const float *) y_ds; const int8_t * scales = ((const int8_t *) (x_sc + i * (WARP_SIZE/4) + i/4 + kbx*4)) + ky/4; int v[QR3_K*VDR_Q3_K_Q8_1_MMQ]; #pragma unroll for (int l = 0; l < QR3_K*VDR_Q3_K_Q8_1_MMQ; ++l) { const int kqsx = i * (WARP_SIZE + 1) + kbx*QI3_K + (QI3_K/2) * (ky/(2*QI3_K)) + ky % (QI3_K/2); const int shift = 2 * ((ky % 32) / 8); const int vll = (x_ql[kqsx + l] >> shift) & 0x03030303; const int vh = x_qh[i * (WARP_SIZE/2) + i/2 + kbx * (QI3_K/2) + (ky+l)%8] >> ((ky+l) / 8); const int vlh = (vh << 2) & 0x04040404; v[l] = dpct::vectorized_binary<sycl::char4>(vll, vlh, dpct::sub_sat()); } const int index_y = j * WARP_SIZE + (k*QR3_K) % WARP_SIZE; return vec_dot_q3_K_q8_1_impl_mmq(v, &y_qs[index_y], scales, x_dmf[i * (WARP_SIZE/QI3_K) + i/QI3_K + kbx], y_df[index_y/QI8_1]); } template <int mmq_y> static __dpct_inline__ void allocate_tiles_q4_K(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc, int *tile_x_ql_q4_K, sycl::half2 *tile_x_dm_q4_K, int *tile_x_sc_q4_K) { (void)x_qh; *x_ql = tile_x_ql_q4_K; *x_dm = tile_x_dm_q4_K; *x_sc = tile_x_sc_q4_K; } template <int mmq_y, int nwarps, bool need_check> static __dpct_inline__ void load_tiles_q4_K(const void *__restrict__ vx, int *__restrict__ x_ql, sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh, int *__restrict__ x_sc, const int &i_offset, const int &i_max, const int &k, const int &blocks_per_row) { (void)x_qh; GGML_SYCL_ASSUME(i_offset >= 0); GGML_SYCL_ASSUME(i_offset < nwarps); GGML_SYCL_ASSUME(k >= 0); GGML_SYCL_ASSUME(k < WARP_SIZE); const int kbx = k / QI4_K; // == 0 if QK_K == 256 const int kqsx = k % QI4_K; // == k if QK_K == 256 const block_q4_K * bx0 = (const block_q4_K *) vx; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { int i = i0 + i_offset; if (need_check) { i = sycl::min(i, i_max); } const block_q4_K * bxi = bx0 + i*blocks_per_row + kbx; x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx); } const int blocks_per_tile_x_row = WARP_SIZE / QI4_K; // == 1 if QK_K == 256 const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256 #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_K) { int i = (i0 + i_offset * QI4_K + k / blocks_per_tile_x_row) % mmq_y; if (need_check) { i = sycl::min(i, i_max); } const block_q4_K * bxi = bx0 + i*blocks_per_row + kbxd; #if QK_K == 256 x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = bxi->dm; #else x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = {bxi->dm[0], bxi->dm[1]}; #endif } #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) { int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y; if (need_check) { i = sycl::min(i, i_max); } const block_q4_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI4_K/8); const int * scales = (const int *) bxi->scales; const int ksc = k % (WARP_SIZE/8); // scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8 int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits scales8 |= (scales[ksc/2] >> (2 * (ksc % 2))) & 0x30303030; // upper 2 bits x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8; } } #define VDR_Q4_K_Q8_1_MMQ 8 // contiguous u/y values static __dpct_inline__ float vec_dot_q4_K_q8_1_impl_mmq( const int *__restrict__ v, const int *__restrict__ u, const uint8_t *__restrict__ sc, const uint8_t *__restrict__ m, const sycl::half2 &dm4, const sycl::half2 *__restrict__ ds8) { float sumf_d = 0.0f; float sumf_m = 0.0f; #pragma unroll for (int i = 0; i < QR4_K*VDR_Q4_K_Q8_1_MMQ/QI8_1; ++i) { int sumi_d = 0; #pragma unroll for (int j = 0; j < QI8_1; ++j) { sumi_d = dpct::dp4a((v[j] >> (4 * i)) & 0x0F0F0F0F, u[i * QI8_1 + j], sumi_d); // SIMD dot product } const sycl::float2 ds8f = ds8[i].convert<float, sycl::rounding_mode::automatic>(); sumf_d += ds8f.x() * (sc[i] * sumi_d); sumf_m += ds8f.y() * m[i]; // sum of q8_1 block * q4_K min val } const sycl::float2 dm4f = dm4.convert<float, sycl::rounding_mode::automatic>(); return dm4f.x() * sumf_d - dm4f.y() * sumf_m; } static __dpct_inline__ float vec_dot_q4_K_q8_1_mul_mat( const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm, const int *__restrict__ x_qh, const int *__restrict__ x_sc, const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds, const int &i, const int &j, const int &k) { (void)x_qh; const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2*((k % 16) / 8); const int index_y = j * WARP_SIZE + (QR4_K*k) % WARP_SIZE; return vec_dot_q4_K_q8_1_impl_mmq(&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[index_y], sc, sc+8, x_dm[i * (WARP_SIZE/QI4_K) + i/QI4_K], &y_ds[index_y/QI8_1]); } template <int mmq_y> static __dpct_inline__ void allocate_tiles_q5_K(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc, int *tile_x_ql_q5_K, sycl::half2 *tile_x_dm_q5_K, int *tile_x_sc_q5_K) { (void)x_qh; *x_ql = tile_x_ql_q5_K; *x_dm = tile_x_dm_q5_K; *x_sc = tile_x_sc_q5_K; } template <int mmq_y, int nwarps, bool need_check> static __dpct_inline__ void load_tiles_q5_K(const void *__restrict__ vx, int *__restrict__ x_ql, sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh, int *__restrict__ x_sc, const int &i_offset, const int &i_max, const int &k, const int &blocks_per_row) { (void)x_qh; GGML_SYCL_ASSUME(i_offset >= 0); GGML_SYCL_ASSUME(i_offset < nwarps); GGML_SYCL_ASSUME(k >= 0); GGML_SYCL_ASSUME(k < WARP_SIZE); const int kbx = k / QI5_K; // == 0 if QK_K == 256 const int kqsx = k % QI5_K; // == k if QK_K == 256 const block_q5_K * bx0 = (const block_q5_K *) vx; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { int i = i0 + i_offset; if (need_check) { i = sycl::min(i, i_max); } const block_q5_K * bxi = bx0 + i*blocks_per_row + kbx; const int ky = QR5_K*kqsx; const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx); const int ql0 = (ql >> 0) & 0x0F0F0F0F; const int ql1 = (ql >> 4) & 0x0F0F0F0F; const int qh = get_int_from_uint8_aligned(bxi->qh, kqsx % (QI5_K/4)); const int qh0 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 0)) << 4) & 0x10101010; const int qh1 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 1)) << 4) & 0x10101010; const int kq0 = ky - ky % (QI5_K/2) + k % (QI5_K/4) + 0; const int kq1 = ky - ky % (QI5_K/2) + k % (QI5_K/4) + (QI5_K/4); x_ql[i * (2*WARP_SIZE + 1) + kq0] = ql0 | qh0; x_ql[i * (2*WARP_SIZE + 1) + kq1] = ql1 | qh1; } const int blocks_per_tile_x_row = WARP_SIZE / QI5_K; // == 1 if QK_K == 256 const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256 #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_K) { int i = (i0 + i_offset * QI5_K + k / blocks_per_tile_x_row) % mmq_y; if (need_check) { i = sycl::min(i, i_max); } const block_q5_K * bxi = bx0 + i*blocks_per_row + kbxd; #if QK_K == 256 x_dm[i * (WARP_SIZE/QI5_K) + i / QI5_K + kbxd] = bxi->dm; #endif } #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) { int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y; if (need_check) { i = sycl::min(i, i_max); } const block_q5_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI5_K/8); const int * scales = (const int *) bxi->scales; const int ksc = k % (WARP_SIZE/8); // scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8 int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits scales8 |= (scales[ksc/2] >> (2 * (ksc % 2))) & 0x30303030; // upper 2 bits x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8; } } #define VDR_Q5_K_Q8_1_MMQ 8 // contiguous u/y values static __dpct_inline__ float vec_dot_q5_K_q8_1_impl_mmq( const int *__restrict__ v, const int *__restrict__ u, const uint8_t *__restrict__ sc, const uint8_t *__restrict__ m, const sycl::half2 &dm4, const sycl::half2 *__restrict__ ds8) { float sumf_d = 0.0f; float sumf_m = 0.0f; #pragma unroll for (int i = 0; i < QR5_K*VDR_Q5_K_Q8_1_MMQ/QI8_1; ++i) { int sumi_d = 0; #pragma unroll for (int j = 0; j < QI8_1; ++j) { sumi_d = dpct::dp4a(v[i * QI8_1 + j], u[i * QI8_1 + j], sumi_d); // SIMD dot product } const sycl::float2 ds8f = ds8[i].convert<float, sycl::rounding_mode::automatic>(); sumf_d += ds8f.x() * (sc[i] * sumi_d); sumf_m += ds8f.y() * m[i]; // sum of q8_1 block * q4_K min val } const sycl::float2 dm4f = dm4.convert<float, sycl::rounding_mode::automatic>(); return dm4f.x() * sumf_d - dm4f.y() * sumf_m; } static __dpct_inline__ float vec_dot_q5_K_q8_1_mul_mat( const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm, const int *__restrict__ x_qh, const int *__restrict__ x_sc, const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds, const int &i, const int &j, const int &k) { (void)x_qh; const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2 * ((k % 16) / 8); const int index_x = i * (QR5_K*WARP_SIZE + 1) + QR5_K*k; const int index_y = j * WARP_SIZE + (QR5_K*k) % WARP_SIZE; return vec_dot_q5_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, sc+8, x_dm[i * (WARP_SIZE/QI5_K) + i/QI5_K], &y_ds[index_y/QI8_1]); } template <int mmq_y> static __dpct_inline__ void allocate_tiles_q6_K(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc, int *tile_x_ql, sycl::half2 *tile_x_dm, int *tile_x_sc) { (void)x_qh; *x_ql = tile_x_ql; *x_dm = tile_x_dm; *x_sc = tile_x_sc; } template <int mmq_y, int nwarps, bool need_check> static __dpct_inline__ void load_tiles_q6_K(const void *__restrict__ vx, int *__restrict__ x_ql, sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh, int *__restrict__ x_sc, const int &i_offset, const int &i_max, const int &k, const int &blocks_per_row) { (void)x_qh; GGML_SYCL_ASSUME(i_offset >= 0); GGML_SYCL_ASSUME(i_offset < nwarps); GGML_SYCL_ASSUME(k >= 0); GGML_SYCL_ASSUME(k < WARP_SIZE); const int kbx = k / QI6_K; // == 0 if QK_K == 256 const int kqsx = k % QI6_K; // == k if QK_K == 256 const block_q6_K * bx0 = (const block_q6_K *) vx; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { int i = i0 + i_offset; if (need_check) { i = sycl::min(i, i_max); } const block_q6_K * bxi = bx0 + i*blocks_per_row + kbx; const int ky = QR6_K*kqsx; const int ql = get_int_from_uint8(bxi->ql, kqsx); const int ql0 = (ql >> 0) & 0x0F0F0F0F; const int ql1 = (ql >> 4) & 0x0F0F0F0F; const int qh = get_int_from_uint8(bxi->qh, (QI6_K/4) * (kqsx / (QI6_K/2)) + kqsx % (QI6_K/4)); const int qh0 = ((qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4)))) << 4) & 0x30303030; const int qh1 = (qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4)))) & 0x30303030; const int kq0 = ky - ky % QI6_K + k % (QI6_K/2) + 0; const int kq1 = ky - ky % QI6_K + k % (QI6_K/2) + (QI6_K/2); x_ql[i * (2 * WARP_SIZE + 1) + kq0] = dpct::vectorized_binary<sycl::char4>(ql0 | qh0, 0x20202020, dpct::sub_sat()); x_ql[i * (2 * WARP_SIZE + 1) + kq1] = dpct::vectorized_binary<sycl::char4>(ql1 | qh1, 0x20202020, dpct::sub_sat()); } const int blocks_per_tile_x_row = WARP_SIZE / QI6_K; // == 1 if QK_K == 256 const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256 float * x_dmf = (float *) x_dm; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI6_K) { int i = (i0 + i_offset * QI6_K + k / blocks_per_tile_x_row) % mmq_y; if (need_check) { i = sycl::min(i, i_max); } const block_q6_K * bxi = bx0 + i*blocks_per_row + kbxd; x_dmf[i * (WARP_SIZE/QI6_K) + i / QI6_K + kbxd] = bxi->d; } #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) { int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y; if (need_check) { i = sycl::min(i, i_max); } const block_q6_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / 4; x_sc[i * (WARP_SIZE/8) + i / 8 + k % (WARP_SIZE/8)] = get_int_from_int8(bxi->scales, k % (QI6_K/8)); } } #define VDR_Q6_K_Q8_1_MMQ 8 // contiguous u/y values static __dpct_inline__ float vec_dot_q6_K_q8_1_impl_mmq(const int *__restrict__ v, const int *__restrict__ u, const int8_t *__restrict__ sc, const float &d6, const float *__restrict__ d8) { float sumf_d = 0.0f; #pragma unroll for (int i0 = 0; i0 < VDR_Q6_K_Q8_1_MMQ; i0 += 4) { sycl::int2 sumi_d = {0, 0}; // 2 q6_K scales per q8_1 scale #pragma unroll for (int i = i0; i < i0 + 2; ++i) { sumi_d.x() = dpct::dp4a(v[2 * i + 0], u[2 * i + 0], sumi_d.x()); // SIMD dot product sumi_d.x() = dpct::dp4a(v[2 * i + 1], u[2 * i + 1], sumi_d.x()); // SIMD dot product sumi_d.y() = dpct::dp4a(v[2 * i + 4], u[2 * i + 4], sumi_d.y()); // SIMD dot product sumi_d.y() = dpct::dp4a(v[2 * i + 5], u[2 * i + 5], sumi_d.y()); // SIMD dot product } sumf_d += d8[i0 / 4] * (sc[i0 / 2 + 0] * sumi_d.x() + sc[i0 / 2 + 1] * sumi_d.y()); } return d6 * sumf_d; } static __dpct_inline__ float vec_dot_q6_K_q8_1_mul_mat( const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm, const int *__restrict__ x_qh, const int *__restrict__ x_sc, const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds, const int &i, const int &j, const int &k) { (void)x_qh; const float * x_dmf = (const float *) x_dm; const float * y_df = (const float *) y_ds; const int8_t * sc = ((const int8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/8]); const int index_x = i * (QR6_K*WARP_SIZE + 1) + QR6_K*k; const int index_y = j * WARP_SIZE + (QR6_K*k) % WARP_SIZE; return vec_dot_q6_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, x_dmf[i * (WARP_SIZE/QI6_K) + i/QI6_K], &y_df[index_y/QI8_1]); } template <int qk, int qr, int qi, bool need_sum, typename block_q_t, int mmq_x, int mmq_y, int nwarps, load_tiles_sycl_t load_tiles, int vdr, vec_dot_q_mul_mat_sycl_t vec_dot> /* DPCT1110:8: The total declared local variable size in device function mul_mat_q exceeds 128 bytes and may cause high register pressure. Consult with your hardware vendor to find the total register size available and adjust the code, or use smaller sub-group size to avoid high register pressure. */ static __dpct_inline__ void mul_mat_q(const void *__restrict__ vx, const void *__restrict__ vy, float *__restrict__ dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst, int *tile_x_ql, sycl::half2 *tile_x_dm, int *tile_x_qh, int *tile_x_sc, const sycl::nd_item<3> &item_ct1, int *tile_y_qs, sycl::half2 *tile_y_ds) { const block_q_t * x = (const block_q_t *) vx; const block_q8_1 * y = (const block_q8_1 *) vy; const int blocks_per_row_x = ncols_x / qk; const int blocks_per_col_y = nrows_y / QK8_1; const int blocks_per_warp = WARP_SIZE / qi; const int & ncols_dst = ncols_y; const int row_dst_0 = item_ct1.get_group(2) * mmq_y; const int & row_x_0 = row_dst_0; const int col_dst_0 = item_ct1.get_group(1) * mmq_x; const int & col_y_0 = col_dst_0; float sum[mmq_y/WARP_SIZE][mmq_x/nwarps] = {{0.0f}}; for (int ib0 = 0; ib0 < blocks_per_row_x; ib0 += blocks_per_warp) { load_tiles(x + row_x_0 * blocks_per_row_x + ib0, tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc, item_ct1.get_local_id(1), nrows_x - row_x_0 - 1, item_ct1.get_local_id(2), blocks_per_row_x); #pragma unroll for (int ir = 0; ir < qr; ++ir) { const int kqs = ir * WARP_SIZE + item_ct1.get_local_id(2); const int kbxd = kqs / QI8_1; #pragma unroll for (int i = 0; i < mmq_x; i += nwarps) { const int col_y_eff = dpct::min( (unsigned int)(col_y_0 + item_ct1.get_local_id(1) + i), ncols_y - 1); // to prevent out-of-bounds memory accesses const block_q8_1 * by0 = &y[col_y_eff*blocks_per_col_y + ib0 * (qk/QK8_1) + kbxd]; const int index_y = (item_ct1.get_local_id(1) + i) * WARP_SIZE + kqs % WARP_SIZE; tile_y_qs[index_y] = get_int_from_int8_aligned( by0->qs, item_ct1.get_local_id(2) % QI8_1); } #pragma unroll for (int ids0 = 0; ids0 < mmq_x; ids0 += nwarps * QI8_1) { const int ids = (ids0 + item_ct1.get_local_id(1) * QI8_1 + item_ct1.get_local_id(2) / (WARP_SIZE / QI8_1)) % mmq_x; const int kby = item_ct1.get_local_id(2) % (WARP_SIZE / QI8_1); const int col_y_eff = sycl::min(col_y_0 + ids, ncols_y - 1); // if the sum is not needed it's faster to transform the scale to f32 ahead of time const sycl::half2 *dsi_src = &y[col_y_eff * blocks_per_col_y + ib0 * (qk / QK8_1) + ir * (WARP_SIZE / QI8_1) + kby] .ds; sycl::half2 *dsi_dst = &tile_y_ds[ids * (WARP_SIZE / QI8_1) + kby]; if (need_sum) { *dsi_dst = *dsi_src; } else { float * dfi_dst = (float *) dsi_dst; *dfi_dst = (*dsi_src)[0]; } } /* DPCT1118:9: SYCL group functions and algorithms must be encountered in converged control flow. You may need to adjust the code. */ /* DPCT1065:56: Consider replacing sycl::nd_item::barrier() with sycl::nd_item::barrier(sycl::access::fence_space::local_space) for better performance if there is no access to global memory. */ item_ct1.barrier(); // #pragma unroll // unrolling this loop causes too much register pressure for (int k = ir*WARP_SIZE/qr; k < (ir+1)*WARP_SIZE/qr; k += vdr) { #pragma unroll for (int j = 0; j < mmq_x; j += nwarps) { #pragma unroll for (int i = 0; i < mmq_y; i += WARP_SIZE) { sum[i / WARP_SIZE][j / nwarps] += vec_dot( tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc, tile_y_qs, tile_y_ds, item_ct1.get_local_id(2) + i, item_ct1.get_local_id(1) + j, k); } } } /* DPCT1118:10: SYCL group functions and algorithms must be encountered in converged control flow. You may need to adjust the code. */ /* DPCT1065:57: Consider replacing sycl::nd_item::barrier() with sycl::nd_item::barrier(sycl::access::fence_space::local_space) for better performance if there is no access to global memory. */ item_ct1.barrier(); } } #pragma unroll for (int j = 0; j < mmq_x; j += nwarps) { const int col_dst = col_dst_0 + j + item_ct1.get_local_id(1); if (col_dst >= ncols_dst) { return; } #pragma unroll for (int i = 0; i < mmq_y; i += WARP_SIZE) { const int row_dst = row_dst_0 + item_ct1.get_local_id(2) + i; if (row_dst >= nrows_dst) { continue; } dst[col_dst*nrows_dst + row_dst] = sum[i/WARP_SIZE][j/nwarps]; } } } #define MMQ_X_Q4_0_RDNA2 64 #define MMQ_Y_Q4_0_RDNA2 128 #define NWARPS_Q4_0_RDNA2 8 #define MMQ_X_Q4_0_RDNA1 64 #define MMQ_Y_Q4_0_RDNA1 64 #define NWARPS_Q4_0_RDNA1 8 #if defined(SYCL_USE_XMX) #define MMQ_X_Q4_0_AMPERE 4 #define MMQ_Y_Q4_0_AMPERE 32 #define NWARPS_Q4_0_AMPERE 4 #else #define MMQ_X_Q4_0_AMPERE 64 #define MMQ_Y_Q4_0_AMPERE 128 #define NWARPS_Q4_0_AMPERE 4 #endif #define MMQ_X_Q4_0_PASCAL 64 #define MMQ_Y_Q4_0_PASCAL 64 #define NWARPS_Q4_0_PASCAL 8 template <bool need_check> static void mul_mat_q4_0( const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst, const sycl::nd_item<3> &item_ct1, int *tile_x_qs_q4_0, float *tile_x_d_q4_0, int *tile_y_qs, sycl::half2 *tile_y_ds) { int * tile_x_ql = nullptr; sycl::half2 *tile_x_dm = nullptr; int * tile_x_qh = nullptr; int * tile_x_sc = nullptr; //sycl_todo: change according to hardware const int mmq_x = MMQ_X_Q4_0_AMPERE; const int mmq_y = MMQ_Y_Q4_0_AMPERE; const int nwarps = NWARPS_Q4_0_AMPERE; allocate_tiles_q4_0<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc, tile_x_qs_q4_0, tile_x_d_q4_0); mul_mat_q<QK4_0, QR4_0, QI4_0, true, block_q4_0, mmq_x, mmq_y, nwarps, load_tiles_q4_0<mmq_y, nwarps, need_check>, VDR_Q4_0_Q8_1_MMQ, vec_dot_q4_0_q8_1_mul_mat>( vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds); } #define MMQ_X_Q4_1_RDNA2 64 #define MMQ_Y_Q4_1_RDNA2 128 #define NWARPS_Q4_1_RDNA2 8 #define MMQ_X_Q4_1_RDNA1 64 #define MMQ_Y_Q4_1_RDNA1 64 #define NWARPS_Q4_1_RDNA1 8 #if defined(SYCL_USE_XMX) #define MMQ_X_Q4_1_AMPERE 4 #define MMQ_Y_Q4_1_AMPERE 32 #define NWARPS_Q4_1_AMPERE 4 #else #define MMQ_X_Q4_1_AMPERE 64 #define MMQ_Y_Q4_1_AMPERE 128 #define NWARPS_Q4_1_AMPERE 4 #endif #define MMQ_X_Q4_1_PASCAL 64 #define MMQ_Y_Q4_1_PASCAL 64 #define NWARPS_Q4_1_PASCAL 8 template <bool need_check> static void mul_mat_q4_1( const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst, const sycl::nd_item<3> &item_ct1, int *tile_x_qs_q4_1, sycl::half2 *tile_x_dm_q4_1, int *tile_y_qs, sycl::half2 *tile_y_ds) { int * tile_x_ql = nullptr; sycl::half2 *tile_x_dm = nullptr; int * tile_x_qh = nullptr; int * tile_x_sc = nullptr; //sycl_todo: change according to hardware const int mmq_x = MMQ_X_Q4_1_AMPERE; const int mmq_y = MMQ_Y_Q4_1_AMPERE; const int nwarps = NWARPS_Q4_1_AMPERE; allocate_tiles_q4_1<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc, tile_x_qs_q4_1, tile_x_dm_q4_1); mul_mat_q<QK4_1, QR4_1, QI4_1, true, block_q4_1, mmq_x, mmq_y, nwarps, load_tiles_q4_1<mmq_y, nwarps, need_check>, VDR_Q4_1_Q8_1_MMQ, vec_dot_q4_1_q8_1_mul_mat>( vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds); } #define MMQ_X_Q5_0_RDNA2 64 #define MMQ_Y_Q5_0_RDNA2 128 #define NWARPS_Q5_0_RDNA2 8 #define MMQ_X_Q5_0_RDNA1 64 #define MMQ_Y_Q5_0_RDNA1 64 #define NWARPS_Q5_0_RDNA1 8 #if defined(SYCL_USE_XMX) #define MMQ_X_Q5_0_AMPERE 4 #define MMQ_Y_Q5_0_AMPERE 32 #define NWARPS_Q5_0_AMPERE 4 #else #define MMQ_X_Q5_0_AMPERE 128 #define MMQ_Y_Q5_0_AMPERE 64 #define NWARPS_Q5_0_AMPERE 4 #endif #define MMQ_X_Q5_0_PASCAL 64 #define MMQ_Y_Q5_0_PASCAL 64 #define NWARPS_Q5_0_PASCAL 8 template <bool need_check> static void mul_mat_q5_0( const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst, const sycl::nd_item<3> &item_ct1, int *tile_x_ql_q5_0, float *tile_x_d_q5_0, int *tile_y_qs, sycl::half2 *tile_y_ds) { int * tile_x_ql = nullptr; sycl::half2 *tile_x_dm = nullptr; int * tile_x_qh = nullptr; int * tile_x_sc = nullptr; //sycl_todo: change according to hardware const int mmq_x = MMQ_X_Q5_0_AMPERE; const int mmq_y = MMQ_Y_Q5_0_AMPERE; const int nwarps = NWARPS_Q5_0_AMPERE; allocate_tiles_q5_0<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc, tile_x_ql_q5_0, tile_x_d_q5_0); mul_mat_q<QK5_0, QR5_0, QI5_0, false, block_q5_0, mmq_x, mmq_y, nwarps, load_tiles_q5_0<mmq_y, nwarps, need_check>, VDR_Q5_0_Q8_1_MMQ, vec_dot_q5_0_q8_1_mul_mat>( vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds); } #define MMQ_X_Q5_1_RDNA2 64 #define MMQ_Y_Q5_1_RDNA2 128 #define NWARPS_Q5_1_RDNA2 8 #define MMQ_X_Q5_1_RDNA1 64 #define MMQ_Y_Q5_1_RDNA1 64 #define NWARPS_Q5_1_RDNA1 8 #if defined(SYCL_USE_XMX) #define MMQ_X_Q5_1_AMPERE 4 #define MMQ_Y_Q5_1_AMPERE 32 #define NWARPS_Q5_1_AMPERE 4 #else #define MMQ_X_Q5_1_AMPERE 128 #define MMQ_Y_Q5_1_AMPERE 64 #define NWARPS_Q5_1_AMPERE 4 #endif #define MMQ_X_Q5_1_PASCAL 64 #define MMQ_Y_Q5_1_PASCAL 64 #define NWARPS_Q5_1_PASCAL 8 template <bool need_check> static void mul_mat_q5_1( const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst, const sycl::nd_item<3> &item_ct1, int *tile_x_ql_q5_1, sycl::half2 *tile_x_dm_q5_1, int *tile_y_qs, sycl::half2 *tile_y_ds) { int * tile_x_ql = nullptr; sycl::half2 *tile_x_dm = nullptr; int * tile_x_qh = nullptr; int * tile_x_sc = nullptr; //sycl_todo: change according to hardware const int mmq_x = MMQ_X_Q5_1_AMPERE; const int mmq_y = MMQ_Y_Q5_1_AMPERE; const int nwarps = NWARPS_Q5_1_AMPERE; allocate_tiles_q5_1<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc, tile_x_ql_q5_1, tile_x_dm_q5_1); mul_mat_q<QK5_1, QR5_1, QI5_1, true, block_q5_1, mmq_x, mmq_y, nwarps, load_tiles_q5_1<mmq_y, nwarps, need_check>, VDR_Q5_1_Q8_1_MMQ, vec_dot_q5_1_q8_1_mul_mat>( vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds); } #define MMQ_X_Q8_0_RDNA2 64 #define MMQ_Y_Q8_0_RDNA2 128 #define NWARPS_Q8_0_RDNA2 8 #define MMQ_X_Q8_0_RDNA1 64 #define MMQ_Y_Q8_0_RDNA1 64 #define NWARPS_Q8_0_RDNA1 8 #if defined(SYCL_USE_XMX) #define MMQ_X_Q8_0_AMPERE 4 #define MMQ_Y_Q8_0_AMPERE 32 #define NWARPS_Q8_0_AMPERE 4 #else #define MMQ_X_Q8_0_AMPERE 128 #define MMQ_Y_Q8_0_AMPERE 64 #define NWARPS_Q8_0_AMPERE 4 #endif #define MMQ_X_Q8_0_PASCAL 64 #define MMQ_Y_Q8_0_PASCAL 64 #define NWARPS_Q8_0_PASCAL 8 template <bool need_check> static void mul_mat_q8_0( const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst, const sycl::nd_item<3> &item_ct1, int *tile_x_qs_q8_0, float *tile_x_d_q8_0, int *tile_y_qs, sycl::half2 *tile_y_ds) { int * tile_x_ql = nullptr; sycl::half2 *tile_x_dm = nullptr; int * tile_x_qh = nullptr; int * tile_x_sc = nullptr; //sycl_todo: change according to hardware const int mmq_x = MMQ_X_Q8_0_AMPERE; const int mmq_y = MMQ_Y_Q8_0_AMPERE; const int nwarps = NWARPS_Q8_0_AMPERE; allocate_tiles_q8_0<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc, tile_x_qs_q8_0, tile_x_d_q8_0); mul_mat_q<QK8_0, QR8_0, QI8_0, false, block_q8_0, mmq_x, mmq_y, nwarps, load_tiles_q8_0<mmq_y, nwarps, need_check>, VDR_Q8_0_Q8_1_MMQ, vec_dot_q8_0_q8_1_mul_mat>( vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds); } #define MMQ_X_Q2_K_RDNA2 64 #define MMQ_Y_Q2_K_RDNA2 128 #define NWARPS_Q2_K_RDNA2 8 #define MMQ_X_Q2_K_RDNA1 128 #define MMQ_Y_Q2_K_RDNA1 32 #define NWARPS_Q2_K_RDNA1 8 #if defined(SYCL_USE_XMX) #define MMQ_X_Q2_K_AMPERE 4 #define MMQ_Y_Q2_K_AMPERE 32 #define NWARPS_Q2_K_AMPERE 4 #else #define MMQ_X_Q2_K_AMPERE 64 #define MMQ_Y_Q2_K_AMPERE 128 #define NWARPS_Q2_K_AMPERE 4 #endif #define MMQ_X_Q2_K_PASCAL 64 #define MMQ_Y_Q2_K_PASCAL 64 #define NWARPS_Q2_K_PASCAL 8 template <bool need_check> static void mul_mat_q2_K( const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst, const sycl::nd_item<3> &item_ct1, int *tile_x_ql_q2_K, sycl::half2 *tile_x_dm_q2_K, int *tile_x_sc_q2_K, int *tile_y_qs, sycl::half2 *tile_y_ds) { int * tile_x_ql = nullptr; sycl::half2 *tile_x_dm = nullptr; int * tile_x_qh = nullptr; int * tile_x_sc = nullptr; //sycl_todo: change according to hardware const int mmq_x = MMQ_X_Q2_K_AMPERE; const int mmq_y = MMQ_Y_Q2_K_AMPERE; const int nwarps = NWARPS_Q2_K_AMPERE; allocate_tiles_q2_K<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc, tile_x_ql_q2_K, tile_x_dm_q2_K, tile_x_sc_q2_K); mul_mat_q<QK_K, QR2_K, QI2_K, false, block_q2_K, mmq_x, mmq_y, nwarps, load_tiles_q2_K<mmq_y, nwarps, need_check>, VDR_Q2_K_Q8_1_MMQ, vec_dot_q2_K_q8_1_mul_mat>( vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds); } #define MMQ_X_Q3_K_RDNA2 128 #define MMQ_Y_Q3_K_RDNA2 64 #define NWARPS_Q3_K_RDNA2 8 #define MMQ_X_Q3_K_RDNA1 32 #define MMQ_Y_Q3_K_RDNA1 128 #define NWARPS_Q3_K_RDNA1 8 #if defined(SYCL_USE_XMX) #define MMQ_X_Q3_K_AMPERE 4 #define MMQ_Y_Q3_K_AMPERE 32 #define NWARPS_Q3_K_AMPERE 4 #else #define MMQ_X_Q3_K_AMPERE 128 #define MMQ_Y_Q3_K_AMPERE 128 #define NWARPS_Q3_K_AMPERE 4 #endif #define MMQ_X_Q3_K_PASCAL 64 #define MMQ_Y_Q3_K_PASCAL 64 #define NWARPS_Q3_K_PASCAL 8 template <bool need_check> static void mul_mat_q3_K( const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst, const sycl::nd_item<3> &item_ct1, int *tile_x_ql_q3_K, sycl::half2 *tile_x_dm_q3_K, int *tile_x_qh_q3_K, int *tile_x_sc_q3_K, int *tile_y_qs, sycl::half2 *tile_y_ds) { int * tile_x_ql = nullptr; sycl::half2 *tile_x_dm = nullptr; int * tile_x_qh = nullptr; int * tile_x_sc = nullptr; //sycl_todo: change according to hardware const int mmq_x = MMQ_X_Q3_K_AMPERE; const int mmq_y = MMQ_Y_Q3_K_AMPERE; const int nwarps = NWARPS_Q3_K_AMPERE; allocate_tiles_q3_K<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc, tile_x_ql_q3_K, tile_x_dm_q3_K, tile_x_qh_q3_K, tile_x_sc_q3_K); mul_mat_q<QK_K, QR3_K, QI3_K, false, block_q3_K, mmq_x, mmq_y, nwarps, load_tiles_q3_K<mmq_y, nwarps, need_check>, VDR_Q3_K_Q8_1_MMQ, vec_dot_q3_K_q8_1_mul_mat>( vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds); } #define MMQ_X_Q4_K_RDNA2 64 #define MMQ_Y_Q4_K_RDNA2 128 #define NWARPS_Q4_K_RDNA2 8 #define MMQ_X_Q4_K_RDNA1 32 #define MMQ_Y_Q4_K_RDNA1 64 #define NWARPS_Q4_K_RDNA1 8 #if defined(SYCL_USE_XMX) #define MMQ_X_Q4_K_AMPERE 4 #define MMQ_Y_Q4_K_AMPERE 32 #define NWARPS_Q4_K_AMPERE 4 #else #define MMQ_X_Q4_K_AMPERE 64 #define MMQ_Y_Q4_K_AMPERE 128 #define NWARPS_Q4_K_AMPERE 4 #endif #define MMQ_X_Q4_K_PASCAL 64 #define MMQ_Y_Q4_K_PASCAL 64 #define NWARPS_Q4_K_PASCAL 8 template <bool need_check> static void mul_mat_q4_K( const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst, const sycl::nd_item<3> &item_ct1, int *tile_x_ql_q4_K, sycl::half2 *tile_x_dm_q4_K, int *tile_x_sc_q4_K, int *tile_y_qs, sycl::half2 *tile_y_ds) { int * tile_x_ql = nullptr; sycl::half2 *tile_x_dm = nullptr; int * tile_x_qh = nullptr; int * tile_x_sc = nullptr; //sycl_todo: change according to hardware const int mmq_x = MMQ_X_Q4_K_AMPERE; const int mmq_y = MMQ_Y_Q4_K_AMPERE; const int nwarps = NWARPS_Q4_K_AMPERE; allocate_tiles_q4_K<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc, tile_x_ql_q4_K, tile_x_dm_q4_K, tile_x_sc_q4_K); mul_mat_q<QK_K, QR4_K, QI4_K, true, block_q4_K, mmq_x, mmq_y, nwarps, load_tiles_q4_K<mmq_y, nwarps, need_check>, VDR_Q4_K_Q8_1_MMQ, vec_dot_q4_K_q8_1_mul_mat>( vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds); } #define MMQ_X_Q5_K_RDNA2 64 #define MMQ_Y_Q5_K_RDNA2 128 #define NWARPS_Q5_K_RDNA2 8 #define MMQ_X_Q5_K_RDNA1 32 #define MMQ_Y_Q5_K_RDNA1 64 #define NWARPS_Q5_K_RDNA1 8 #if defined(SYCL_USE_XMX) #define MMQ_X_Q5_K_AMPERE 4 #define MMQ_Y_Q5_K_AMPERE 32 #define NWARPS_Q5_K_AMPERE 4 #else #define MMQ_X_Q5_K_AMPERE 64 #define MMQ_Y_Q5_K_AMPERE 128 #define NWARPS_Q5_K_AMPERE 4 #endif #define MMQ_X_Q5_K_PASCAL 64 #define MMQ_Y_Q5_K_PASCAL 64 #define NWARPS_Q5_K_PASCAL 8 template <bool need_check> static void mul_mat_q5_K( const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst, const sycl::nd_item<3> &item_ct1, int *tile_x_ql_q5_K, sycl::half2 *tile_x_dm_q5_K, int *tile_x_sc_q5_K, int *tile_y_qs, sycl::half2 *tile_y_ds) { int * tile_x_ql = nullptr; sycl::half2 *tile_x_dm = nullptr; int * tile_x_qh = nullptr; int * tile_x_sc = nullptr; //sycl_todo: change according to hardware const int mmq_x = MMQ_X_Q5_K_AMPERE; const int mmq_y = MMQ_Y_Q5_K_AMPERE; const int nwarps = NWARPS_Q5_K_AMPERE; allocate_tiles_q5_K<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc, tile_x_ql_q5_K, tile_x_dm_q5_K, tile_x_sc_q5_K); mul_mat_q<QK_K, QR5_K, QI5_K, true, block_q5_K, mmq_x, mmq_y, nwarps, load_tiles_q5_K<mmq_y, nwarps, need_check>, VDR_Q5_K_Q8_1_MMQ, vec_dot_q5_K_q8_1_mul_mat>( vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds); } #define MMQ_X_Q6_K_RDNA2 64 #define MMQ_Y_Q6_K_RDNA2 128 #define NWARPS_Q6_K_RDNA2 8 #define MMQ_X_Q6_K_RDNA1 32 #define MMQ_Y_Q6_K_RDNA1 64 #define NWARPS_Q6_K_RDNA1 8 #if defined(SYCL_USE_XMX) #define MMQ_X_Q6_K_AMPERE 4 #define MMQ_Y_Q6_K_AMPERE 32 #define NWARPS_Q6_K_AMPERE 4 #else #define MMQ_X_Q6_K_AMPERE 64 #define MMQ_Y_Q6_K_AMPERE 64 #define NWARPS_Q6_K_AMPERE 4 #endif #define MMQ_X_Q6_K_PASCAL 64 #define MMQ_Y_Q6_K_PASCAL 64 #define NWARPS_Q6_K_PASCAL 8 template <bool need_check> static void mul_mat_q6_K( const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst, const sycl::nd_item<3> &item_ct1, int *tile_x_ql, sycl::half2 *tile_x_dm, int *tile_x_sc, int *tile_y_qs, sycl::half2 *tile_y_ds) { // int * tile_x_ql = nullptr; // sycl::half2 *tile_x_dm = nullptr; int * tile_x_qh = nullptr; // int * tile_x_sc = nullptr; //sycl_todo: change according to hardware const int mmq_x = MMQ_X_Q6_K_AMPERE; const int mmq_y = MMQ_Y_Q6_K_AMPERE; const int nwarps = NWARPS_Q6_K_AMPERE; allocate_tiles_q6_K<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc, tile_x_ql, tile_x_dm, tile_x_sc); mul_mat_q<QK_K, QR6_K, QI6_K, false, block_q6_K, mmq_x, mmq_y, nwarps, load_tiles_q6_K<mmq_y, nwarps, need_check>, VDR_Q6_K_Q8_1_MMQ, vec_dot_q6_K_q8_1_mul_mat>( vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds); } static void ggml_mul_mat_q4_0_q8_1_sycl(const void *vx, const void *vy, float *dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst, dpct::queue_ptr stream) try { int id; SYCL_CHECK( CHECK_TRY_ERROR(id = get_current_device_id())); const int compute_capability = ggml_sycl_info().devices[id].cc; int mmq_x, mmq_y, nwarps; if (compute_capability >= VER_GEN13) { mmq_x = MMQ_X_Q4_0_RDNA2; mmq_y = MMQ_Y_Q4_0_RDNA2; nwarps = NWARPS_Q4_0_RDNA2; } else if (compute_capability >= VER_GEN12) { mmq_x = MMQ_X_Q4_0_RDNA1; mmq_y = MMQ_Y_Q4_0_RDNA1; nwarps = NWARPS_Q4_0_RDNA1; } else if (compute_capability >= VER_GEN9) { mmq_x = MMQ_X_Q4_0_AMPERE; mmq_y = MMQ_Y_Q4_0_AMPERE; nwarps = NWARPS_Q4_0_AMPERE; } else if (compute_capability >= VER_4VEC) { mmq_x = MMQ_X_Q4_0_PASCAL; mmq_y = MMQ_Y_Q4_0_PASCAL; nwarps = NWARPS_Q4_0_PASCAL; } else { GGML_ASSERT(false); } const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y; const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x; const sycl::range<3> block_nums(1, block_num_y, block_num_x); const sycl::range<3> block_dims(1, nwarps, WARP_SIZE); if (nrows_x % mmq_y == 0) { const bool need_check = false; /* DPCT1049:20: The work-group size passed to the SYCL kernel may exceed the limit. To get the device limit, query info::device::max_work_group_size. Adjust the work-group size if needed. */ { dpct::has_capability_or_fail(stream->get_device(), {sycl::aspect::fp16}); stream->submit([&](sycl::handler &cgh) { sycl::local_accessor<int, 1> tile_x_qs_q4_0_acc_ct1( sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh); sycl::local_accessor<float, 1> tile_x_d_q4_0_acc_ct1( sycl::range<1>(mmq_y * (WARP_SIZE / QI4_0) + mmq_y / QI4_0), cgh); sycl::local_accessor<int, 1> tile_y_qs_acc_ct1( sycl::range<1>(mmq_x * WARP_SIZE), cgh); sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1( sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh); cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) { mul_mat_q4_0<need_check>( vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, item_ct1, tile_x_qs_q4_0_acc_ct1.get_pointer(), tile_x_d_q4_0_acc_ct1.get_pointer(), tile_y_qs_acc_ct1.get_pointer(), tile_y_ds_acc_ct1.get_pointer()); }); }); } } else { const bool need_check = true; /* DPCT1049:21: The work-group size passed to the SYCL kernel may exceed the limit. To get the device limit, query info::device::max_work_group_size. Adjust the work-group size if needed. */ { dpct::has_capability_or_fail(stream->get_device(), {sycl::aspect::fp16}); stream->submit([&](sycl::handler &cgh) { sycl::local_accessor<int, 1> tile_x_qs_q4_0_acc_ct1( sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh); sycl::local_accessor<float, 1> tile_x_d_q4_0_acc_ct1( sycl::range<1>(mmq_y * (WARP_SIZE / QI4_0) + mmq_y / QI4_0), cgh); sycl::local_accessor<int, 1> tile_y_qs_acc_ct1( sycl::range<1>(mmq_x * WARP_SIZE), cgh); sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1( sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh); cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) { mul_mat_q4_0<need_check>( vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, item_ct1, tile_x_qs_q4_0_acc_ct1.get_pointer(), tile_x_d_q4_0_acc_ct1.get_pointer(), tile_y_qs_acc_ct1.get_pointer(), tile_y_ds_acc_ct1.get_pointer()); }); }); } } } catch (sycl::exception const &exc) { std::cerr << exc.what() << "Exception caught at file:" << __FILE__ << ", line:" << __LINE__ << std::endl; std::exit(1); } static void ggml_mul_mat_q4_1_q8_1_sycl(const void *vx, const void *vy, float *dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst, dpct::queue_ptr stream) try { int id; SYCL_CHECK( CHECK_TRY_ERROR(id = get_current_device_id())); const int compute_capability = ggml_sycl_info().devices[id].cc; int mmq_x, mmq_y, nwarps; if (compute_capability >= VER_GEN13) { mmq_x = MMQ_X_Q4_1_RDNA2; mmq_y = MMQ_Y_Q4_1_RDNA2; nwarps = NWARPS_Q4_1_RDNA2; } else if (compute_capability >= VER_GEN12) { mmq_x = MMQ_X_Q4_1_RDNA1; mmq_y = MMQ_Y_Q4_1_RDNA1; nwarps = NWARPS_Q4_1_RDNA1; } else if (compute_capability >= VER_GEN9) { mmq_x = MMQ_X_Q4_1_AMPERE; mmq_y = MMQ_Y_Q4_1_AMPERE; nwarps = NWARPS_Q4_1_AMPERE; } else if (compute_capability >= VER_4VEC) { mmq_x = MMQ_X_Q4_1_PASCAL; mmq_y = MMQ_Y_Q4_1_PASCAL; nwarps = NWARPS_Q4_1_PASCAL; } else { GGML_ASSERT(false); } const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y; const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x; const sycl::range<3> block_nums(1, block_num_y, block_num_x); const sycl::range<3> block_dims(1, nwarps, WARP_SIZE); if (nrows_x % mmq_y == 0) { const bool need_check = false; /* DPCT1049:22: The work-group size passed to the SYCL kernel may exceed the limit. To get the device limit, query info::device::max_work_group_size. Adjust the work-group size if needed. */ { dpct::has_capability_or_fail(stream->get_device(), {sycl::aspect::fp16}); stream->submit([&](sycl::handler &cgh) { sycl::local_accessor<int, 1> tile_x_qs_q4_1_acc_ct1( sycl::range<1>(mmq_y * (WARP_SIZE) + +mmq_y), cgh); sycl::local_accessor<sycl::half2, 1> tile_x_dm_q4_1_acc_ct1( sycl::range<1>(mmq_y * (WARP_SIZE / QI4_1) + mmq_y / QI4_1), cgh); sycl::local_accessor<int, 1> tile_y_qs_acc_ct1( sycl::range<1>(mmq_x * WARP_SIZE), cgh); sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1( sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh); cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) { mul_mat_q4_1<need_check>( vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, item_ct1, tile_x_qs_q4_1_acc_ct1.get_pointer(), tile_x_dm_q4_1_acc_ct1.get_pointer(), tile_y_qs_acc_ct1.get_pointer(), tile_y_ds_acc_ct1.get_pointer()); }); }); } } else { const bool need_check = true; /* DPCT1049:23: The work-group size passed to the SYCL kernel may exceed the limit. To get the device limit, query info::device::max_work_group_size. Adjust the work-group size if needed. */ { dpct::has_capability_or_fail(stream->get_device(), {sycl::aspect::fp16}); stream->submit([&](sycl::handler &cgh) { sycl::local_accessor<int, 1> tile_x_qs_q4_1_acc_ct1( sycl::range<1>(mmq_y * (WARP_SIZE) + +mmq_y), cgh); sycl::local_accessor<sycl::half2, 1> tile_x_dm_q4_1_acc_ct1( sycl::range<1>(mmq_y * (WARP_SIZE / QI4_1) + mmq_y / QI4_1), cgh); sycl::local_accessor<int, 1> tile_y_qs_acc_ct1( sycl::range<1>(mmq_x * WARP_SIZE), cgh); sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1( sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh); cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) { mul_mat_q4_1<need_check>( vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, item_ct1, tile_x_qs_q4_1_acc_ct1.get_pointer(), tile_x_dm_q4_1_acc_ct1.get_pointer(), tile_y_qs_acc_ct1.get_pointer(), tile_y_ds_acc_ct1.get_pointer()); }); }); } } } catch (sycl::exception const &exc) { std::cerr << exc.what() << "Exception caught at file:" << __FILE__ << ", line:" << __LINE__ << std::endl; std::exit(1); } static void ggml_mul_mat_q5_0_q8_1_sycl(const void *vx, const void *vy, float *dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst, dpct::queue_ptr stream) try { int id; SYCL_CHECK( CHECK_TRY_ERROR(id = get_current_device_id())); const int compute_capability = ggml_sycl_info().devices[id].cc; int mmq_x, mmq_y, nwarps; if (compute_capability >= VER_GEN13) { mmq_x = MMQ_X_Q5_0_RDNA2; mmq_y = MMQ_Y_Q5_0_RDNA2; nwarps = NWARPS_Q5_0_RDNA2; } else if (compute_capability >= VER_GEN12) { mmq_x = MMQ_X_Q5_0_RDNA1; mmq_y = MMQ_Y_Q5_0_RDNA1; nwarps = NWARPS_Q5_0_RDNA1; } else if (compute_capability >= VER_GEN9) { mmq_x = MMQ_X_Q5_0_AMPERE; mmq_y = MMQ_Y_Q5_0_AMPERE; nwarps = NWARPS_Q5_0_AMPERE; } else if (compute_capability >= VER_4VEC) { mmq_x = MMQ_X_Q5_0_PASCAL; mmq_y = MMQ_Y_Q5_0_PASCAL; nwarps = NWARPS_Q5_0_PASCAL; } else { GGML_ASSERT(false); } const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y; const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x; const sycl::range<3> block_nums(1, block_num_y, block_num_x); const sycl::range<3> block_dims(1, nwarps, WARP_SIZE); if (nrows_x % mmq_y == 0) { const bool need_check = false; /* DPCT1049:24: The work-group size passed to the SYCL kernel may exceed the limit. To get the device limit, query info::device::max_work_group_size. Adjust the work-group size if needed. */ { dpct::has_capability_or_fail(stream->get_device(), {sycl::aspect::fp16}); stream->submit([&](sycl::handler &cgh) { sycl::local_accessor<int, 1> tile_x_ql_q5_0_acc_ct1( sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh); sycl::local_accessor<float, 1> tile_x_d_q5_0_acc_ct1( sycl::range<1>(mmq_y * (WARP_SIZE / QI5_0) + mmq_y / QI5_0), cgh); sycl::local_accessor<int, 1> tile_y_qs_acc_ct1( sycl::range<1>(mmq_x * WARP_SIZE), cgh); sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1( sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh); cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) { mul_mat_q5_0<need_check>( vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, item_ct1, tile_x_ql_q5_0_acc_ct1.get_pointer(), tile_x_d_q5_0_acc_ct1.get_pointer(), tile_y_qs_acc_ct1.get_pointer(), tile_y_ds_acc_ct1.get_pointer()); }); }); } } else { const bool need_check = true; /* DPCT1049:25: The work-group size passed to the SYCL kernel may exceed the limit. To get the device limit, query info::device::max_work_group_size. Adjust the work-group size if needed. */ { dpct::has_capability_or_fail(stream->get_device(), {sycl::aspect::fp16}); stream->submit([&](sycl::handler &cgh) { sycl::local_accessor<int, 1> tile_x_ql_q5_0_acc_ct1( sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh); sycl::local_accessor<float, 1> tile_x_d_q5_0_acc_ct1( sycl::range<1>(mmq_y * (WARP_SIZE / QI5_0) + mmq_y / QI5_0), cgh); sycl::local_accessor<int, 1> tile_y_qs_acc_ct1( sycl::range<1>(mmq_x * WARP_SIZE), cgh); sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1( sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh); cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) { mul_mat_q5_0<need_check>( vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, item_ct1, tile_x_ql_q5_0_acc_ct1.get_pointer(), tile_x_d_q5_0_acc_ct1.get_pointer(), tile_y_qs_acc_ct1.get_pointer(), tile_y_ds_acc_ct1.get_pointer()); }); }); } } } catch (sycl::exception const &exc) { std::cerr << exc.what() << "Exception caught at file:" << __FILE__ << ", line:" << __LINE__ << std::endl; std::exit(1); } static void ggml_mul_mat_q5_1_q8_1_sycl(const void *vx, const void *vy, float *dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst, dpct::queue_ptr stream) try { int id; SYCL_CHECK( CHECK_TRY_ERROR(id = get_current_device_id())); const int compute_capability = ggml_sycl_info().devices[id].cc; int mmq_x, mmq_y, nwarps; if (compute_capability >= VER_GEN13) { mmq_x = MMQ_X_Q5_1_RDNA2; mmq_y = MMQ_Y_Q5_1_RDNA2; nwarps = NWARPS_Q5_1_RDNA2; } else if (compute_capability >= VER_GEN12) { mmq_x = MMQ_X_Q5_1_RDNA1; mmq_y = MMQ_Y_Q5_1_RDNA1; nwarps = NWARPS_Q5_1_RDNA1; } else if (compute_capability >= VER_GEN9) { mmq_x = MMQ_X_Q5_1_AMPERE; mmq_y = MMQ_Y_Q5_1_AMPERE; nwarps = NWARPS_Q5_1_AMPERE; } else if (compute_capability >= VER_4VEC) { mmq_x = MMQ_X_Q5_1_PASCAL; mmq_y = MMQ_Y_Q5_1_PASCAL; nwarps = NWARPS_Q5_1_PASCAL; } else { GGML_ASSERT(false); } const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y; const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x; const sycl::range<3> block_nums(1, block_num_y, block_num_x); const sycl::range<3> block_dims(1, nwarps, WARP_SIZE); if (nrows_x % mmq_y == 0) { const bool need_check = false; /* DPCT1049:26: The work-group size passed to the SYCL kernel may exceed the limit. To get the device limit, query info::device::max_work_group_size. Adjust the work-group size if needed. */ { dpct::has_capability_or_fail(stream->get_device(), {sycl::aspect::fp16}); stream->submit([&](sycl::handler &cgh) { sycl::local_accessor<int, 1> tile_x_ql_q5_1_acc_ct1( sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh); sycl::local_accessor<sycl::half2, 1> tile_x_dm_q5_1_acc_ct1( sycl::range<1>(mmq_y * (WARP_SIZE / QI5_1) + mmq_y / QI5_1), cgh); sycl::local_accessor<int, 1> tile_y_qs_acc_ct1( sycl::range<1>(mmq_x * WARP_SIZE), cgh); sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1( sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh); cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) { mul_mat_q5_1<need_check>( vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, item_ct1, tile_x_ql_q5_1_acc_ct1.get_pointer(), tile_x_dm_q5_1_acc_ct1.get_pointer(), tile_y_qs_acc_ct1.get_pointer(), tile_y_ds_acc_ct1.get_pointer()); }); }); } } else { const bool need_check = true; /* DPCT1049:27: The work-group size passed to the SYCL kernel may exceed the limit. To get the device limit, query info::device::max_work_group_size. Adjust the work-group size if needed. */ { dpct::has_capability_or_fail(stream->get_device(), {sycl::aspect::fp16}); stream->submit([&](sycl::handler &cgh) { sycl::local_accessor<int, 1> tile_x_ql_q5_1_acc_ct1( sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh); sycl::local_accessor<sycl::half2, 1> tile_x_dm_q5_1_acc_ct1( sycl::range<1>(mmq_y * (WARP_SIZE / QI5_1) + mmq_y / QI5_1), cgh); sycl::local_accessor<int, 1> tile_y_qs_acc_ct1( sycl::range<1>(mmq_x * WARP_SIZE), cgh); sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1( sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh); cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) { mul_mat_q5_1<need_check>( vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, item_ct1, tile_x_ql_q5_1_acc_ct1.get_pointer(), tile_x_dm_q5_1_acc_ct1.get_pointer(), tile_y_qs_acc_ct1.get_pointer(), tile_y_ds_acc_ct1.get_pointer()); }); }); } } } catch (sycl::exception const &exc) { std::cerr << exc.what() << "Exception caught at file:" << __FILE__ << ", line:" << __LINE__ << std::endl; std::exit(1); } static void ggml_mul_mat_q8_0_q8_1_sycl(const void *vx, const void *vy, float *dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst, dpct::queue_ptr stream) try { int id; SYCL_CHECK( CHECK_TRY_ERROR(id = get_current_device_id())); const int compute_capability = ggml_sycl_info().devices[id].cc; int mmq_x, mmq_y, nwarps; if (compute_capability >= VER_GEN13) { mmq_x = MMQ_X_Q8_0_RDNA2; mmq_y = MMQ_Y_Q8_0_RDNA2; nwarps = NWARPS_Q8_0_RDNA2; } else if (compute_capability >= VER_GEN12) { mmq_x = MMQ_X_Q8_0_RDNA1; mmq_y = MMQ_Y_Q8_0_RDNA1; nwarps = NWARPS_Q8_0_RDNA1; } else if (compute_capability >= VER_GEN9) { mmq_x = MMQ_X_Q8_0_AMPERE; mmq_y = MMQ_Y_Q8_0_AMPERE; nwarps = NWARPS_Q8_0_AMPERE; } else if (compute_capability >= VER_4VEC) { mmq_x = MMQ_X_Q8_0_PASCAL; mmq_y = MMQ_Y_Q8_0_PASCAL; nwarps = NWARPS_Q8_0_PASCAL; } else { GGML_ASSERT(false); } const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y; const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x; const sycl::range<3> block_nums(1, block_num_y, block_num_x); const sycl::range<3> block_dims(1, nwarps, WARP_SIZE); if (nrows_x % mmq_y == 0) { const bool need_check = false; /* DPCT1049:28: The work-group size passed to the SYCL kernel may exceed the limit. To get the device limit, query info::device::max_work_group_size. Adjust the work-group size if needed. */ { dpct::has_capability_or_fail(stream->get_device(), {sycl::aspect::fp16}); stream->submit([&](sycl::handler &cgh) { sycl::local_accessor<int, 1> tile_x_qs_q8_0_acc_ct1( sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh); sycl::local_accessor<float, 1> tile_x_d_q8_0_acc_ct1( sycl::range<1>(mmq_y * (WARP_SIZE / QI8_0) + mmq_y / QI8_0), cgh); sycl::local_accessor<int, 1> tile_y_qs_acc_ct1( sycl::range<1>(mmq_x * WARP_SIZE), cgh); sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1( sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh); cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) { mul_mat_q8_0<need_check>( vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, item_ct1, tile_x_qs_q8_0_acc_ct1.get_pointer(), tile_x_d_q8_0_acc_ct1.get_pointer(), tile_y_qs_acc_ct1.get_pointer(), tile_y_ds_acc_ct1.get_pointer()); }); }); } } else { const bool need_check = true; /* DPCT1049:29: The work-group size passed to the SYCL kernel may exceed the limit. To get the device limit, query info::device::max_work_group_size. Adjust the work-group size if needed. */ { dpct::has_capability_or_fail(stream->get_device(), {sycl::aspect::fp16}); stream->submit([&](sycl::handler &cgh) { sycl::local_accessor<int, 1> tile_x_qs_q8_0_acc_ct1( sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh); sycl::local_accessor<float, 1> tile_x_d_q8_0_acc_ct1( sycl::range<1>(mmq_y * (WARP_SIZE / QI8_0) + mmq_y / QI8_0), cgh); sycl::local_accessor<int, 1> tile_y_qs_acc_ct1( sycl::range<1>(mmq_x * WARP_SIZE), cgh); sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1( sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh); cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) { mul_mat_q8_0<need_check>( vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, item_ct1, tile_x_qs_q8_0_acc_ct1.get_pointer(), tile_x_d_q8_0_acc_ct1.get_pointer(), tile_y_qs_acc_ct1.get_pointer(), tile_y_ds_acc_ct1.get_pointer()); }); }); } } } catch (sycl::exception const &exc) { std::cerr << exc.what() << "Exception caught at file:" << __FILE__ << ", line:" << __LINE__ << std::endl; std::exit(1); } static void ggml_mul_mat_q2_K_q8_1_sycl(const void *vx, const void *vy, float *dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst, dpct::queue_ptr stream) try { int id; SYCL_CHECK( CHECK_TRY_ERROR(id = get_current_device_id())); const int compute_capability = ggml_sycl_info().devices[id].cc; int mmq_x, mmq_y, nwarps; if (compute_capability >= VER_GEN13) { mmq_x = MMQ_X_Q2_K_RDNA2; mmq_y = MMQ_Y_Q2_K_RDNA2; nwarps = NWARPS_Q2_K_RDNA2; } else if (compute_capability >= VER_GEN12) { mmq_x = MMQ_X_Q2_K_RDNA1; mmq_y = MMQ_Y_Q2_K_RDNA1; nwarps = NWARPS_Q2_K_RDNA1; } else if (compute_capability >= VER_GEN9) { mmq_x = MMQ_X_Q2_K_AMPERE; mmq_y = MMQ_Y_Q2_K_AMPERE; nwarps = NWARPS_Q2_K_AMPERE; } else if (compute_capability >= VER_4VEC) { mmq_x = MMQ_X_Q2_K_PASCAL; mmq_y = MMQ_Y_Q2_K_PASCAL; nwarps = NWARPS_Q2_K_PASCAL; } else { GGML_ASSERT(false); } const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y; const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x; const sycl::range<3> block_nums(1, block_num_y, block_num_x); const sycl::range<3> block_dims(1, nwarps, WARP_SIZE); if (nrows_x % mmq_y == 0) { const bool need_check = false; /* DPCT1049:30: The work-group size passed to the SYCL kernel may exceed the limit. To get the device limit, query info::device::max_work_group_size. Adjust the work-group size if needed. */ { dpct::has_capability_or_fail(stream->get_device(), {sycl::aspect::fp16}); stream->submit([&](sycl::handler &cgh) { sycl::local_accessor<int, 1> tile_x_ql_q2_K_acc_ct1( sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh); sycl::local_accessor<sycl::half2, 1> tile_x_dm_q2_K_acc_ct1( sycl::range<1>(mmq_y * (WARP_SIZE / QI2_K) + mmq_y / QI2_K), cgh); sycl::local_accessor<int, 1> tile_x_sc_q2_K_acc_ct1( sycl::range<1>(mmq_y * (WARP_SIZE / 4) + mmq_y / 4), cgh); sycl::local_accessor<int, 1> tile_y_qs_acc_ct1( sycl::range<1>(mmq_x * WARP_SIZE), cgh); sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1( sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh); cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) { mul_mat_q2_K<need_check>( vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, item_ct1, tile_x_ql_q2_K_acc_ct1.get_pointer(), tile_x_dm_q2_K_acc_ct1.get_pointer(), tile_x_sc_q2_K_acc_ct1.get_pointer(), tile_y_qs_acc_ct1.get_pointer(), tile_y_ds_acc_ct1.get_pointer()); }); }); } } else { const bool need_check = true; /* DPCT1049:31: The work-group size passed to the SYCL kernel may exceed the limit. To get the device limit, query info::device::max_work_group_size. Adjust the work-group size if needed. */ { dpct::has_capability_or_fail(stream->get_device(), {sycl::aspect::fp16}); stream->submit([&](sycl::handler &cgh) { sycl::local_accessor<int, 1> tile_x_ql_q2_K_acc_ct1( sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh); sycl::local_accessor<sycl::half2, 1> tile_x_dm_q2_K_acc_ct1( sycl::range<1>(mmq_y * (WARP_SIZE / QI2_K) + mmq_y / QI2_K), cgh); sycl::local_accessor<int, 1> tile_x_sc_q2_K_acc_ct1( sycl::range<1>(mmq_y * (WARP_SIZE / 4) + mmq_y / 4), cgh); sycl::local_accessor<int, 1> tile_y_qs_acc_ct1( sycl::range<1>(mmq_x * WARP_SIZE), cgh); sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1( sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh); cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) { mul_mat_q2_K<need_check>( vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, item_ct1, tile_x_ql_q2_K_acc_ct1.get_pointer(), tile_x_dm_q2_K_acc_ct1.get_pointer(), tile_x_sc_q2_K_acc_ct1.get_pointer(), tile_y_qs_acc_ct1.get_pointer(), tile_y_ds_acc_ct1.get_pointer()); }); }); } } } catch (sycl::exception const &exc) { std::cerr << exc.what() << "Exception caught at file:" << __FILE__ << ", line:" << __LINE__ << std::endl; std::exit(1); } static void ggml_mul_mat_q3_K_q8_1_sycl(const void *vx, const void *vy, float *dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst, dpct::queue_ptr stream) try { #if QK_K == 256 int id; SYCL_CHECK( CHECK_TRY_ERROR(id = get_current_device_id())); const int compute_capability = ggml_sycl_info().devices[id].cc; int mmq_x, mmq_y, nwarps; if (compute_capability >= VER_GEN13) { mmq_x = MMQ_X_Q3_K_RDNA2; mmq_y = MMQ_Y_Q3_K_RDNA2; nwarps = NWARPS_Q3_K_RDNA2; } else if (compute_capability >= VER_GEN12) { mmq_x = MMQ_X_Q3_K_RDNA1; mmq_y = MMQ_Y_Q3_K_RDNA1; nwarps = NWARPS_Q3_K_RDNA1; } else if (compute_capability >= VER_GEN9) { mmq_x = MMQ_X_Q3_K_AMPERE; mmq_y = MMQ_Y_Q3_K_AMPERE; nwarps = NWARPS_Q3_K_AMPERE; } else if (compute_capability >= VER_4VEC) { mmq_x = MMQ_X_Q3_K_PASCAL; mmq_y = MMQ_Y_Q3_K_PASCAL; nwarps = NWARPS_Q3_K_PASCAL; } else { GGML_ASSERT(false); } const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y; const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x; const sycl::range<3> block_nums(1, block_num_y, block_num_x); const sycl::range<3> block_dims(1, nwarps, WARP_SIZE); if (nrows_x % mmq_y == 0) { const bool need_check = false; /* DPCT1049:32: The work-group size passed to the SYCL kernel may exceed the limit. To get the device limit, query info::device::max_work_group_size. Adjust the work-group size if needed. */ { dpct::has_capability_or_fail(stream->get_device(), {sycl::aspect::fp16}); stream->submit([&](sycl::handler &cgh) { sycl::local_accessor<int, 1> tile_x_ql_q3_K_acc_ct1( sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh); sycl::local_accessor<sycl::half2, 1> tile_x_dm_q3_K_acc_ct1( sycl::range<1>(mmq_y * (WARP_SIZE / QI3_K) + mmq_y / QI3_K), cgh); sycl::local_accessor<int, 1> tile_x_qh_q3_K_acc_ct1( sycl::range<1>(mmq_y * (WARP_SIZE / 2) + mmq_y / 2), cgh); sycl::local_accessor<int, 1> tile_x_sc_q3_K_acc_ct1( sycl::range<1>(mmq_y * (WARP_SIZE / 4) + mmq_y / 4), cgh); sycl::local_accessor<int, 1> tile_y_qs_acc_ct1( sycl::range<1>(mmq_x * WARP_SIZE), cgh); sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1( sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh); cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) { mul_mat_q3_K<need_check>( vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, item_ct1, tile_x_ql_q3_K_acc_ct1.get_pointer(), tile_x_dm_q3_K_acc_ct1.get_pointer(), tile_x_qh_q3_K_acc_ct1.get_pointer(), tile_x_sc_q3_K_acc_ct1.get_pointer(), tile_y_qs_acc_ct1.get_pointer(), tile_y_ds_acc_ct1.get_pointer()); }); }); } } else { const bool need_check = true; /* DPCT1049:33: The work-group size passed to the SYCL kernel may exceed the limit. To get the device limit, query info::device::max_work_group_size. Adjust the work-group size if needed. */ { dpct::has_capability_or_fail(stream->get_device(), {sycl::aspect::fp16}); stream->submit([&](sycl::handler &cgh) { sycl::local_accessor<int, 1> tile_x_ql_q3_K_acc_ct1( sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh); sycl::local_accessor<sycl::half2, 1> tile_x_dm_q3_K_acc_ct1( sycl::range<1>(mmq_y * (WARP_SIZE / QI3_K) + mmq_y / QI3_K), cgh); sycl::local_accessor<int, 1> tile_x_qh_q3_K_acc_ct1( sycl::range<1>(mmq_y * (WARP_SIZE / 2) + mmq_y / 2), cgh); sycl::local_accessor<int, 1> tile_x_sc_q3_K_acc_ct1( sycl::range<1>(mmq_y * (WARP_SIZE / 4) + mmq_y / 4), cgh); sycl::local_accessor<int, 1> tile_y_qs_acc_ct1( sycl::range<1>(mmq_x * WARP_SIZE), cgh); sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1( sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh); cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) { mul_mat_q3_K<need_check>( vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, item_ct1, tile_x_ql_q3_K_acc_ct1.get_pointer(), tile_x_dm_q3_K_acc_ct1.get_pointer(), tile_x_qh_q3_K_acc_ct1.get_pointer(), tile_x_sc_q3_K_acc_ct1.get_pointer(), tile_y_qs_acc_ct1.get_pointer(), tile_y_ds_acc_ct1.get_pointer()); }); }); } } #endif } catch (sycl::exception const &exc) { std::cerr << exc.what() << "Exception caught at file:" << __FILE__ << ", line:" << __LINE__ << std::endl; std::exit(1); } static void ggml_mul_mat_q4_K_q8_1_sycl(const void *vx, const void *vy, float *dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst, dpct::queue_ptr stream) try { int id; SYCL_CHECK( CHECK_TRY_ERROR(id = get_current_device_id())); const int compute_capability = ggml_sycl_info().devices[id].cc; int mmq_x, mmq_y, nwarps; if (compute_capability >= VER_GEN13) { mmq_x = MMQ_X_Q4_K_RDNA2; mmq_y = MMQ_Y_Q4_K_RDNA2; nwarps = NWARPS_Q4_K_RDNA2; } else if (compute_capability >= VER_GEN12) { mmq_x = MMQ_X_Q4_K_RDNA1; mmq_y = MMQ_Y_Q4_K_RDNA1; nwarps = NWARPS_Q4_K_RDNA1; } else if (compute_capability >= VER_GEN9) { mmq_x = MMQ_X_Q4_K_AMPERE; mmq_y = MMQ_Y_Q4_K_AMPERE; nwarps = NWARPS_Q4_K_AMPERE; } else if (compute_capability >= VER_4VEC) { mmq_x = MMQ_X_Q4_K_PASCAL; mmq_y = MMQ_Y_Q4_K_PASCAL; nwarps = NWARPS_Q4_K_PASCAL; } else { GGML_ASSERT(false); } const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y; const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x; const sycl::range<3> block_nums(1, block_num_y, block_num_x); const sycl::range<3> block_dims(1, nwarps, WARP_SIZE); if (nrows_x % mmq_y == 0) { const bool need_check = false; /* DPCT1049:34: The work-group size passed to the SYCL kernel may exceed the limit. To get the device limit, query info::device::max_work_group_size. Adjust the work-group size if needed. */ { dpct::has_capability_or_fail(stream->get_device(), {sycl::aspect::fp16}); stream->submit([&](sycl::handler &cgh) { sycl::local_accessor<int, 1> tile_x_ql_q4_K_acc_ct1( sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh); sycl::local_accessor<sycl::half2, 1> tile_x_dm_q4_K_acc_ct1( sycl::range<1>(mmq_y * (WARP_SIZE / QI4_K) + mmq_y / QI4_K), cgh); sycl::local_accessor<int, 1> tile_x_sc_q4_K_acc_ct1( sycl::range<1>(mmq_y * (WARP_SIZE / 8) + mmq_y / 8), cgh); sycl::local_accessor<int, 1> tile_y_qs_acc_ct1( sycl::range<1>(mmq_x * WARP_SIZE), cgh); sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1( sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh); cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) { mul_mat_q4_K<need_check>( vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, item_ct1, tile_x_ql_q4_K_acc_ct1.get_pointer(), tile_x_dm_q4_K_acc_ct1.get_pointer(), tile_x_sc_q4_K_acc_ct1.get_pointer(), tile_y_qs_acc_ct1.get_pointer(), tile_y_ds_acc_ct1.get_pointer()); }); }); } } else { const bool need_check = true; /* DPCT1049:35: The work-group size passed to the SYCL kernel may exceed the limit. To get the device limit, query info::device::max_work_group_size. Adjust the work-group size if needed. */ { dpct::has_capability_or_fail(stream->get_device(), {sycl::aspect::fp16}); stream->submit([&](sycl::handler &cgh) { sycl::local_accessor<int, 1> tile_x_ql_q4_K_acc_ct1( sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh); sycl::local_accessor<sycl::half2, 1> tile_x_dm_q4_K_acc_ct1( sycl::range<1>(mmq_y * (WARP_SIZE / QI4_K) + mmq_y / QI4_K), cgh); sycl::local_accessor<int, 1> tile_x_sc_q4_K_acc_ct1( sycl::range<1>(mmq_y * (WARP_SIZE / 8) + mmq_y / 8), cgh); sycl::local_accessor<int, 1> tile_y_qs_acc_ct1( sycl::range<1>(mmq_x * WARP_SIZE), cgh); sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1( sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh); cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) { mul_mat_q4_K<need_check>( vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, item_ct1, tile_x_ql_q4_K_acc_ct1.get_pointer(), tile_x_dm_q4_K_acc_ct1.get_pointer(), tile_x_sc_q4_K_acc_ct1.get_pointer(), tile_y_qs_acc_ct1.get_pointer(), tile_y_ds_acc_ct1.get_pointer()); }); }); } } } catch (sycl::exception const &exc) { std::cerr << exc.what() << "Exception caught at file:" << __FILE__ << ", line:" << __LINE__ << std::endl; std::exit(1); } static void ggml_mul_mat_q5_K_q8_1_sycl(const void *vx, const void *vy, float *dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst, dpct::queue_ptr stream) try { int id; SYCL_CHECK( CHECK_TRY_ERROR(id = get_current_device_id())); const int compute_capability = ggml_sycl_info().devices[id].cc; int mmq_x, mmq_y, nwarps; if (compute_capability >= VER_GEN13) { mmq_x = MMQ_X_Q5_K_RDNA2; mmq_y = MMQ_Y_Q5_K_RDNA2; nwarps = NWARPS_Q5_K_RDNA2; } else if (compute_capability >= VER_GEN12) { mmq_x = MMQ_X_Q5_K_RDNA1; mmq_y = MMQ_Y_Q5_K_RDNA1; nwarps = NWARPS_Q5_K_RDNA1; } else if (compute_capability >= VER_GEN9) { mmq_x = MMQ_X_Q5_K_AMPERE; mmq_y = MMQ_Y_Q5_K_AMPERE; nwarps = NWARPS_Q5_K_AMPERE; } else if (compute_capability >= VER_4VEC) { mmq_x = MMQ_X_Q5_K_PASCAL; mmq_y = MMQ_Y_Q5_K_PASCAL; nwarps = NWARPS_Q5_K_PASCAL; } else { GGML_ASSERT(false); } const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y; const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x; const sycl::range<3> block_nums(1, block_num_y, block_num_x); const sycl::range<3> block_dims(1, nwarps, WARP_SIZE); if (nrows_x % mmq_y == 0) { const bool need_check = false; /* DPCT1049:36: The work-group size passed to the SYCL kernel may exceed the limit. To get the device limit, query info::device::max_work_group_size. Adjust the work-group size if needed. */ { dpct::has_capability_or_fail(stream->get_device(), {sycl::aspect::fp16}); stream->submit([&](sycl::handler &cgh) { sycl::local_accessor<int, 1> tile_x_ql_q5_K_acc_ct1( sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh); sycl::local_accessor<sycl::half2, 1> tile_x_dm_q5_K_acc_ct1( sycl::range<1>(mmq_y * (WARP_SIZE / QI5_K) + mmq_y / QI5_K), cgh); sycl::local_accessor<int, 1> tile_x_sc_q5_K_acc_ct1( sycl::range<1>(mmq_y * (WARP_SIZE / 8) + mmq_y / 8), cgh); sycl::local_accessor<int, 1> tile_y_qs_acc_ct1( sycl::range<1>(mmq_x * WARP_SIZE), cgh); sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1( sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh); cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) { mul_mat_q5_K<need_check>( vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, item_ct1, tile_x_ql_q5_K_acc_ct1.get_pointer(), tile_x_dm_q5_K_acc_ct1.get_pointer(), tile_x_sc_q5_K_acc_ct1.get_pointer(), tile_y_qs_acc_ct1.get_pointer(), tile_y_ds_acc_ct1.get_pointer()); }); }); } } else { const bool need_check = true; /* DPCT1049:37: The work-group size passed to the SYCL kernel may exceed the limit. To get the device limit, query info::device::max_work_group_size. Adjust the work-group size if needed. */ { dpct::has_capability_or_fail(stream->get_device(), {sycl::aspect::fp16}); stream->submit([&](sycl::handler &cgh) { sycl::local_accessor<int, 1> tile_x_ql_q5_K_acc_ct1( sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh); sycl::local_accessor<sycl::half2, 1> tile_x_dm_q5_K_acc_ct1( sycl::range<1>(mmq_y * (WARP_SIZE / QI5_K) + mmq_y / QI5_K), cgh); sycl::local_accessor<int, 1> tile_x_sc_q5_K_acc_ct1( sycl::range<1>(mmq_y * (WARP_SIZE / 8) + mmq_y / 8), cgh); sycl::local_accessor<int, 1> tile_y_qs_acc_ct1( sycl::range<1>(mmq_x * WARP_SIZE), cgh); sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1( sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh); cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) { mul_mat_q5_K<need_check>( vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, item_ct1, tile_x_ql_q5_K_acc_ct1.get_pointer(), tile_x_dm_q5_K_acc_ct1.get_pointer(), tile_x_sc_q5_K_acc_ct1.get_pointer(), tile_y_qs_acc_ct1.get_pointer(), tile_y_ds_acc_ct1.get_pointer()); }); }); } } } catch (sycl::exception const &exc) { std::cerr << exc.what() << "Exception caught at file:" << __FILE__ << ", line:" << __LINE__ << std::endl; std::exit(1); } static void ggml_mul_mat_q6_K_q8_1_sycl(const void *vx, const void *vy, float *dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst, dpct::queue_ptr stream) try { int id; SYCL_CHECK( CHECK_TRY_ERROR(id = get_current_device_id())); const int compute_capability = ggml_sycl_info().devices[id].cc; int mmq_x, mmq_y, nwarps; if (compute_capability >= VER_GEN13) { mmq_x = MMQ_X_Q6_K_RDNA2; mmq_y = MMQ_Y_Q6_K_RDNA2; nwarps = NWARPS_Q6_K_RDNA2; } else if (compute_capability >= VER_GEN12) { mmq_x = MMQ_X_Q6_K_RDNA1; mmq_y = MMQ_Y_Q6_K_RDNA1; nwarps = NWARPS_Q6_K_RDNA1; } else if (compute_capability >= VER_GEN9) { mmq_x = MMQ_X_Q6_K_AMPERE; mmq_y = MMQ_Y_Q6_K_AMPERE; nwarps = NWARPS_Q6_K_AMPERE; } else if (compute_capability >= VER_4VEC) { mmq_x = MMQ_X_Q6_K_PASCAL; mmq_y = MMQ_Y_Q6_K_PASCAL; nwarps = NWARPS_Q6_K_PASCAL; } else { GGML_ASSERT(false); } const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y; const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x; const sycl::range<3> block_nums(1, block_num_y, block_num_x); const sycl::range<3> block_dims(1, nwarps, WARP_SIZE); if (nrows_x % mmq_y == 0) { const bool need_check = false; /* DPCT1049:38: The work-group size passed to the SYCL kernel may exceed the limit. To get the device limit, query info::device::max_work_group_size. Adjust the work-group size if needed. */ { dpct::has_capability_or_fail(stream->get_device(), {sycl::aspect::fp16}); stream->submit([&](sycl::handler &cgh) { sycl::local_accessor<int, 1> tile_x_ql_acc_ct1( sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh); sycl::local_accessor<sycl::half2, 1> tile_x_dm_acc_ct1( sycl::range<1>(mmq_y * (WARP_SIZE / QI6_K) + mmq_y / QI6_K), cgh); sycl::local_accessor<int, 1> tile_x_sc_acc_ct1( sycl::range<1>(mmq_y * (WARP_SIZE / 8) + mmq_y / 8), cgh); sycl::local_accessor<int, 1> tile_y_qs_acc_ct1( sycl::range<1>(mmq_x * WARP_SIZE), cgh); sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1( sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh); cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) { mul_mat_q6_K<need_check>( vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, item_ct1, tile_x_ql_acc_ct1.get_pointer(), tile_x_dm_acc_ct1.get_pointer(), tile_x_sc_acc_ct1.get_pointer(), tile_y_qs_acc_ct1.get_pointer(), tile_y_ds_acc_ct1.get_pointer()); }); }); } } else { const bool need_check = true; /* DPCT1049:39: The work-group size passed to the SYCL kernel may exceed the limit. To get the device limit, query info::device::max_work_group_size. Adjust the work-group size if needed. */ { dpct::has_capability_or_fail(stream->get_device(), {sycl::aspect::fp16}); stream->submit([&](sycl::handler &cgh) { sycl::local_accessor<int, 1> tile_x_ql_acc_ct1( sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh); sycl::local_accessor<sycl::half2, 1> tile_x_dm_acc_ct1( sycl::range<1>(mmq_y * (WARP_SIZE / QI6_K) + mmq_y / QI6_K), cgh); sycl::local_accessor<int, 1> tile_x_sc_acc_ct1( sycl::range<1>(mmq_y * (WARP_SIZE / 8) + mmq_y / 8), cgh); sycl::local_accessor<int, 1> tile_y_qs_acc_ct1( sycl::range<1>(mmq_x * WARP_SIZE), cgh); sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1( sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh); cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) { mul_mat_q6_K<need_check>( vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, item_ct1, tile_x_ql_acc_ct1.get_pointer(), tile_x_dm_acc_ct1.get_pointer(), tile_x_sc_acc_ct1.get_pointer(), tile_y_qs_acc_ct1.get_pointer(), tile_y_ds_acc_ct1.get_pointer()); }); }); } } } catch (sycl::exception const &exc) { std::cerr << exc.what() << "Exception caught at file:" << __FILE__ << ", line:" << __LINE__ << std::endl; std::exit(1); } void ggml_sycl_op_mul_mat_q( ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst, const char *src0_dd_i, const float *src1_ddf_i, const char *src1_ddq_i, float *dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols, const int64_t src1_padded_row_size, const dpct::queue_ptr &stream) try { const int64_t ne00 = src0->ne[0]; const int64_t ne10 = src1->ne[0]; GGML_ASSERT(ne10 % QK8_1 == 0); const int64_t ne0 = dst->ne[0]; const int64_t row_diff = row_high - row_low; int device_id; SYCL_CHECK( CHECK_TRY_ERROR(device_id = get_current_device_id())); // the main device has a larger memory buffer to hold the results from all GPUs // nrows_dst == nrows of the matrix that the dequantize_mul_mat kernel writes into const int64_t nrows_dst = device_id == ctx.device ? ne0 : row_diff; switch (src0->type) { case GGML_TYPE_Q4_0: ggml_mul_mat_q4_0_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream); break; case GGML_TYPE_Q4_1: ggml_mul_mat_q4_1_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream); break; case GGML_TYPE_Q5_0: ggml_mul_mat_q5_0_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream); break; case GGML_TYPE_Q5_1: ggml_mul_mat_q5_1_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream); break; case GGML_TYPE_Q8_0: ggml_mul_mat_q8_0_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream); break; case GGML_TYPE_Q2_K: ggml_mul_mat_q2_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream); break; case GGML_TYPE_Q3_K: ggml_mul_mat_q3_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream); break; case GGML_TYPE_Q4_K: ggml_mul_mat_q4_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream); break; case GGML_TYPE_Q5_K: ggml_mul_mat_q5_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream); break; case GGML_TYPE_Q6_K: ggml_mul_mat_q6_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream); break; default: GGML_ASSERT(false); break; } (void) src1; (void) dst; (void) src1_ddf_i; } catch (sycl::exception const &exc) { std::cerr << exc.what() << "Exception caught at file:" << __FILE__ << ", line:" << __LINE__ << std::endl; std::exit(1); }