#pragma once #include "llama.h" #include "common.h" #include <string> #include <vector> // gpt_sampler extends llama_sampler with additional functionality: // // - grammar support // - custom sampler logic based on the parameters // - history of the last accepted tokens // - performance metrics // // This goal is to have a common implementation of the sampling logic shared across the examples. // For example, depending on the temperature, the sampling chain can be very simple (greedy) or more // complex (top-k, top-p, etc). // // Another example is related to the grammar. In general, the grammar constraints applied on the full // vocabulary can be very taxing. To improve performance, the grammar can be applied only to the sampled // token in order to verify if it fits the grammar. And only if the token doesn't fit the grammar, the // grammar constraints are applied to the full vocabulary and the token is resampled. // // The gpt_sampler also maintains a container with the last accepted tokens. In the future, this can // be moved into the core llama library. // // For convenience, the gpt_sampler also maintains a container with the current candidate tokens. // This can be used to access the probabilities of the rest of the non-sampled tokens. // // TODO: measure grammar performance // struct gpt_sampler; // llama_sampler API overloads struct gpt_sampler * gpt_sampler_init(const struct llama_model * model, const struct gpt_sampler_params & params); void gpt_sampler_free(struct gpt_sampler * gsmpl); // if accept_grammar is true, the token is accepted both by the sampling chain and the grammar void gpt_sampler_accept(struct gpt_sampler * gsmpl, llama_token token, bool accept_grammar); void gpt_sampler_reset (struct gpt_sampler * gsmpl); struct gpt_sampler * gpt_sampler_clone (struct gpt_sampler * gsmpl); // arguments can be nullptr to skip printing void gpt_perf_print(const struct llama_context * ctx, const struct gpt_sampler * gsmpl); // extended sampling implementation: // // - set logits // - apply the configured sampler chain // - check if the token fits the grammar (if any) // - if not: resample by first applying the grammar constraints and then sampling again (slower path) // // if grammar_first is true, the grammar is applied before the samplers (slower) // useful in cases where all the resulting candidates (not just the sampled one) must fit the grammar // llama_token gpt_sampler_sample(struct gpt_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first = false); uint32_t gpt_sampler_get_seed(const struct gpt_sampler * gsmpl); // helpers // access the internal list of current candidate tokens llama_token_data_array * gpt_sampler_get_candidates(struct gpt_sampler * gsmpl); // get the last accepted token llama_token gpt_sampler_last(const struct gpt_sampler * gsmpl); // print the sampler chain into a string std::string gpt_sampler_print(const struct gpt_sampler * gsmpl); // get a string representation of the last accepted tokens std::string gpt_sampler_prev_str(gpt_sampler * gsmpl, llama_context * ctx, int n); char gpt_sampler_type_to_chr(enum gpt_sampler_type cnstr); std::string gpt_sampler_type_to_str(enum gpt_sampler_type cnstr); std::vector<enum gpt_sampler_type> gpt_sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names); std::vector<enum gpt_sampler_type> gpt_sampler_types_from_chars(const std::string & chars);