// Various helper functions and utilities #pragma once #include "llama.h" #define LOG_NO_FILE_LINE_FUNCTION #include "log.h" #include #include #include #include #include #include #ifdef _WIN32 #define DIRECTORY_SEPARATOR '\\' #else #define DIRECTORY_SEPARATOR '/' #endif // _WIN32 #define die(msg) do { fputs("error: " msg "\n", stderr); exit(1); } while (0) #define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0) #define print_build_info() do { \ fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT); \ fprintf(stderr, "%s: built with %s for %s\n", __func__, BUILD_COMPILER, BUILD_TARGET); \ } while(0) // // CLI argument parsing // int32_t get_num_physical_cores(); struct gpt_params { uint32_t seed = -1; // RNG seed int32_t n_threads = get_num_physical_cores(); int32_t n_predict = -1; // new tokens to predict int32_t n_ctx = 512; // context size int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS) int32_t n_keep = 0; // number of tokens to keep from initial prompt int32_t n_draft = 16; // number of tokens to draft during speculative decoding int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited) int32_t n_parallel = 1; // number of parallel sequences to decode int32_t n_sequences = 1; // number of sequences to decode int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default) int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default) int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens. int32_t n_beams = 0; // if non-zero then use beam search of given width. float rope_freq_base = 0.0f; // RoPE base frequency float rope_freq_scale = 0.0f; // RoPE frequency scaling factor // sampling parameters int32_t top_k = 40; // <= 0 to use vocab size float top_p = 0.95f; // 1.0 = disabled float tfs_z = 1.00f; // 1.0 = disabled float typical_p = 1.00f; // 1.0 = disabled float temp = 0.80f; // 1.0 = disabled float repeat_penalty = 1.10f; // 1.0 = disabled int32_t repeat_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size) float frequency_penalty = 0.00f; // 0.0 = disabled float presence_penalty = 0.00f; // 0.0 = disabled int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0 float mirostat_tau = 5.00f; // target entropy float mirostat_eta = 0.10f; // learning rate std::unordered_map logit_bias; // logit bias for specific tokens // Classifier-Free Guidance // https://arxiv.org/abs/2306.17806 std::string cfg_negative_prompt; // string to help guidance float cfg_scale = 1.f; // How strong is guidance std::string model = "models/7B/ggml-model-f16.gguf"; // model path std::string model_draft = ""; // draft model for speculative decoding std::string model_alias = "unknown"; // model alias std::string prompt = ""; std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state std::string input_prefix = ""; // string to prefix user inputs with std::string input_suffix = ""; // string to suffix user inputs with std::string grammar = ""; // optional BNF-like grammar to constrain sampling std::vector antiprompt; // string upon seeing which more user input is prompted std::string logdir = ""; // directory in which to save YAML log files std::string lora_adapter = ""; // lora adapter path std::string lora_base = ""; // base model path for the lora adapter int ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used. int ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line // (which is more convenient to use for plotting) // bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score bool low_vram = false; // if true, reduce VRAM usage at the cost of performance bool mul_mat_q = true; // if true, use mul_mat_q kernels instead of cuBLAS bool memory_f16 = true; // use f16 instead of f32 for memory kv bool random_prompt = false; // do not randomize prompt if none provided bool use_color = false; // use color to distinguish generations and inputs bool interactive = false; // interactive mode bool prompt_cache_all = false; // save user input and generations to prompt cache bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it bool embedding = false; // get only sentence embedding bool escape = false; // escape "\n", "\r", "\t", "\'", "\"", and "\\" bool interactive_first = false; // wait for user input immediately bool multiline_input = false; // reverse the usage of `\` bool simple_io = false; // improves compatibility with subprocesses and limited consoles bool cont_batching = false; // insert new sequences for decoding on-the-fly bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix bool ignore_eos = false; // ignore generated EOS tokens bool instruct = false; // instruction mode (used for Alpaca models) bool penalize_nl = true; // consider newlines as a repeatable token bool logits_all = false; // return logits for all tokens in the batch bool use_mmap = true; // use mmap for faster loads bool use_mlock = false; // use mlock to keep model in memory bool numa = false; // attempt optimizations that help on some NUMA systems bool verbose_prompt = false; // print prompt tokens before generation }; bool gpt_params_parse(int argc, char ** argv, gpt_params & params); void gpt_print_usage(int argc, char ** argv, const gpt_params & params); std::string gpt_random_prompt(std::mt19937 & rng); // // Model utils // std::tuple llama_init_from_gpt_params(gpt_params & params); struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params); // // Vocab utils // // tokenizes a string into a vector of tokens // should work similar to Python's `tokenizer.encode` std::vector llama_tokenize( struct llama_context * ctx, const std::string & text, bool add_bos); // tokenizes a token into a piece // should work similar to Python's `tokenizer.id_to_piece` std::string llama_token_to_piece( const struct llama_context * ctx, llama_token token); // TODO: these should be moved in llama.h C-style API under single `llama_detokenize` function // that takes into account the tokenizer type and decides how to handle the leading space // // detokenizes a vector of tokens into a string // should work similar to Python's `tokenizer.decode` // removes the leading space from the first non-BOS token std::string llama_detokenize_spm( llama_context * ctx, const std::vector & tokens); // detokenizes a vector of tokens into a string // should work similar to Python's `tokenizer.decode` std::string llama_detokenize_bpe( llama_context * ctx, const std::vector & tokens); // // Sampling utils // // this is a common sampling function used across the examples for convenience // it can serve as a starting point for implementing your own sampling function // // required: // - ctx: context to use for sampling // - params: sampling parameters // // optional: // - ctx_guidance: context to use for classifier-free guidance, ignore if NULL // - grammar: grammar to use for sampling, ignore if NULL // - last_tokens: needed for repetition penalty, ignore if empty // - idx: sample from llama_get_logits(ctx) + idx * n_vocab // // returns: // - token: sampled token // - candidates: vector of candidate tokens // llama_token llama_sample_token( struct llama_context * ctx, struct llama_context * ctx_guidance, struct llama_grammar * grammar, const struct gpt_params & params, const std::vector & last_tokens, std::vector & candidates, int idx = 0); // // YAML utils // bool create_directory_with_parents(const std::string & path); void dump_vector_float_yaml(FILE * stream, const char * prop_name, const std::vector & data); void dump_vector_int_yaml(FILE * stream, const char * prop_name, const std::vector & data); void dump_string_yaml_multiline(FILE * stream, const char * prop_name, const char * data); std::string get_sortable_timestamp(); void dump_non_result_info_yaml( FILE * stream, const gpt_params & params, const llama_context * lctx, const std::string & timestamp, const std::vector & prompt_tokens, const char * model_desc);