#pragma once #include <string> #include <vector> #include <set> #include <mutex> #include <condition_variable> #include <unordered_map> #include "json.hpp" #include "utils.hpp" #define DEFAULT_OAICOMPAT_MODEL "gpt-3.5-turbo-0613" using json = nlohmann::json; inline static json oaicompat_completion_params_parse( const struct llama_model * model, const json &body, /* openai api json semantics */ const std::string &chat_template) { json llama_params; llama_params["__oaicompat"] = true; // Map OpenAI parameters to llama.cpp parameters // // For parameters that are defined by the OpenAI documentation (e.g. // temperature), we explicitly specify OpenAI's intended default; we // need to do that because sometimes OpenAI disagrees with llama.cpp // // https://platform.openai.com/docs/api-reference/chat/create llama_sampling_params default_sparams; llama_params["model"] = json_value(body, "model", std::string("unknown")); llama_params["prompt"] = format_chat(model, chat_template, body["messages"]); llama_params["cache_prompt"] = json_value(body, "cache_prompt", false); llama_params["temperature"] = json_value(body, "temperature", 0.0); llama_params["top_k"] = json_value(body, "top_k", default_sparams.top_k); llama_params["top_p"] = json_value(body, "top_p", 1.0); llama_params["n_predict"] = json_value(body, "max_tokens", -1); llama_params["logit_bias"] = json_value(body, "logit_bias",json::object()); llama_params["frequency_penalty"] = json_value(body, "frequency_penalty", 0.0); llama_params["presence_penalty"] = json_value(body, "presence_penalty", 0.0); llama_params["seed"] = json_value(body, "seed", LLAMA_DEFAULT_SEED); llama_params["stream"] = json_value(body, "stream", false); llama_params["mirostat"] = json_value(body, "mirostat", default_sparams.mirostat); llama_params["mirostat_tau"] = json_value(body, "mirostat_tau", default_sparams.mirostat_tau); llama_params["mirostat_eta"] = json_value(body, "mirostat_eta", default_sparams.mirostat_eta); llama_params["penalize_nl"] = json_value(body, "penalize_nl", default_sparams.penalize_nl); llama_params["typical_p"] = json_value(body, "typical_p", default_sparams.typical_p); llama_params["repeat_last_n"] = json_value(body, "repeat_last_n", default_sparams.penalty_last_n); llama_params["ignore_eos"] = json_value(body, "ignore_eos", false); llama_params["tfs_z"] = json_value(body, "tfs_z", default_sparams.tfs_z); if (body.count("grammar") != 0) { llama_params["grammar"] = json_value(body, "grammar", json::object()); } // Handle 'stop' field if (body.contains("stop") && body["stop"].is_string()) { llama_params["stop"] = json::array({body["stop"].get<std::string>()}); } else { llama_params["stop"] = json_value(body, "stop", json::array()); } // Ensure there is ChatML-specific end sequence among stop words llama_params["stop"].push_back("<|im_end|>"); return llama_params; } inline static json format_final_response_oaicompat(const json &request, const task_result &response, bool streaming = false) { json result = response.result_json; bool stopped_word = result.count("stopped_word") != 0; bool stopped_eos = json_value(result, "stopped_eos", false); int num_tokens_predicted = json_value(result, "tokens_predicted", 0); int num_prompt_tokens = json_value(result, "tokens_evaluated", 0); std::string content = json_value(result, "content", std::string("")); std::string finish_reason = "length"; if (stopped_word || stopped_eos) { finish_reason = "stop"; } json choices = streaming ? json::array({json{{"finish_reason", finish_reason}, {"index", 0}, {"delta", json::object()}}}) : json::array({json{{"finish_reason", finish_reason}, {"index", 0}, {"message", json{{"content", content}, {"role", "assistant"}}}}}); std::time_t t = std::time(0); json res = json{{"choices", choices}, {"created", t}, {"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))}, {"object", streaming ? "chat.completion.chunk" : "chat.completion"}, {"usage", json{{"completion_tokens", num_tokens_predicted}, {"prompt_tokens", num_prompt_tokens}, {"total_tokens", num_tokens_predicted + num_prompt_tokens}}}, {"id", gen_chatcmplid()}}; if (server_verbose) { res["__verbose"] = result; } if (result.contains("completion_probabilities")) { res["completion_probabilities"] = json_value(result, "completion_probabilities", json::array()); } return res; } // return value is vector as there is one case where we might need to generate two responses inline static std::vector<json> format_partial_response_oaicompat(const task_result &response) { json result = response.result_json; if (!result.contains("model") || !result.contains("oaicompat_token_ctr")) { return std::vector<json>({response.result_json}); } bool first = json_value(result, "oaicompat_token_ctr", 0) == 0; std::string modelname = json_value(result, "model", std::string(DEFAULT_OAICOMPAT_MODEL)); bool stopped_word = json_value(result, "stopped_word", false); bool stopped_eos = json_value(result, "stopped_eos", false); bool stopped_limit = json_value(result, "stopped_limit", false); std::string content = json_value(result, "content", std::string("")); std::string finish_reason; if (stopped_word || stopped_eos) { finish_reason = "stop"; } if (stopped_limit) { finish_reason = "length"; } std::time_t t = std::time(0); json choices; if (!finish_reason.empty()) { choices = json::array({json{{"finish_reason", finish_reason}, {"index", 0}, {"delta", json::object()}}}); } else { if (first) { if (content.empty()) { choices = json::array({json{{"finish_reason", nullptr}, {"index", 0}, {"delta", json{{"role", "assistant"}}}}}); } else { // We have to send this as two updates to conform to openai behavior json initial_ret = json{{"choices", json::array({json{ {"finish_reason", nullptr}, {"index", 0}, {"delta", json{ {"role", "assistant"} }}}})}, {"created", t}, {"id", gen_chatcmplid()}, {"model", modelname}, {"object", "chat.completion.chunk"}}; json second_ret = json{ {"choices", json::array({json{{"finish_reason", nullptr}, {"index", 0}, {"delta", json{ {"content", content}}} }})}, {"created", t}, {"id", gen_chatcmplid()}, {"model", modelname}, {"object", "chat.completion.chunk"}}; return std::vector<json>({initial_ret, second_ret}); } } else { // Some idiosyncrasy in task processing logic makes several trailing calls // with empty content, we ignore these at the calee site. if (content.empty()) { return std::vector<json>({json::object()}); } choices = json::array({json{ {"finish_reason", nullptr}, {"index", 0}, {"delta", json{ {"content", content}, }}, }}); } } json ret = json{{"choices", choices}, {"created", t}, {"id", gen_chatcmplid()}, {"model", modelname}, {"object", "chat.completion.chunk"}}; return std::vector<json>({ret}); } inline static json format_embeddings_response_oaicompat(const json &request, const json &embeddings) { json res = json{ {"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))}, {"object", "list"}, {"usage", json{{"prompt_tokens", 0}, {"total_tokens", 0}}}, {"data", embeddings} }; return res; }