/** * Copyright (c) 2023 Nomic, Inc. All rights reserved. * * This software is licensed under the terms of the Software for Open Models License (SOM), * version 1.0, as detailed in the LICENSE_SOM.txt file. A copy of this license should accompany * this software. Except as expressly granted in the SOM license, all rights are reserved by Nomic, Inc. */ #include "ggml-vulkan.h" #include "ggml.h" // These are generated at build time by cmake custom command #include "shaderop_scale.h" #include "shaderop_add.h" #include "shaderop_addrow.h" #include "shaderop_mul.h" #include "shaderop_mulrow.h" #include "shaderop_silu.h" #include "shaderop_relu.h" #include "shaderop_gelu.h" #include "shaderop_softmax.h" #include "shaderop_norm.h" #include "shaderop_rmsnorm.h" #include "shaderop_diagmask.h" #include "shaderop_mul_mat_f16.h" #include "shaderop_mul_mat_q4_0.h" #include "shaderop_mul_mat_q4_1.h" #include "shaderop_getrows_f16.h" #include "shaderop_getrows_q4_0.h" #include "shaderop_getrows_q4_1.h" #include "shaderop_rope.h" #include "shaderop_cpy_f16_f16.h" #include "shaderop_cpy_f16_f32.h" #include "shaderop_cpy_f32_f16.h" #include "shaderop_cpy_f32_f32.h" #include <iostream> #include <vector> #include <string> #include <memory> #include <vector> #include <utility> #include <fstream> #include <exception> #include <thread> #include <mutex> #include <atomic> #include <cstring> #include <immintrin.h> #include <kompute/Kompute.hpp> #define QK4_0 32 #define QR4_0 2 #define QK4_1 32 typedef ggml_fp16_t half; struct ggml_kompute_context { bool hasH2DAll = false; std::vector<ggml_vk_memory> buffers; std::shared_ptr<vk::DescriptorPool> pool; static ggml_kompute_context *instance; ggml_kompute_context() { instance = this; } }; // FIXME: It would be good to consolidate the kompute manager and the kompute context into one object // and consolidate the init functions and simplify object lifetime management. As it currently stands, // we *have* to have the kompute manager no matter what for device discovery, but the kompute context // is only created when a device is set and vulkan is explicitly turned on. ggml_kompute_context *ggml_kompute_context::instance; kp::Manager *komputeManager() { static kp::Manager *s_mgr = nullptr; if (s_mgr && !s_mgr->hasInstance()) { delete s_mgr; s_mgr = nullptr; } if (!s_mgr) s_mgr = new kp::Manager; return s_mgr; } #ifdef __linux__ __attribute__((constructor)) static void enable_sam() { setenv("RADV_PERFTEST", "sam", false); } #endif static bool ggml_vk_checkPhysicalDeviceFeatures(vk::PhysicalDevice physicalDevice) { vk::PhysicalDeviceFeatures availableFeatures; physicalDevice.getFeatures(&availableFeatures); if (!availableFeatures.shaderInt16) return false; vk::PhysicalDeviceVulkan11Features availableFeatures11; vk::PhysicalDeviceVulkan12Features availableFeatures12; availableFeatures11.pNext = &availableFeatures12; availableFeatures12.pNext = nullptr; vk::PhysicalDeviceFeatures2 features2; features2.pNext = &availableFeatures11; physicalDevice.getFeatures2(&features2); if (!availableFeatures11.uniformAndStorageBuffer16BitAccess || !availableFeatures11.storageBuffer16BitAccess) { return false; } if (!availableFeatures12.storageBuffer8BitAccess || !availableFeatures12.uniformAndStorageBuffer8BitAccess || !availableFeatures12.shaderFloat16 || !availableFeatures12.shaderInt8) { return false; } return true; } static std::string ggml_vk_getVendorName(uint32_t vendorID) { switch (vendorID) { case 0x10DE: return "nvidia"; case 0x1002: return "amd"; case 0x8086: return "intel"; default: return "unknown"; } } std::vector<ggml_vk_device> ggml_vk_available_devices(size_t memoryRequired) { std::vector<ggml_vk_device> results; if (!komputeManager()->hasVulkan()) return results; std::vector<vk::PhysicalDevice> physicalDevices = komputeManager()->listDevices(); uint32_t deviceCount = physicalDevices.size(); if (deviceCount == 0) return results; std::unordered_map<std::string, size_t> count_by_name; for (uint32_t i = 0; i < deviceCount; i++) { VkPhysicalDeviceProperties properties = physicalDevices.at(i).getProperties(); VkPhysicalDeviceMemoryProperties memoryProperties = physicalDevices.at(i).getMemoryProperties(); const uint32_t major = VK_VERSION_MAJOR(properties.apiVersion); const uint32_t minor = VK_VERSION_MINOR(properties.apiVersion); if (major < 1 || minor < 2) continue; if (!ggml_vk_checkPhysicalDeviceFeatures(physicalDevices.at(i))) continue; size_t heapSize = 0; for (uint32_t j = 0; j < memoryProperties.memoryHeapCount; ++j) { VkMemoryHeap heap = memoryProperties.memoryHeaps[j]; if (heap.flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT) { heapSize = heap.size; break; } } if (heapSize < memoryRequired) continue; ggml_vk_device d; d.index = i; d.type = properties.deviceType; d.heapSize = heapSize; d.name = properties.deviceName; size_t n_idx = ++count_by_name[d.name]; if (n_idx > 1) { d.name += " (" + std::to_string(n_idx) + ")"; } d.vendor = ggml_vk_getVendorName(properties.vendorID); results.push_back(d); } std::stable_sort(results.begin(), results.end(), [](const ggml_vk_device& lhs, const ggml_vk_device& rhs) -> bool { if (lhs.type != rhs.type) { if (lhs.type == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU) return true; if (rhs.type == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU) return false; if (lhs.type == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU) return true; if (rhs.type == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU) return false; } return lhs.heapSize < rhs.heapSize; } ); return results; } static void ggml_vk_filterByVendor(std::vector<ggml_vk_device>& devices, const std::string& targetVendor) { devices.erase( std::remove_if(devices.begin(), devices.end(), [&targetVendor](const ggml_vk_device& device) { return device.vendor != targetVendor; }), devices.end() ); } static void ggml_vk_filterByName(std::vector<ggml_vk_device>& devices, const std::string& targetName) { devices.erase( std::remove_if(devices.begin(), devices.end(), [&targetName](const ggml_vk_device& device) { return device.name != targetName; }), devices.end() ); } bool ggml_vk_init_device(size_t memoryRequired, const std::string &device) { if (device.empty()) return false; std::vector<ggml_vk_device> devices = ggml_vk_available_devices(memoryRequired); if (device == "gpu") { if (devices.size() != 0) return ggml_vk_init_device(devices.front()); } else if (device == "amd" || device == "nvidia" || device == "intel") { ggml_vk_filterByVendor(devices, device); if (devices.size() != 0) return ggml_vk_init_device(devices.front()); } else { ggml_vk_filterByName(devices, device); if (devices.size() != 0) return ggml_vk_init_device(devices.front()); } return ggml_vk_has_device(); } bool ggml_vk_init_device(const ggml_vk_device &device) { return ggml_vk_init_device(device.index); } bool ggml_vk_init_device(int device) { komputeManager()->initializeDevice(device, {}, {"VK_KHR_shader_float16_int8", "VK_KHR_8bit_storage", "VK_KHR_16bit_storage", "VK_KHR_storage_buffer_storage_class"}); return ggml_vk_has_device(); } bool ggml_vk_free_device() { if (!ggml_vk_has_device()) return false; komputeManager()->destroy(); return true; } bool ggml_vk_has_vulkan() { return komputeManager()->hasVulkan(); } bool ggml_vk_has_device() { return komputeManager()->hasDevice(); } ggml_vk_device ggml_vk_current_device() { if (!komputeManager()->hasDevice()) return ggml_vk_device(); std::vector<ggml_vk_device> devices = ggml_vk_available_devices(0); ggml_vk_filterByName(devices, komputeManager()->physicalDevice()->getProperties().deviceName); return devices.front(); } ggml_kompute_context *ggml_vk_init() { return new ggml_kompute_context; } bool ggml_vk_has_h2d_all(struct ggml_kompute_context * ctx) { return ctx->hasH2DAll; } void ggml_vk_free(struct ggml_kompute_context * ctx) { delete ctx; } static void ggml_vk_allocate_descriptor_pool(struct ggml_kompute_context * ctx, size_t size) { std::vector<vk::DescriptorPoolSize> descriptorPoolSizes = { vk::DescriptorPoolSize( vk::DescriptorType::eStorageBuffer, 3 * size // Descriptor count is number of possible tensors to pass into an algorithm ) }; vk::DescriptorPoolCreateInfo descriptorPoolInfo( vk::DescriptorPoolCreateFlags(), size, // Max sets static_cast<uint32_t>(descriptorPoolSizes.size()), descriptorPoolSizes.data()); ctx->pool = std::make_shared<vk::DescriptorPool>(); vk::Result r = komputeManager()->device()->createDescriptorPool( &descriptorPoolInfo, nullptr, ctx->pool.get()); if (r != vk::Result::eSuccess) std::cerr << "Error allocating descriptor pool" << vk::to_string(r); } static void ggml_vk_free_descriptor_pool(struct ggml_kompute_context * ctx) { if (ctx->pool) { komputeManager()->device()->destroy( *ctx->pool, (vk::Optional<const vk::AllocationCallbacks>)nullptr); ctx->pool = nullptr; } } static vk::Buffer *ggml_vk_allocate_buffer(size_t size) { vk::BufferCreateInfo bufferCreateInfo; bufferCreateInfo.size = size; bufferCreateInfo.usage = vk::BufferUsageFlagBits::eStorageBuffer | vk::BufferUsageFlagBits::eTransferSrc | vk::BufferUsageFlagBits::eTransferDst; bufferCreateInfo.sharingMode = vk::SharingMode::eExclusive; vk::Buffer *vkBuffer = new vk::Buffer; vk::Result r = komputeManager()->device()->createBuffer(&bufferCreateInfo, nullptr, vkBuffer); if (r != vk::Result::eSuccess) std::cerr << "Error allocating buffer " << vk::to_string(r) << std::endl; return vkBuffer; } static vk::DeviceMemory *ggml_vk_allocate(size_t size, vk::MemoryPropertyFlags flags, vk::MemoryRequirements requirements, bool *isHostVisible) { uint32_t memoryTypeIndex = -1; bool memoryTypeIndexFound = false; vk::PhysicalDeviceMemoryProperties memoryProperties = komputeManager()->physicalDevice()->getMemoryProperties(); for (uint32_t i = 0; i < memoryProperties.memoryTypeCount; i++) { if (requirements.memoryTypeBits & (1 << i)) { if (((memoryProperties.memoryTypes[i]).propertyFlags & flags) == flags) { memoryTypeIndex = i; memoryTypeIndexFound = true; if (isHostVisible && (memoryProperties.memoryTypes[i].propertyFlags & vk::MemoryPropertyFlagBits::eHostVisible)) { *isHostVisible = true; } break; } } } if (!memoryTypeIndexFound) { throw std::runtime_error( "Memory type index for buffer creation not found"); } vk::MemoryAllocateInfo allocInfo; allocInfo.allocationSize = size; allocInfo.memoryTypeIndex = memoryTypeIndex; vk::DeviceMemory *vkDeviceMemory = new vk::DeviceMemory; vk::Result r = komputeManager()->device()->allocateMemory(&allocInfo, nullptr, vkDeviceMemory); if (r != vk::Result::eSuccess) { std::cerr << "Error allocating memory " << vk::to_string(r) << std::endl; throw std::runtime_error("Error allocating vulkan memory."); } return vkDeviceMemory; } size_t ggml_vk_aligned_offset(size_t offset) { static size_t minStorageBufferOffsetAlignment = 0; if (minStorageBufferOffsetAlignment == 0) { vk::PhysicalDeviceProperties deviceProperties; deviceProperties = komputeManager()->physicalDevice()->getProperties(); vk::PhysicalDeviceLimits deviceLimits = deviceProperties.limits; minStorageBufferOffsetAlignment = deviceLimits.minStorageBufferOffsetAlignment; } // If offset is already aligned, return it directly if (offset % minStorageBufferOffsetAlignment == 0) { return offset; } // Otherwise, return the largest multiple of minStorageBufferOffsetAlignment less than offset return (offset / minStorageBufferOffsetAlignment) * minStorageBufferOffsetAlignment; } static void ggml_vk_h2d_buffer(const ggml_vk_memory &memory) { if (memory.stagingBuffer) komputeManager()->sequence()->eval<kp::OpBufferSyncDevice>(memory.primaryBuffer, memory.stagingBuffer, memory.size); } static void ggml_vk_d2h_buffer(const ggml_vk_memory &memory) { if (memory.stagingBuffer) komputeManager()->sequence()->eval<kp::OpBufferSyncLocal>(memory.primaryBuffer, memory.stagingBuffer, memory.size); } ggml_vk_memory ggml_vk_allocate(size_t size) { ggml_vk_memory memory; bool isHostVisible = false; { memory.primaryBuffer = ggml_vk_allocate_buffer(size); vk::MemoryRequirements memoryRequirements = komputeManager()->device()->getBufferMemoryRequirements(*memory.primaryBuffer); vk::MemoryPropertyFlags memoryPropertyFlags = vk::MemoryPropertyFlagBits::eDeviceLocal; memory.primaryMemory = ggml_vk_allocate(size, memoryPropertyFlags, memoryRequirements, &isHostVisible); komputeManager()->device()->bindBufferMemory(*memory.primaryBuffer, *memory.primaryMemory, 0); if (isHostVisible) { vk::Result r = komputeManager()->device()->mapMemory(*memory.primaryMemory, 0, size, vk::MemoryMapFlags(), &memory.data); if (r != vk::Result::eSuccess) std::cerr << "Error mapping memory" << vk::to_string(r); } } if (!isHostVisible) { memory.stagingBuffer = ggml_vk_allocate_buffer(size); vk::MemoryRequirements memoryRequirements = komputeManager()->device()->getBufferMemoryRequirements(*memory.stagingBuffer); vk::MemoryPropertyFlags memoryPropertyFlags = vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostCached; memory.stagingMemory = ggml_vk_allocate(size, memoryPropertyFlags, memoryRequirements, &isHostVisible); komputeManager()->device()->bindBufferMemory(*memory.stagingBuffer, *memory.stagingMemory, 0); vk::Result r = komputeManager()->device()->mapMemory(*memory.stagingMemory, 0, size, vk::MemoryMapFlags(), &memory.data); if (r != vk::Result::eSuccess) std::cerr << "Error mapping memory" << vk::to_string(r); } memory.size = size; return memory; } void ggml_vk_free_memory(ggml_vk_memory &memory) { komputeManager()->device()->destroy( *memory.primaryBuffer, (vk::Optional<const vk::AllocationCallbacks>)nullptr); if (memory.stagingBuffer) { komputeManager()->device()->destroy( *memory.stagingBuffer, (vk::Optional<const vk::AllocationCallbacks>)nullptr); } komputeManager()->device()->freeMemory( *memory.primaryMemory, (vk::Optional<const vk::AllocationCallbacks>)nullptr); if (memory.stagingMemory) { komputeManager()->device()->freeMemory( *memory.stagingMemory, (vk::Optional<const vk::AllocationCallbacks>)nullptr); } } static decltype(ggml_kompute_context::buffers)::iterator ggml_vk_find_tensor(struct ggml_kompute_context * ctx, struct ggml_tensor * t, uint64_t & offset) { for (auto it = ctx->buffers.begin(); ; it++) { if (it == ctx->buffers.end()) { fprintf(stderr, "%s: Failed to find tensor %p\n", __func__, t->data); return it; } if (it->data <= t->data && reinterpret_cast<intptr_t>(it->data) + it->size >= (reinterpret_cast<intptr_t>(t->data) + ggml_nbytes(t))) { offset = reinterpret_cast<intptr_t>(t->data) - reinterpret_cast<intptr_t>(it->data); return it; } } } static const std::shared_ptr<kp::Tensor> ggml_vk_get_tensor(struct ggml_kompute_context * ctx, struct ggml_tensor * t, uint32_t *alignedOffset) { uint64_t originalOffset = 0; auto res = ggml_vk_find_tensor(ctx, t, originalOffset); if (res == ctx->buffers.end()) { static std::shared_ptr<kp::Tensor> nullTensor = nullptr; return nullTensor; } // Create a tensor whose memory will be composed of our buffers at the correct offset const size_t nelements = ggml_nelements(t); size_t nbytes = ggml_nbytes(t); size_t vulkanOffset = ggml_vk_aligned_offset(originalOffset); if (alignedOffset) { *alignedOffset = originalOffset - vulkanOffset; nbytes += *alignedOffset; } return komputeManager()->tensor( t->data, nelements, nbytes, kp::Tensor::TensorDataTypes::eFloat, res->primaryMemory, res->primaryBuffer, res->stagingMemory, res->stagingBuffer, vulkanOffset); } void ggml_vk_add_buffer( struct ggml_kompute_context * ctx, const char * /*name*/, const ggml_vk_memory &memory) { ctx->buffers.emplace_back(memory); } void ggml_vk_h2d_tensor(struct ggml_kompute_context * ctx, struct ggml_tensor * t) { const auto res = ggml_vk_get_tensor(ctx, t, nullptr); GGML_ASSERT(res); komputeManager()->sequence()->eval<kp::OpTensorSyncDevice>({res}); } void ggml_vk_h2d_all(struct ggml_kompute_context * ctx) { for (auto& it : ctx->buffers) { ggml_vk_h2d_buffer(it); } ctx->hasH2DAll = true; } void ggml_vk_d2h_all(struct ggml_kompute_context * ctx) { for (auto& it : ctx->buffers) { ggml_vk_d2h_buffer(it); } } void ggml_vk_d2h_tensor(struct ggml_kompute_context * ctx, struct ggml_tensor * t) { const auto res = ggml_vk_get_tensor(ctx, t, nullptr); GGML_ASSERT(res); komputeManager()->sequence()->eval<kp::OpTensorSyncLocal>({res}); } std::vector<uint32_t> getSpirvShader(const unsigned char* rawData, size_t size) { if (size % sizeof(uint32_t) != 0) { throw std::runtime_error("Invalid size: must be divisible by sizeof(uint32_t)"); } const uint32_t* data_ptr = reinterpret_cast<const uint32_t*>(rawData); size_t count = size / sizeof(uint32_t); return std::vector<uint32_t>(data_ptr, data_ptr + count); } inline static uint32_t safe_divide(uint32_t a, uint32_t b) { if (b <= 1) { return a; } if ((a % b) != 0) { fprintf(stderr, "((%u %% %u) == %u) != 0\n", a, b, a % b); GGML_ASSERT(!"safe_divide result would've had remainder"); } return a / b; } void ggml_vk_add(kp::Sequence& seq, const std::shared_ptr<kp::Tensor>& inA, const std::shared_ptr<kp::Tensor>& inB, const std::shared_ptr<kp::Tensor>& out, uint32_t inAOff, uint32_t inBOff, uint32_t outOff, uint32_t size) { const static auto spirv = getSpirvShader(kp::shader_data::op_add_comp_spv, kp::shader_data::op_add_comp_spv_len); struct PushConstants { uint32_t inAOff, inBOff, outOff; } const pushConsts { safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4) }; std::shared_ptr<kp::Algorithm> s_algo = nullptr; if (!komputeManager()->hasAlgorithm(__func__)) s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, ggml_kompute_context::instance->pool.get(), {inA, inB, out}, spirv, {size}, {}, {pushConsts}); else { s_algo = komputeManager()->getAlgorithm(__func__); s_algo->setTensors({inA, inB, out}); s_algo->setWorkgroup({size}); s_algo->setPushConstants<PushConstants>({pushConsts}); s_algo->updateDescriptors(ggml_kompute_context::instance->pool.get()); } seq.record<kp::OpAlgoDispatch>(s_algo); } void ggml_vk_addrow(kp::Sequence& seq, const std::shared_ptr<kp::Tensor>& inA, const std::shared_ptr<kp::Tensor>& inB, const std::shared_ptr<kp::Tensor>& out, uint32_t inAOff, uint32_t inBOff, uint32_t outOff, uint32_t size, uint32_t row = 0) { const static auto spirv = getSpirvShader(kp::shader_data::op_addrow_comp_spv, kp::shader_data::op_addrow_comp_spv_len); struct PushConstants { uint32_t inAOff, inBOff, outOff; uint32_t row; } const pushConsts { safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4), row }; std::shared_ptr<kp::Algorithm> s_algo = nullptr; if (!komputeManager()->hasAlgorithm(__func__)) s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, ggml_kompute_context::instance->pool.get(), {inA, inB, out}, spirv, {size}, {}, {pushConsts}); else { s_algo = komputeManager()->getAlgorithm(__func__); s_algo->setTensors({inA, inB, out}); s_algo->setWorkgroup({size}); s_algo->setPushConstants<PushConstants>({pushConsts}); s_algo->updateDescriptors(ggml_kompute_context::instance->pool.get()); } seq.record<kp::OpAlgoDispatch>(s_algo); } void ggml_vk_mul(kp::Sequence& seq, const std::shared_ptr<kp::Tensor>& inA, const std::shared_ptr<kp::Tensor>& inB, const std::shared_ptr<kp::Tensor>& out, uint32_t inAOff, uint32_t inBOff, uint32_t outOff, uint32_t size) { const static auto spirv = getSpirvShader(kp::shader_data::op_mul_comp_spv, kp::shader_data::op_mul_comp_spv_len); struct PushConstants { uint32_t inAOff, inBOff, outOff; } const pushConsts { safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4) }; std::shared_ptr<kp::Algorithm> s_algo = nullptr; if (!komputeManager()->hasAlgorithm(__func__)) s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, ggml_kompute_context::instance->pool.get(), {inA, inB, out}, spirv, {size}, {}, {pushConsts}); else { s_algo = komputeManager()->getAlgorithm(__func__); s_algo->setTensors({inA, inB, out}); s_algo->setWorkgroup({size}); s_algo->setPushConstants<PushConstants>({pushConsts}); s_algo->updateDescriptors(ggml_kompute_context::instance->pool.get()); } seq.record<kp::OpAlgoDispatch>(s_algo); } void ggml_vk_mulrow(kp::Sequence& seq, const std::shared_ptr<kp::Tensor>& inA, const std::shared_ptr<kp::Tensor>& inB, const std::shared_ptr<kp::Tensor>& out, uint32_t inAOff, uint32_t inBOff, uint32_t outOff, uint32_t size, uint32_t row = 0) { const static auto spirv = getSpirvShader(kp::shader_data::op_mulrow_comp_spv, kp::shader_data::op_mulrow_comp_spv_len); struct PushConstants { uint32_t inAOff, inBOff, outOff; uint32_t row; } const pushConsts { safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4), row }; std::shared_ptr<kp::Algorithm> s_algo = nullptr; if (!komputeManager()->hasAlgorithm(__func__)) s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, ggml_kompute_context::instance->pool.get(), {inA, inB, out}, spirv, {size}, {}, {pushConsts}); else { s_algo = komputeManager()->getAlgorithm(__func__); s_algo->setTensors({inA, inB, out}); s_algo->setWorkgroup({size}); s_algo->setPushConstants<PushConstants>({pushConsts}); s_algo->updateDescriptors(ggml_kompute_context::instance->pool.get()); } seq.record<kp::OpAlgoDispatch>(s_algo); } void ggml_vk_scale(kp::Sequence& seq, const std::shared_ptr<kp::Tensor>& in, const std::shared_ptr<kp::Tensor>& out, uint32_t inOff, uint32_t outOff, uint32_t size, float scale) { const static auto spirv = getSpirvShader(kp::shader_data::op_scale_comp_spv, kp::shader_data::op_scale_comp_spv_len); struct PushConstants { uint32_t inOff, outOff; float scale; } const pushConsts { safe_divide(inOff, 4), safe_divide(outOff, 4), scale }; std::shared_ptr<kp::Algorithm> s_algo = nullptr; if (!komputeManager()->hasAlgorithm(__func__)) s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, ggml_kompute_context::instance->pool.get(), {in, out}, spirv, {size}, {}, {pushConsts}); else { s_algo = komputeManager()->getAlgorithm(__func__); s_algo->setTensors({in, out}); s_algo->setWorkgroup({size}); s_algo->setPushConstants<PushConstants>({pushConsts}); s_algo->updateDescriptors(ggml_kompute_context::instance->pool.get()); } seq.record<kp::OpAlgoDispatch>(s_algo); } void ggml_vk_xxlu(const std::vector<uint32_t>& spirv, kp::Sequence& seq, const std::shared_ptr<kp::Tensor>& in, const std::shared_ptr<kp::Tensor>& out, uint32_t inOff, uint32_t outOff, uint32_t size) { struct PushConstants { uint32_t inOff, outOff; } const pushConsts { safe_divide(inOff, 4), safe_divide(outOff, 4), }; std::shared_ptr<kp::Algorithm> s_algo = nullptr; if (!komputeManager()->hasAlgorithm(__func__)) s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, ggml_kompute_context::instance->pool.get(), {in, out}, spirv, {size}, {}, {pushConsts}); else { s_algo = komputeManager()->getAlgorithm(__func__); s_algo->setTensors({in, out}); s_algo->setWorkgroup({size}); s_algo->setPushConstants<PushConstants>({pushConsts}); s_algo->updateDescriptors(ggml_kompute_context::instance->pool.get()); } seq.record<kp::OpAlgoDispatch>(s_algo); } template <typename... Args> void ggml_vk_silu(Args&&... args) { const static auto spirv = getSpirvShader(kp::shader_data::op_silu_comp_spv, kp::shader_data::op_silu_comp_spv_len); ggml_vk_xxlu(spirv, std::forward<Args>(args)...); } template <typename... Args> void ggml_vk_relu(Args&&... args) { const static auto spirv = getSpirvShader(kp::shader_data::op_relu_comp_spv, kp::shader_data::op_relu_comp_spv_len); ggml_vk_xxlu(spirv, std::forward<Args>(args)...); } template <typename... Args> void ggml_vk_gelu(Args&&... args) { const static auto spirv = getSpirvShader(kp::shader_data::op_gelu_comp_spv, kp::shader_data::op_gelu_comp_spv_len); ggml_vk_xxlu(spirv, std::forward<Args>(args)...); } void ggml_vk_soft_max(kp::Sequence& seq, const std::shared_ptr<kp::Tensor>& in, const std::shared_ptr<kp::Tensor>& out, uint32_t inOff, uint32_t outOff, int32_t ne00, int32_t ne01, int32_t ne02, uint32_t ne03) { const static auto spirv = getSpirvShader(kp::shader_data::op_softmax_comp_spv, kp::shader_data::op_softmax_comp_spv_len); struct PushConstants { uint32_t inOff, outOff; int32_t ne00, ne01, ne02; } pushConsts { safe_divide(inOff, 4), safe_divide(outOff, 4), ne00, ne01, ne02 }; std::shared_ptr<kp::Algorithm> s_algo = nullptr; if (!komputeManager()->hasAlgorithm(__func__)) s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, ggml_kompute_context::instance->pool.get(), {in, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts}); else { s_algo = komputeManager()->getAlgorithm(__func__); s_algo->setTensors({in, out}); s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)}); s_algo->setPushConstants<PushConstants>({pushConsts}); s_algo->updateDescriptors(ggml_kompute_context::instance->pool.get()); } seq.record<kp::OpAlgoDispatch>(s_algo); } void ggml_vk_norm_(const std::vector<uint32_t>& spirv, kp::Sequence& seq, const std::shared_ptr<kp::Tensor>& in, const std::shared_ptr<kp::Tensor>& out, uint32_t inOff, uint32_t outOff, int32_t ne00, int32_t nb01, int32_t nrows) { GGML_ASSERT(nb01%sizeof(float) == 0); GGML_ASSERT(ne00%sizeof(float) == 0); const float epsilon = 1e-6f; // this is what ggml.c uses for rms norm struct PushConstants { uint32_t inOff, outOff; uint32_t ne00, nb01; float eps; } pushConsts { safe_divide(inOff, 4), safe_divide(outOff, 4), (uint32_t)ne00, (uint32_t)nb01, epsilon }; std::shared_ptr<kp::Algorithm> s_algo = nullptr; if (!komputeManager()->hasAlgorithm(__func__)) s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, ggml_kompute_context::instance->pool.get(), {in, out}, spirv, {(uint32_t)nrows}, {}, {pushConsts}); else { s_algo = komputeManager()->getAlgorithm(__func__); s_algo->setTensors({in, out}); s_algo->setWorkgroup({(uint32_t)nrows}); s_algo->setPushConstants<PushConstants>({pushConsts}); s_algo->updateDescriptors(ggml_kompute_context::instance->pool.get()); } seq.record<kp::OpAlgoDispatch>(s_algo); } template <typename... Args> void ggml_vk_norm(Args&&... args) { const static auto spirv = getSpirvShader(kp::shader_data::op_norm_comp_spv, kp::shader_data::op_norm_comp_spv_len); ggml_vk_norm_(spirv, std::forward<Args>(args)...); } template <typename... Args> void ggml_vk_rms_norm(Args&&... args) { const static auto spirv = getSpirvShader(kp::shader_data::op_rmsnorm_comp_spv, kp::shader_data::op_rmsnorm_comp_spv_len); ggml_vk_norm_(spirv, std::forward<Args>(args)...); } void ggml_vk_diag_mask_inf(kp::Sequence& seq, const std::shared_ptr<kp::Tensor>& in, const std::shared_ptr<kp::Tensor>& out, uint32_t inOff, uint32_t outOff, uint32_t n_past, int32_t ne00, int32_t ne01, int32_t ne02) { const static auto spirv = getSpirvShader(kp::shader_data::op_diagmask_comp_spv, kp::shader_data::op_diagmask_comp_spv_len); struct PushConstants { uint32_t inOff, outOff; uint32_t n_past; int32_t ne00, ne01; } pushConsts { safe_divide(inOff, 4), safe_divide(outOff, 4), n_past, ne00, ne01 }; std::shared_ptr<kp::Algorithm> s_algo = nullptr; if (!komputeManager()->hasAlgorithm(__func__)) s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, ggml_kompute_context::instance->pool.get(), {in, out}, spirv, {unsigned(ne00), unsigned(ne01), unsigned(ne02)}, {}, {pushConsts}); else { s_algo = komputeManager()->getAlgorithm(__func__); s_algo->setTensors({in, out}); s_algo->setWorkgroup({unsigned(ne00), unsigned(ne01), unsigned(ne02)}); s_algo->setPushConstants<PushConstants>({pushConsts}); s_algo->updateDescriptors(ggml_kompute_context::instance->pool.get()); } seq.record<kp::OpAlgoDispatch>(s_algo); } void ggml_vk_mul_mat_f16(kp::Sequence& seq, const std::shared_ptr<kp::Tensor>& inA, const std::shared_ptr<kp::Tensor>& inB, const std::shared_ptr<kp::Tensor>& out, uint32_t inAOff, uint32_t inBOff, uint32_t outOff, int32_t ne00, int32_t ne01, uint32_t nb01, uint32_t nb02, int32_t ne11, int32_t ne12, uint32_t nb11, uint32_t nb12, int32_t ne0, int32_t ne1) { const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_f16_comp_spv, kp::shader_data::op_mul_mat_f16_comp_spv_len); struct PushConstants { uint32_t inAOff, inBOff, outOff; int32_t ne00; uint32_t nb01, nb02; uint32_t nb11, nb12; int32_t ne0, ne1; } pushConsts { safe_divide(inAOff, 2), safe_divide(inBOff, 4), safe_divide(outOff, 4), ne00, nb01, nb02, nb11, nb12, ne0, ne1, }; std::shared_ptr<kp::Algorithm> s_algo = nullptr; if (!komputeManager()->hasAlgorithm(__func__)) s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, ggml_kompute_context::instance->pool.get(), {inA, inB, out}, spirv, {unsigned(ne01), unsigned(ne11), unsigned(ne12)}, {}, {pushConsts}); else { s_algo = komputeManager()->getAlgorithm(__func__); s_algo->setTensors({inA, inB, out}); s_algo->setWorkgroup({unsigned(ne01), unsigned(ne11), unsigned(ne12)}); s_algo->setPushConstants<PushConstants>({pushConsts}); s_algo->updateDescriptors(ggml_kompute_context::instance->pool.get()); } seq.record<kp::OpAlgoDispatch>(s_algo); } void ggml_vk_mul_mat_q4_x(const std::vector<uint32_t>& spirv, uint32_t block_size, kp::Sequence& seq, const std::shared_ptr<kp::Tensor>& inA, const std::shared_ptr<kp::Tensor>& inB, const std::shared_ptr<kp::Tensor>& out, uint32_t inAOff, uint32_t inBOff, uint32_t outOff, int32_t ne00, int32_t ne10, int32_t ne0, int32_t ne01, int32_t ne11) { struct PushConstants { uint32_t inAOff, inBOff, outOff; int32_t ne00, ne10, ne0; } pushConsts { safe_divide(inAOff, block_size), safe_divide(inBOff, 4), safe_divide(outOff, 4), ne00, ne10, ne0, }; std::shared_ptr<kp::Algorithm> s_algo = nullptr; if (!komputeManager()->hasAlgorithm(__func__)) s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, ggml_kompute_context::instance->pool.get(), {inA, inB, out}, spirv, {unsigned(ne01), unsigned(ne11)}, {}, {pushConsts}); else { s_algo = komputeManager()->getAlgorithm(__func__); s_algo->setTensors({inA, inB, out}); s_algo->setWorkgroup({unsigned(ne01), unsigned(ne11)}); s_algo->setPushConstants<PushConstants>({pushConsts}); s_algo->updateDescriptors(ggml_kompute_context::instance->pool.get()); } seq.record<kp::OpAlgoDispatch>(s_algo); } template <typename... Args> void ggml_vk_mul_mat_q4_0(Args&&... args) { const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q4_0_comp_spv, kp::shader_data::op_mul_mat_q4_0_comp_spv_len); ggml_vk_mul_mat_q4_x(spirv, 1/*We access blocks unaligned*/, std::forward<Args>(args)...); } // FIXME: This could be improved like was done in q4_0 version but needs testing... template <typename... Args> void ggml_vk_mul_mat_q4_1(Args&&... args) { const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q4_1_comp_spv, kp::shader_data::op_mul_mat_q4_1_comp_spv_len); ggml_vk_mul_mat_q4_x(spirv, 1/*We access blocks unaligned*/, std::forward<Args>(args)...); } void ggml_vk_get_rows(const std::vector<uint32_t>& spirv, unsigned element_size, unsigned qk, kp::Sequence& seq, const std::shared_ptr<kp::Tensor>& inA, const std::shared_ptr<kp::Tensor>& inB, const std::shared_ptr<kp::Tensor>& out, uint32_t inAOff, uint32_t inBOff, uint32_t outOff, int32_t ne00, int32_t nb01, int32_t nb1, uint32_t size) { GGML_ASSERT(nb01%element_size == 0); GGML_ASSERT(nb1%sizeof(float) == 0); if (qk) GGML_ASSERT(ne00%qk == 0); struct PushConstants { uint32_t inAOff, inBOff, outOff; int32_t ne00, nb01, nb1; } pushConsts { safe_divide(inAOff, element_size), safe_divide(inBOff, 4), safe_divide(outOff, 4), ne00, nb01, nb1 }; std::shared_ptr<kp::Algorithm> s_algo = nullptr; if (!komputeManager()->hasAlgorithm(__func__)) s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, ggml_kompute_context::instance->pool.get(), {inA, inB, out}, spirv, {size}, {}, {pushConsts}); else { s_algo = komputeManager()->getAlgorithm(__func__); s_algo->setTensors({inA, inB, out}); s_algo->setWorkgroup({size}); s_algo->setPushConstants<PushConstants>({pushConsts}); s_algo->updateDescriptors(ggml_kompute_context::instance->pool.get()); } seq.record<kp::OpAlgoDispatch>(s_algo); } template <typename... Args> void ggml_vk_get_rows_f16(Args&&... args) { const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_f16_comp_spv, kp::shader_data::op_getrows_f16_comp_spv_len); ggml_vk_get_rows(spirv, sizeof(half), 0, std::forward<Args>(args)...); } template <typename... Args> void ggml_vk_get_rows_q4_0(Args&&... args) { const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_q4_0_comp_spv, kp::shader_data::op_getrows_q4_0_comp_spv_len); ggml_vk_get_rows(spirv, 1/*We access blocks unaligned*/, QK4_0, std::forward<Args>(args)...); } template <typename... Args> void ggml_vk_get_rows_q4_1(Args&&... args) { const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_q4_1_comp_spv, kp::shader_data::op_getrows_q4_1_comp_spv_len); ggml_vk_get_rows(spirv, 1/*We access blocks unaligned*/, QK4_1, std::forward<Args>(args)...); } void ggml_vk_rope(kp::Sequence& seq, const std::shared_ptr<kp::Tensor>& in, const std::shared_ptr<kp::Tensor>& out, uint32_t inOff, uint32_t outOff, uint32_t n_past, int32_t n_dims, int32_t mode, float freq_base, float freq_scale, int32_t ne01, int32_t ne02, int32_t ne03, uint32_t nb00, uint32_t nb01, uint32_t nb02, uint32_t nb03, int32_t ne0, uint32_t nb0, uint32_t nb1, uint32_t nb2, uint32_t nb3) { const static auto spirv = getSpirvShader(kp::shader_data::op_rope_comp_spv, kp::shader_data::op_rope_comp_spv_len); GGML_ASSERT(nb03%sizeof(float) == 0); GGML_ASSERT(nb02%sizeof(float) == 0); GGML_ASSERT(nb01%sizeof(float) == 0); GGML_ASSERT(nb00%sizeof(float) == 0); GGML_ASSERT(nb3%sizeof(float) == 0); GGML_ASSERT(nb2%sizeof(float) == 0); GGML_ASSERT(nb1%sizeof(float) == 0); GGML_ASSERT(nb0%sizeof(float) == 0); struct PushConstants { uint32_t inOff, outOff; uint32_t n_past; int32_t n_dims, mode; float freq_base, freq_scale; uint32_t nb00, nb01, nb02, nb03; int32_t ne0; uint32_t nb0, nb1, nb2, nb3; } pushConsts { safe_divide(inOff, 4), safe_divide(outOff, 4), n_past, n_dims, mode, freq_base, freq_scale, nb00, nb01, nb02, nb03, ne0, nb0, nb1, nb2, nb3 }; std::shared_ptr<kp::Algorithm> s_algo = nullptr; if (!komputeManager()->hasAlgorithm(__func__)) s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, ggml_kompute_context::instance->pool.get(), {in, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts}); else { s_algo = komputeManager()->getAlgorithm(__func__); s_algo->setTensors({in, out}); s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)}); s_algo->setPushConstants<PushConstants>({pushConsts}); s_algo->updateDescriptors(ggml_kompute_context::instance->pool.get()); } seq.record<kp::OpAlgoDispatch>(s_algo); } template<uint32_t in_element_size, uint32_t out_element_size> void ggml_vk_cpy(const std::vector<uint32_t>& spirv, kp::Sequence& seq, const std::shared_ptr<kp::Tensor>& in, const std::shared_ptr<kp::Tensor>& out, uint32_t inOff, uint32_t outOff, int32_t ne00, int32_t ne01, int32_t ne02, int32_t ne03, uint32_t nb00, uint32_t nb01, uint32_t nb02, uint32_t nb03, int32_t ne0, int32_t ne1, int32_t ne2, uint32_t nb0, uint32_t nb1, uint32_t nb2, uint32_t nb3) { struct PushConstants { uint32_t inOff, outOff; int32_t ne00, ne01, ne02; uint32_t nb00, nb01, nb02, nb03; int32_t ne0, ne1, ne2; uint32_t nb0, nb1, nb2, nb3; } pushConsts { safe_divide(inOff, in_element_size), safe_divide(outOff, out_element_size), ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3 }; static std::string unique_name = std::string(__func__) + "_i_" + std::to_string(in_element_size) + "_o_" + std::to_string(out_element_size); std::shared_ptr<kp::Algorithm> s_algo = nullptr; if (!komputeManager()->hasAlgorithm(unique_name)) s_algo = komputeManager()->algorithm<float, PushConstants>(unique_name, ggml_kompute_context::instance->pool.get(), {in, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts}); else { s_algo = komputeManager()->getAlgorithm(unique_name); s_algo->setTensors({in, out}); s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)}); s_algo->setPushConstants<PushConstants>({pushConsts}); s_algo->updateDescriptors(ggml_kompute_context::instance->pool.get()); } seq.record<kp::OpAlgoDispatch>(s_algo); } template <typename... Args> void ggml_vk_cpy_f32_f16(Args&&... args) { const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f32_f16_comp_spv, kp::shader_data::op_cpy_f32_f16_comp_spv_len); ggml_vk_cpy<4, 2>(spirv, std::forward<Args>(args)...); } template <typename... Args> void ggml_vk_cpy_f32_f32(Args&&... args) { const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f32_f32_comp_spv, kp::shader_data::op_cpy_f32_f32_comp_spv_len); ggml_vk_cpy<4, 4>(spirv, std::forward<Args>(args)...); } template <typename... Args> void ggml_vk_cpy_f16_f16(Args&&... args) { const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f16_f16_comp_spv, kp::shader_data::op_cpy_f16_f16_comp_spv_len); ggml_vk_cpy<2, 2>(spirv, std::forward<Args>(args)...); } template <typename... Args> void ggml_vk_cpy_f16_f32(Args&&... args) { const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f16_f32_comp_spv, kp::shader_data::op_cpy_f16_f32_comp_spv_len); ggml_vk_cpy<2, 4>(spirv, std::forward<Args>(args)...); } void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml_cgraph * gf) { const int n_seq = 8; // FIXME: Figure out if we can somehow optimize the size of the pool... right now we're setting // it to the size of the graph, but I think it can be made smaller? ggml_vk_allocate_descriptor_pool(ctx, gf->n_nodes); std::vector<std::shared_ptr<kp::Sequence>> sequences(n_seq); for (auto& sequence : sequences) { sequence = komputeManager()->sequence(); } for (int seq_idx = 0; seq_idx < n_seq; ++seq_idx) { const int n_nodes_per_seq = (gf->n_nodes + n_seq - 1) / n_seq; auto& seq = *sequences[seq_idx]; const int node_start = (seq_idx + 0) * n_nodes_per_seq; const int node_end = (seq_idx == n_seq - 1) ? gf->n_nodes : (seq_idx + 1) * n_nodes_per_seq; for (int i = node_start; i < node_end; ++i) { struct ggml_tensor * src0 = gf->nodes[i]->src[0]; struct ggml_tensor * src1 = gf->nodes[i]->src[1]; struct ggml_tensor * dst = gf->nodes[i]; GGML_ASSERT(dst->data != nullptr); const int32_t ne00 = src0 ? src0->ne[0] : 0; const int32_t ne01 = src0 ? src0->ne[1] : 0; const int32_t ne02 = src0 ? src0->ne[2] : 0; const int32_t ne03 = src0 ? src0->ne[3] : 0; const uint32_t nb00 = src0 ? src0->nb[0] : 0; const uint32_t nb01 = src0 ? src0->nb[1] : 0; const uint32_t nb02 = src0 ? src0->nb[2] : 0; const uint32_t nb03 = src0 ? src0->nb[3] : 0; const int32_t ne10 = src1 ? src1->ne[0] : 0; const int32_t ne11 = src1 ? src1->ne[1] : 0; const int32_t ne12 = src1 ? src1->ne[2] : 0; // const int32_t ne13 = src1 ? src1->ne[3] : 0; // const uint32_t nb10 = src1 ? src1->nb[0] : 0; const uint32_t nb11 = src1 ? src1->nb[1] : 0; const uint32_t nb12 = src1 ? src1->nb[2] : 0; // const uint32_t nb13 = src1 ? src1->nb[3] : 0; const int32_t ne0 = dst ? dst->ne[0] : 0; const int32_t ne1 = dst ? dst->ne[1] : 0; const int32_t ne2 = dst ? dst->ne[2] : 0; // const int32_t ne3 = dst ? dst->ne[3] : 0; const uint32_t nb0 = dst ? dst->nb[0] : 0; const uint32_t nb1 = dst ? dst->nb[1] : 0; const uint32_t nb2 = dst ? dst->nb[2] : 0; const uint32_t nb3 = dst ? dst->nb[3] : 0; const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT; // const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT; const enum ggml_type dstt = dst ? dst->type : GGML_TYPE_COUNT; const static std::shared_ptr<kp::Tensor> nullTensor = nullptr; uint32_t off_src0 = 0; uint32_t off_src1 = 0; uint32_t off_dst = 0; const std::shared_ptr<kp::Tensor>& id_src0 = src0 ? ggml_vk_get_tensor(ctx, src0, &off_src0) : nullTensor; const std::shared_ptr<kp::Tensor>& id_src1 = src1 ? ggml_vk_get_tensor(ctx, src1, &off_src1) : nullTensor; const std::shared_ptr<kp::Tensor>& id_dst = dst ? ggml_vk_get_tensor(ctx, dst, &off_dst) : nullTensor; switch (dst->op) { case GGML_OP_RESHAPE: case GGML_OP_VIEW: case GGML_OP_TRANSPOSE: case GGML_OP_PERMUTE: { // noop } break; case GGML_OP_ADD: { if (ggml_nelements(src1) == ne10) { // src1 is a row ggml_vk_addrow(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ggml_nelements(dst), ne00); } else { ggml_vk_add(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ggml_nelements(dst)); } } break; case GGML_OP_MUL: { if (ggml_nelements(src1) == ne10) { // src1 is a row ggml_vk_mulrow(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ggml_nelements(dst), ne00); } else { ggml_vk_mul(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ggml_nelements(dst)); } } break; case GGML_OP_SCALE: { const float scale = *(const float *) src1->data; ggml_vk_scale(seq, id_src0, id_dst, off_src0, off_dst, ggml_nelements(dst), scale); } break; case GGML_OP_UNARY: switch (ggml_get_unary_op(gf->nodes[i])) { case GGML_UNARY_OP_SILU: { ggml_vk_silu(seq, id_src0, id_dst, off_src0, off_dst, ggml_nelements(dst)); } break; case GGML_UNARY_OP_RELU: { ggml_vk_relu(seq, id_src0, id_dst, off_src0, off_dst, ggml_nelements(dst)); } break; case GGML_UNARY_OP_GELU: { ggml_vk_gelu(seq, id_src0, id_dst, off_src0, off_dst, ggml_nelements(dst)); } break; default: { fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op)); GGML_ASSERT(false); } } break; case GGML_OP_SOFT_MAX: { ggml_vk_soft_max(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03); } break; case GGML_OP_DIAG_MASK_INF: { const int n_past = ((int32_t *)(dst->op_params))[0]; ggml_vk_diag_mask_inf(seq, id_src0, id_dst, off_src0, off_dst, n_past, ne00, ne01, ne02); } break; case GGML_OP_NORM: { ggml_vk_norm(seq, id_src0, id_dst, off_src0, off_dst, ne00, nb01, ggml_nrows(src0)); } break; case GGML_OP_RMS_NORM: { ggml_vk_rms_norm(seq, id_src0, id_dst, off_src0, off_dst, ne00, nb01, ggml_nrows(src0)); } break; case GGML_OP_MUL_MAT: { if ((src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_F32) && src1->type == GGML_TYPE_F32) { ggml_vk_mul_mat_f16(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, ne01, nb01, nb02, ne11, ne12, nb11, nb12, ne0, ne1); } else if (src0->type == GGML_TYPE_Q4_0 && src1->type == GGML_TYPE_F32) { ggml_vk_mul_mat_q4_0(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, ne10, ne0, ne01, ne11); } else if (src0->type == GGML_TYPE_Q4_1 && src1->type == GGML_TYPE_F32) { ggml_vk_mul_mat_q4_1(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, ne10, ne0, ne01, ne11); } else { fprintf(stderr, "%s: %s: Unsupported quantization: %u/%u\n", __func__, ggml_op_name(dst->op), src0->type, src1->type); goto not_implemented; } } break; case GGML_OP_GET_ROWS: { if (src0->type == GGML_TYPE_F16) { ggml_vk_get_rows_f16(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1)); } else if (src0->type == GGML_TYPE_Q4_0) { ggml_vk_get_rows_q4_0(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1)); } else if (src0->type == GGML_TYPE_Q4_1) { ggml_vk_get_rows_q4_1(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1)); } else { fprintf(stderr, "%s: %s: Unsupported quantization: %u\n", __func__, ggml_op_name(dst->op), src0->type); goto not_implemented; } } break; case GGML_OP_ROPE: { const int n_past = ((int32_t *) dst->op_params)[0]; const int n_dims = ((int32_t *) dst->op_params)[1]; const int mode = ((int32_t *) dst->op_params)[2]; float freq_base; float freq_scale; memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float)); memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float)); ggml_vk_rope(seq, id_src0, id_dst, off_src0, off_dst, n_past, n_dims, mode, freq_base, freq_scale, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, nb0, nb1, nb2, nb3); } break; case GGML_OP_DUP: case GGML_OP_CPY: case GGML_OP_CONT: { switch (src0t) { case GGML_TYPE_F32: { switch (dstt) { case GGML_TYPE_F16: ggml_vk_cpy_f32_f16(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break; case GGML_TYPE_F32: ggml_vk_cpy_f32_f32(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break; default: goto not_implemented; } } break; case GGML_TYPE_F16: { switch (dstt) { case GGML_TYPE_F16: ggml_vk_cpy_f16_f16(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break; case GGML_TYPE_F32: ggml_vk_cpy_f16_f32(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break; default: goto not_implemented; } break; default: goto not_implemented; } } } break; default: goto not_implemented; } continue; not_implemented: {} fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op)); //GGML_ASSERT(false); } // Evaluate sequence seq.evalAsync(); } // Wait for all sequences to finish for (auto& sequence : sequences) { if (sequence->isRunning()) sequence->evalAwait(); } ggml_vk_free_descriptor_pool(ctx); } template<> kp::Tensor::TensorDataTypes kp::TensorT<half>::dataType() { return TensorDataTypes::eFloat; } template<> kp::Tensor::TensorDataTypes kp::TensorT<uint8_t>::dataType() { return TensorDataTypes::eUnsignedInt; }