#include <cstdio> #include <vector> #include <random> #include <chrono> #include <cstdlib> #include <cmath> #include <cassert> #include <cstring> #include <array> #include <ggml.h> constexpr int kVecSize = 1 << 18; float drawFromGaussianPdf(std::mt19937& rndm) { constexpr double kScale = 1./(1. + std::mt19937::max()); constexpr double kTwoPiTimesScale = 6.28318530717958647692*kScale; static float lastX; static bool haveX = false; if (haveX) { haveX = false; return lastX; } auto r = sqrt(-2*log(1 - kScale*rndm())); auto phi = kTwoPiTimesScale * rndm(); lastX = r*sin(phi); haveX = true; return r*cos(phi); } void fillRandomGaussianFloats(std::vector<float>& values, std::mt19937& rndm, float mean = 0) { for (auto& v : values) v = mean + drawFromGaussianPdf(rndm); } // Copy-pasted from ggml.c #define QK4_0 32 typedef struct { float d; // delta uint8_t qs[QK4_0 / 2]; // nibbles / quants } block_q4_0; static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding"); #define QK4_1 32 typedef struct { float d; // delta float m; // min uint8_t qs[QK4_1 / 2]; // nibbles / quants } block_q4_1; static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding"); // Copy-pasted from ggml.c #define QK8_0 32 typedef struct { float d; // delta int8_t qs[QK8_0]; // quants } block_q8_0; static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding"); // "Scalar" dot product between the quantized vector x and float vector y inline double dot(int n, const block_q4_0* x, const float* y) { const static float kValues[16] = {-8.f, -7.f, -6.f, -5.f, -4.f, -3.f, -2.f, -1.f, 0.f, 1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f}; constexpr uint32_t kMask1 = 0x0f0f0f0f; uint32_t u1, u2; auto q1 = (const uint8_t*)&u1; auto q2 = (const uint8_t*)&u2; double sum = 0; for (int i=0; i<n; ++i) { float d = x->d; auto u = (const uint32_t*)x->qs; float s = 0; for (int k=0; k<4; ++k) { u1 = u[k] & kMask1; u2 = (u[k] >> 4) & kMask1; s += y[0]*kValues[q1[0]] + y[1]*kValues[q2[0]] + y[2]*kValues[q1[1]] + y[3]*kValues[q2[1]] + y[4]*kValues[q1[2]] + y[5]*kValues[q2[2]] + y[6]*kValues[q1[3]] + y[7]*kValues[q2[3]]; y += 8; } sum += s*d; ++x; } return sum; } // Alternative version of the above. Faster on my Mac (~45 us vs ~55 us per dot product), // but about the same on X86_64 (Ryzen 7950X CPU). inline double dot3(int n, const block_q4_0* x, const float* y) { const static std::pair<float,float> kValues[256] = { {-8.f, -8.f}, {-7.f, -8.f}, {-6.f, -8.f}, {-5.f, -8.f}, {-4.f, -8.f}, {-3.f, -8.f}, {-2.f, -8.f}, {-1.f, -8.f}, { 0.f, -8.f}, { 1.f, -8.f}, { 2.f, -8.f}, { 3.f, -8.f}, { 4.f, -8.f}, { 5.f, -8.f}, { 6.f, -8.f}, { 7.f, -8.f}, {-8.f, -7.f}, {-7.f, -7.f}, {-6.f, -7.f}, {-5.f, -7.f}, {-4.f, -7.f}, {-3.f, -7.f}, {-2.f, -7.f}, {-1.f, -7.f}, { 0.f, -7.f}, { 1.f, -7.f}, { 2.f, -7.f}, { 3.f, -7.f}, { 4.f, -7.f}, { 5.f, -7.f}, { 6.f, -7.f}, { 7.f, -7.f}, {-8.f, -6.f}, {-7.f, -6.f}, {-6.f, -6.f}, {-5.f, -6.f}, {-4.f, -6.f}, {-3.f, -6.f}, {-2.f, -6.f}, {-1.f, -6.f}, { 0.f, -6.f}, { 1.f, -6.f}, { 2.f, -6.f}, { 3.f, -6.f}, { 4.f, -6.f}, { 5.f, -6.f}, { 6.f, -6.f}, { 7.f, -6.f}, {-8.f, -5.f}, {-7.f, -5.f}, {-6.f, -5.f}, {-5.f, -5.f}, {-4.f, -5.f}, {-3.f, -5.f}, {-2.f, -5.f}, {-1.f, -5.f}, { 0.f, -5.f}, { 1.f, -5.f}, { 2.f, -5.f}, { 3.f, -5.f}, { 4.f, -5.f}, { 5.f, -5.f}, { 6.f, -5.f}, { 7.f, -5.f}, {-8.f, -4.f}, {-7.f, -4.f}, {-6.f, -4.f}, {-5.f, -4.f}, {-4.f, -4.f}, {-3.f, -4.f}, {-2.f, -4.f}, {-1.f, -4.f}, { 0.f, -4.f}, { 1.f, -4.f}, { 2.f, -4.f}, { 3.f, -4.f}, { 4.f, -4.f}, { 5.f, -4.f}, { 6.f, -4.f}, { 7.f, -4.f}, {-8.f, -3.f}, {-7.f, -3.f}, {-6.f, -3.f}, {-5.f, -3.f}, {-4.f, -3.f}, {-3.f, -3.f}, {-2.f, -3.f}, {-1.f, -3.f}, { 0.f, -3.f}, { 1.f, -3.f}, { 2.f, -3.f}, { 3.f, -3.f}, { 4.f, -3.f}, { 5.f, -3.f}, { 6.f, -3.f}, { 7.f, -3.f}, {-8.f, -2.f}, {-7.f, -2.f}, {-6.f, -2.f}, {-5.f, -2.f}, {-4.f, -2.f}, {-3.f, -2.f}, {-2.f, -2.f}, {-1.f, -2.f}, { 0.f, -2.f}, { 1.f, -2.f}, { 2.f, -2.f}, { 3.f, -2.f}, { 4.f, -2.f}, { 5.f, -2.f}, { 6.f, -2.f}, { 7.f, -2.f}, {-8.f, -1.f}, {-7.f, -1.f}, {-6.f, -1.f}, {-5.f, -1.f}, {-4.f, -1.f}, {-3.f, -1.f}, {-2.f, -1.f}, {-1.f, -1.f}, { 0.f, -1.f}, { 1.f, -1.f}, { 2.f, -1.f}, { 3.f, -1.f}, { 4.f, -1.f}, { 5.f, -1.f}, { 6.f, -1.f}, { 7.f, -1.f}, {-8.f, 0.f}, {-7.f, 0.f}, {-6.f, 0.f}, {-5.f, 0.f}, {-4.f, 0.f}, {-3.f, 0.f}, {-2.f, 0.f}, {-1.f, 0.f}, { 0.f, 0.f}, { 1.f, 0.f}, { 2.f, 0.f}, { 3.f, 0.f}, { 4.f, 0.f}, { 5.f, 0.f}, { 6.f, 0.f}, { 7.f, 0.f}, {-8.f, 1.f}, {-7.f, 1.f}, {-6.f, 1.f}, {-5.f, 1.f}, {-4.f, 1.f}, {-3.f, 1.f}, {-2.f, 1.f}, {-1.f, 1.f}, { 0.f, 1.f}, { 1.f, 1.f}, { 2.f, 1.f}, { 3.f, 1.f}, { 4.f, 1.f}, { 5.f, 1.f}, { 6.f, 1.f}, { 7.f, 1.f}, {-8.f, 2.f}, {-7.f, 2.f}, {-6.f, 2.f}, {-5.f, 2.f}, {-4.f, 2.f}, {-3.f, 2.f}, {-2.f, 2.f}, {-1.f, 2.f}, { 0.f, 2.f}, { 1.f, 2.f}, { 2.f, 2.f}, { 3.f, 2.f}, { 4.f, 2.f}, { 5.f, 2.f}, { 6.f, 2.f}, { 7.f, 2.f}, {-8.f, 3.f}, {-7.f, 3.f}, {-6.f, 3.f}, {-5.f, 3.f}, {-4.f, 3.f}, {-3.f, 3.f}, {-2.f, 3.f}, {-1.f, 3.f}, { 0.f, 3.f}, { 1.f, 3.f}, { 2.f, 3.f}, { 3.f, 3.f}, { 4.f, 3.f}, { 5.f, 3.f}, { 6.f, 3.f}, { 7.f, 3.f}, {-8.f, 4.f}, {-7.f, 4.f}, {-6.f, 4.f}, {-5.f, 4.f}, {-4.f, 4.f}, {-3.f, 4.f}, {-2.f, 4.f}, {-1.f, 4.f}, { 0.f, 4.f}, { 1.f, 4.f}, { 2.f, 4.f}, { 3.f, 4.f}, { 4.f, 4.f}, { 5.f, 4.f}, { 6.f, 4.f}, { 7.f, 4.f}, {-8.f, 5.f}, {-7.f, 5.f}, {-6.f, 5.f}, {-5.f, 5.f}, {-4.f, 5.f}, {-3.f, 5.f}, {-2.f, 5.f}, {-1.f, 5.f}, { 0.f, 5.f}, { 1.f, 5.f}, { 2.f, 5.f}, { 3.f, 5.f}, { 4.f, 5.f}, { 5.f, 5.f}, { 6.f, 5.f}, { 7.f, 5.f}, {-8.f, 6.f}, {-7.f, 6.f}, {-6.f, 6.f}, {-5.f, 6.f}, {-4.f, 6.f}, {-3.f, 6.f}, {-2.f, 6.f}, {-1.f, 6.f}, { 0.f, 6.f}, { 1.f, 6.f}, { 2.f, 6.f}, { 3.f, 6.f}, { 4.f, 6.f}, { 5.f, 6.f}, { 6.f, 6.f}, { 7.f, 6.f}, {-8.f, 7.f}, {-7.f, 7.f}, {-6.f, 7.f}, {-5.f, 7.f}, {-4.f, 7.f}, {-3.f, 7.f}, {-2.f, 7.f}, {-1.f, 7.f}, { 0.f, 7.f}, { 1.f, 7.f}, { 2.f, 7.f}, { 3.f, 7.f}, { 4.f, 7.f}, { 5.f, 7.f}, { 6.f, 7.f}, { 7.f, 7.f} }; double sum = 0; for (int i=0; i<n; ++i) { float d = x->d; auto q = x->qs; float s = 0; for (int k=0; k<4; ++k) { s += y[0]*kValues[q[0]].first + y[1]*kValues[q[0]].second + y[2]*kValues[q[1]].first + y[3]*kValues[q[1]].second + y[4]*kValues[q[2]].first + y[5]*kValues[q[2]].second + y[6]*kValues[q[3]].first + y[7]*kValues[q[3]].second; y += 8; q += 4; } sum += s*d; ++x; } return sum; } inline double dot41(int n, const block_q4_1* x, const float* y) { const static float kValues[16] = {0.f, 1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f, 8.f, 9.f, 10.f, 11.f, 12.f, 13.f, 14.f, 15.f}; constexpr uint32_t kMask1 = 0x0f0f0f0f; uint32_t u1, u2; auto q1 = (const uint8_t*)&u1; auto q2 = (const uint8_t*)&u2; double sum = 0; for (int i=0; i<n; ++i) { auto u = (const uint32_t*)x->qs; float s = 0, s1 = 0; for (int k=0; k<4; ++k) { u1 = u[k] & kMask1; u2 = (u[k] >> 4) & kMask1; s += y[0]*kValues[q1[0]] + y[1]*kValues[q2[0]] + y[2]*kValues[q1[1]] + y[3]*kValues[q2[1]] + y[4]*kValues[q1[2]] + y[5]*kValues[q2[2]] + y[6]*kValues[q1[3]] + y[7]*kValues[q2[3]]; s1 += y[0] + y[1] + y[2] + y[3] + y[4] + y[5] + y[6] + y[7]; y += 8; } sum += s*x->d + s1*x->m; ++x; } return sum; } // Copy-pasted from ggml.c static void quantize_row_q8_0_reference(const float *x, block_q8_0 *y, int k) { assert(k % QK8_0 == 0); const int nb = k / QK8_0; for (int i = 0; i < nb; i++) { float amax = 0.0f; // absolute max for (int l = 0; l < QK8_0; l++) { const float v = x[i*QK8_0 + l]; amax = std::max(amax, fabsf(v)); } const float d = amax / ((1 << 7) - 1); const float id = d ? 1.0f/d : 0.0f; y[i].d = d; for (int l = 0; l < QK8_0; ++l) { const float v = x[i*QK8_0 + l]*id; y[i].qs[l] = roundf(v); } } } // Copy-pasted from ggml.c static void dot_q4_q8(const int n, float* s, const void* vx, const void* vy) { const int nb = n / QK8_0; const block_q4_0* x = (const block_q4_0*)vx; const block_q8_0* y = (const block_q8_0*)vy; float sumf = 0; for (int i = 0; i < nb; i++) { const float d0 = x[i].d; const float d1 = y[i].d; const uint8_t * p0 = x[i].qs; const int8_t * p1 = y[i].qs; int sumi = 0; for (int j = 0; j < QK8_0/2; j++) { const uint8_t v0 = p0[j]; const int i0 = (int8_t) (v0 & 0xf) - 8; const int i1 = (int8_t) (v0 >> 4) - 8; const int i2 = p1[2*j + 0]; const int i3 = p1[2*j + 1]; sumi += i0*i2 + i1*i3; } sumf += d0*d1*sumi; } *s = sumf; } int main(int argc, char** argv) { int nloop = argc > 1 ? atoi(argv[1]) : 10; bool scalar = argc > 2 ? atoi(argv[2]) : false; bool useQ4_1 = argc > 3 ? atoi(argv[3]) : false; if (scalar && useQ4_1) { printf("It is not possible to use Q4_1 quantization and scalar implementations\n"); return 1; } std::mt19937 rndm(1234); std::vector<float> x1(kVecSize), y1(kVecSize); int n4 = useQ4_1 ? kVecSize / QK4_1 : kVecSize / QK4_0; n4 = 64*((n4 + 63)/64); int n8 = kVecSize / QK8_0; n8 = 64*((n8 + 63)/64); auto funcs = useQ4_1 ? ggml_internal_get_quantize_fn(GGML_TYPE_Q4_1) : ggml_internal_get_quantize_fn(GGML_TYPE_Q4_0); std::vector<block_q4_0> q40; std::vector<block_q4_1> q41; if (useQ4_1) q41.resize(n4); else q40.resize(n4); std::vector<block_q8_0> q8(n8); std::vector<int64_t> H(16, 0); double sumt = 0, sumt2 = 0, maxt = 0; double sumqt = 0, sumqt2 = 0, maxqt = 0; double sum = 0, sumq = 0, exactSum = 0; for (int iloop=0; iloop<nloop; ++iloop) { // Fill vector x with random numbers fillRandomGaussianFloats(x1, rndm); // Fill vector y with random numbers fillRandomGaussianFloats(y1, rndm); // Compute the exact dot product for (int k=0; k<kVecSize; ++k) exactSum += x1[k]*y1[k]; // quantize x. // Note, we do not include this in the timing as in practical application // we already have the quantized model weights. if (useQ4_1) { funcs.quantize_row_q(x1.data(), q41.data(), kVecSize); } else { funcs.quantize_row_q(x1.data(), q40.data(), kVecSize); } // Now measure time the dot product needs using the "scalar" version above auto t1 = std::chrono::high_resolution_clock::now(); if (useQ4_1) sum += dot41(kVecSize / QK4_1, q41.data(), y1.data()); else sum += dot(kVecSize / QK4_0, q40.data(), y1.data()); auto t2 = std::chrono::high_resolution_clock::now(); auto t = 1e-3*std::chrono::duration_cast<std::chrono::nanoseconds>(t2-t1).count(); sumt += t; sumt2 += t*t; maxt = std::max(maxt, t); // And now measure the time needed to quantize y and perform the dot product with the quantized y t1 = std::chrono::high_resolution_clock::now(); float result; if (scalar) { quantize_row_q8_0_reference(y1.data(), q8.data(), kVecSize); dot_q4_q8(kVecSize, &result, q40.data(), q8.data()); } else { funcs.quantize_row_q_dot(y1.data(), q8.data(), kVecSize); if (useQ4_1) funcs.vec_dot_q(kVecSize, &result, q41.data(), q8.data()); else funcs.vec_dot_q(kVecSize, &result, q40.data(), q8.data()); } sumq += result; t2 = std::chrono::high_resolution_clock::now(); t = 1e-3*std::chrono::duration_cast<std::chrono::nanoseconds>(t2-t1).count(); sumqt += t; sumqt2 += t*t; maxqt = std::max(maxqt, t); } // Report the time (and the average of the dot products so the compiler does not come up with the idea // of optimizing away the function calls after figuring that the result is not used). sum /= nloop; sumq /= nloop; exactSum /= nloop; printf("Exact result: <dot> = %g\n",exactSum); printf("<dot> = %g, %g\n",sum,sumq); sumt /= nloop; sumt2 /= nloop; sumt2 -= sumt*sumt; if (sumt2 > 0) sumt2 = sqrt(sumt2); printf("time = %g +/- %g us. maxt = %g us\n",sumt,sumt2,maxt); sumqt /= nloop; sumqt2 /= nloop; sumqt2 -= sumqt*sumqt; if (sumqt2 > 0) sumqt2 = sqrt(sumqt2); printf("timeq = %g +/- %g us. maxt = %g us\n",sumqt,sumqt2,maxqt); return 0; }