#pragma once #include "common.cuh" #include "vecdotq.cuh" #include "mma.cuh" #include #include #define MMQ_DP4A_MAX_BATCH_SIZE 64 // Max. batch size to use for dp4a MMQ kernels when FP16 tensor cores are available. typedef void (*load_tiles_mmq_t)(const char * __restrict__ x, int * x_tile, const int & kbx0, const int & i_max, const int & stride); typedef void (*vec_dot_mmq_t)(const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k0); typedef void (*mmq_write_back_t)(const float * __restrict__ sum, float * __restrict__ dst, const int & stride, const int & i_max, const int & j_max); struct block_q8_1_mmq { half2 ds[4]; int8_t qs[4*QK8_1]; }; static_assert(sizeof(block_q8_1_mmq) == 4*QK8_1 + 4*sizeof(half2), "Unexpected block_q8_1_mmq size"); static_assert(sizeof(block_q8_1_mmq) == 4*sizeof(block_q8_1), "Unexpected block_q8_1_mmq size"); struct tile_x_sizes { int qs; int dm; int sc; }; static constexpr int get_mmq_x_max_host(const int cc) { return int8_mma_available(cc) ? 128 : #ifdef GGML_CUDA_FORCE_MMQ cc >= CC_VOLTA && cc < CC_OFFSET_AMD ? 128 : 64; #else cc >= CC_VOLTA && cc < CC_OFFSET_AMD ? MMQ_DP4A_MAX_BATCH_SIZE : 64; #endif // GGML_CUDA_FORCE_MMQ } static constexpr __device__ int get_mmq_x_max_device() { #ifdef INT8_MMA_AVAILABLE return 128; #else // INT8_MMA_AVAILABLE #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) return 128; #else // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) #if __CUDA_ARCH__ >= CC_VOLTA #ifdef GGML_CUDA_FORCE_MMQ return MMQ_DP4A_MAX_BATCH_SIZE; #else // GGML_CUDA_FORCE_MMQ return 128; #endif // GGML_CUDA_FORCE_MMQ #else // __CUDA_ARCH__ >= CC_VOLTA return 64; #endif // __CUDA_ARCH__ >= CC_VOLTA #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) #endif // INT8_MMA_AVAILABLE } static constexpr int get_mmq_y_host(const int cc) { return cc >= CC_OFFSET_AMD ? (cc == CC_RDNA1 ? 64 : 128) : (cc >= CC_VOLTA ? 128 : 64); } static constexpr __device__ int get_mmq_y_device() { #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) #if defined(RDNA1) return 64; #else return 128; #endif // defined RDNA1 #else #if __CUDA_ARCH__ >= CC_VOLTA return 128; #else return 64; #endif // __CUDA_ARCH__ >= CC_VOLTA #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) } #define MMQ_DP4A_TXS_Q4_0 tile_x_sizes{mmq_y*WARP_SIZE + mmq_y, mmq_y*WARP_SIZE/QI4_0 + mmq_y/QI4_0, 0} #define MMQ_DP4A_TXS_Q4_1 tile_x_sizes{mmq_y*WARP_SIZE + mmq_y, mmq_y*WARP_SIZE/QI4_1 + mmq_y/QI4_1, 0} #define MMQ_DP4A_TXS_Q5_0 tile_x_sizes{mmq_y*WARP_SIZE*2 + mmq_y, mmq_y*WARP_SIZE/QI5_0 + mmq_y/QI5_0, 0} #define MMQ_DP4A_TXS_Q5_1 tile_x_sizes{mmq_y*WARP_SIZE*2 + mmq_y, mmq_y*WARP_SIZE/QI5_1 + mmq_y/QI5_1, 0} #define MMQ_DP4A_TXS_Q8_0 tile_x_sizes{mmq_y*WARP_SIZE + mmq_y, mmq_y*WARP_SIZE/QI8_0 + mmq_y/QI8_0, 0} #define MMQ_DP4A_TXS_Q2_K tile_x_sizes{mmq_y*WARP_SIZE + mmq_y, mmq_y*WARP_SIZE + mmq_y, 0} #define MMQ_DP4A_TXS_Q3_K tile_x_sizes{mmq_y*WARP_SIZE*2 + mmq_y, mmq_y*WARP_SIZE/QI3_K + mmq_y/QI3_K, mmq_y*WARP_SIZE/4 + mmq_y/4} #define MMQ_DP4A_TXS_Q4_K tile_x_sizes{mmq_y*WARP_SIZE + mmq_y, mmq_y*WARP_SIZE/QI4_K + mmq_y/QI4_K, mmq_y*WARP_SIZE/8 + mmq_y/8} #define MMQ_DP4A_TXS_Q5_K tile_x_sizes{mmq_y*WARP_SIZE*2 + mmq_y, mmq_y*WARP_SIZE/QI5_K + mmq_y/QI5_K, mmq_y*WARP_SIZE/8 + mmq_y/8} #define MMQ_DP4A_TXS_Q6_K tile_x_sizes{mmq_y*WARP_SIZE*2 + mmq_y, mmq_y*WARP_SIZE/QI6_K + mmq_y/QI6_K, mmq_y*WARP_SIZE/8 + mmq_y/8} static constexpr __host__ __device__ tile_x_sizes mmq_get_dp4a_tile_x_sizes(ggml_type type, int mmq_y) { return type == GGML_TYPE_Q4_0 ? MMQ_DP4A_TXS_Q4_0 : type == GGML_TYPE_Q4_1 ? MMQ_DP4A_TXS_Q4_1 : type == GGML_TYPE_Q5_0 ? MMQ_DP4A_TXS_Q5_0 : type == GGML_TYPE_Q5_1 ? MMQ_DP4A_TXS_Q5_1 : type == GGML_TYPE_Q8_0 ? MMQ_DP4A_TXS_Q8_0 : type == GGML_TYPE_Q2_K ? MMQ_DP4A_TXS_Q2_K : type == GGML_TYPE_Q3_K ? MMQ_DP4A_TXS_Q3_K : type == GGML_TYPE_Q4_K ? MMQ_DP4A_TXS_Q4_K : type == GGML_TYPE_Q5_K ? MMQ_DP4A_TXS_Q5_K : type == GGML_TYPE_Q6_K ? MMQ_DP4A_TXS_Q6_K : tile_x_sizes{0, 0, 0}; } #define MMQ_MMA_TILE_X_K_Q4_0 (1*WARP_SIZE + WARP_SIZE/QI4_0 + 4) #define MMQ_MMA_TILE_X_K_Q4_1 (1*WARP_SIZE + WARP_SIZE/QI4_1 + 4) #define MMQ_MMA_TILE_X_K_Q5_0 (2*WARP_SIZE + WARP_SIZE/QI5_0 + 4) #define MMQ_MMA_TILE_X_K_Q5_1 (2*WARP_SIZE + WARP_SIZE/QI5_1 + 4) #define MMQ_MMA_TILE_X_K_Q8_0 (1*WARP_SIZE + WARP_SIZE/QI8_0 + 0) #define MMQ_MMA_TILE_X_K_Q2_K (1*WARP_SIZE + WARP_SIZE + 4) #define MMQ_MMA_TILE_X_K_Q3_K (2*WARP_SIZE + WARP_SIZE/QI3_K + WARP_SIZE/4 + 2) #define MMQ_MMA_TILE_X_K_Q4_K (1*WARP_SIZE + WARP_SIZE/QI4_K + WARP_SIZE/8 + 7) #define MMQ_MMA_TILE_X_K_Q5_K (2*WARP_SIZE + WARP_SIZE/QI5_K + WARP_SIZE/8 + 7) #define MMQ_MMA_TILE_X_K_Q6_K (2*WARP_SIZE + WARP_SIZE/QI6_K + WARP_SIZE/8 + 7) static_assert(MMQ_MMA_TILE_X_K_Q4_0 % 8 == 4, "Wrong padding."); static_assert(MMQ_MMA_TILE_X_K_Q4_1 % 8 == 4, "Wrong padding."); static_assert(MMQ_MMA_TILE_X_K_Q5_0 % 8 == 4, "Wrong padding."); static_assert(MMQ_MMA_TILE_X_K_Q5_1 % 8 == 4, "Wrong padding."); static_assert(MMQ_MMA_TILE_X_K_Q8_0 % 8 == 4, "Wrong padding."); static_assert(MMQ_MMA_TILE_X_K_Q2_K % 8 == 4, "Wrong padding."); static_assert(MMQ_MMA_TILE_X_K_Q3_K % 8 == 4, "Wrong padding."); static_assert(MMQ_MMA_TILE_X_K_Q4_K % 8 == 4, "Wrong padding."); static_assert(MMQ_MMA_TILE_X_K_Q5_K % 8 == 4, "Wrong padding."); static_assert(MMQ_MMA_TILE_X_K_Q6_K % 8 == 4, "Wrong padding."); static constexpr __host__ __device__ int mmq_get_mma_tile_x_k(ggml_type type) { return type == GGML_TYPE_Q4_0 ? MMQ_MMA_TILE_X_K_Q4_0 : type == GGML_TYPE_Q4_1 ? MMQ_MMA_TILE_X_K_Q4_1 : type == GGML_TYPE_Q5_0 ? MMQ_MMA_TILE_X_K_Q5_0 : type == GGML_TYPE_Q5_1 ? MMQ_MMA_TILE_X_K_Q5_1 : type == GGML_TYPE_Q8_0 ? MMQ_MMA_TILE_X_K_Q8_0 : type == GGML_TYPE_Q2_K ? MMQ_MMA_TILE_X_K_Q2_K : type == GGML_TYPE_Q3_K ? MMQ_MMA_TILE_X_K_Q3_K : type == GGML_TYPE_Q4_K ? MMQ_MMA_TILE_X_K_Q4_K : type == GGML_TYPE_Q5_K ? MMQ_MMA_TILE_X_K_Q5_K : type == GGML_TYPE_Q6_K ? MMQ_MMA_TILE_X_K_Q6_K : 0; } #define MMQ_TILE_Y_K (WARP_SIZE + WARP_SIZE/QI8_1) #define MMQ_NWARPS 8 static int mmq_get_granularity_host(const int mmq_x, const int cc) { return int8_mma_available(cc) && mmq_x >= 48 ? 16 : 8; } #ifdef INT8_MMA_AVAILABLE static constexpr __device__ int mmq_get_granularity_device(const int mmq_x) { return mmq_x >= 48 ? 16 : 8; } #else static constexpr __device__ int mmq_get_granularity_device(const int /* mmq_x */) { return 8; } #endif // INT8_MMA_AVAILABLE // ------------------------------------------------------------ template static __device__ __forceinline__ void load_tiles_q4_0( const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) { #ifdef INT8_MMA_AVAILABLE int * x_qs = (int *) x_tile; float * x_df = (float *) (x_qs + WARP_SIZE); #else constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q4_0, mmq_y); int * x_qs = (int *) x_tile; float * x_df = (float *) (x_qs + txs.qs); #endif // INT8_MMA_AVAILABLE const int kbx = threadIdx.x / QI4_0; const int kqsx = threadIdx.x % QI4_0; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { int i = i0 + threadIdx.y; if (need_check) { i = min(i, i_max); } const block_q4_0 * bxi = (const block_q4_0 *) x + kbx0 + i*stride + kbx; #ifdef INT8_MMA_AVAILABLE x_qs[i*MMQ_MMA_TILE_X_K_Q4_0 + threadIdx.x] = get_int_from_uint8(bxi->qs, kqsx); #else x_qs[i*(WARP_SIZE + 1) + threadIdx.x] = get_int_from_uint8(bxi->qs, kqsx); #endif // INT8_MMA_AVAILABLE } const int blocks_per_tile_x_row = WARP_SIZE / QI4_0; const int kbxd = threadIdx.x % blocks_per_tile_x_row; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_0) { int i = i0 + threadIdx.y * QI4_0 + threadIdx.x / blocks_per_tile_x_row; if (need_check) { i = min(i, i_max); } const block_q4_0 * bxi = (const block_q4_0 *) x + kbx0 + i*stride + kbxd; #ifdef INT8_MMA_AVAILABLE x_df[i*MMQ_MMA_TILE_X_K_Q4_0 + kbxd] = bxi->d; #else x_df[i*(WARP_SIZE/QI4_0) + i/QI4_0 + kbxd] = bxi->d; #endif // INT8_MMA_AVAILABLE } } template static __device__ __forceinline__ void vec_dot_q4_0_q8_1_dp4a( const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k0) { constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q4_0, mmq_y); const int * x_qs = (const int *) x; const float * x_df = (const float *) x_qs + txs.qs; const int * y_qs = (const int *) y + 4; const half2 * y_ds = (const half2 *) y; #pragma unroll for (int j0 = 0; j0 < mmq_x; j0 += nwarps) { const int j = j0 + threadIdx.y; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) { const int i = i0 + threadIdx.x; const int kyqs = k0 % (QI8_1/2) + QI8_1 * (k0 / (QI8_1/2)); int u[2*VDR_Q4_0_Q8_1_MMQ]; #pragma unroll for (int l = 0; l < VDR_Q4_0_Q8_1_MMQ; ++l) { u[2*l+0] = y_qs[j*MMQ_TILE_Y_K + (kyqs + l) % WARP_SIZE]; u[2*l+1] = y_qs[j*MMQ_TILE_Y_K + (kyqs + l + QI4_0) % WARP_SIZE]; } sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q4_0_q8_1_impl (&x_qs[i*(WARP_SIZE + 1) + k0], u, x_df[i*(WARP_SIZE/QI4_0) + i/QI4_0 + k0/QI4_0], y_ds[j*MMQ_TILE_Y_K + (2*k0/QI8_1) % (WARP_SIZE/QI8_1)]); } } } template static __device__ __forceinline__ void vec_dot_q4_0_q8_1_mma( const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k0) { #ifdef INT8_MMA_AVAILABLE typedef mma_int_A_I16K8 mma_A; typedef mma_int_B_J8K8 mma_B; typedef mma_int_C_I16J8 mma_C; constexpr int granularity = mmq_get_granularity_device(mmq_x); constexpr int rows_per_warp = 2 * granularity; constexpr int ntx = rows_per_warp/mma_C::I; // Number of x minitiles per warp. y += (threadIdx.y % ntx) * (mma_B::J*MMQ_TILE_Y_K); const int * x_qs = (const int *) x; const float * x_df = (const float *) x_qs + WARP_SIZE; const int * y_qs = (const int *) y + 4; const half2 * y_ds = (const half2 *) y; mma_A A[ntx]; float dA[ntx][mma_C::ne/2]; const int i0 = (threadIdx.y / ntx) * (ntx*mma_A::I); #pragma unroll for (int n = 0; n < ntx; ++n) { #pragma unroll for (int l = 0; l < mma_A::ne; ++l) { const int i = i0 + n*mma_A::I + mma_A::get_i(l); const int k = k0 + mma_A::get_k(l) % QI4_0; const int shift = 4*(mma_A::get_k(l) / QI4_0); A[n].x[l] = __vsubss4((x_qs[i*MMQ_MMA_TILE_X_K_Q4_0 + k] >> shift) & 0x0F0F0F0F, 0x08080808); } #pragma unroll for (int l = 0; l < mma_C::ne/2; ++l) { const int i = i0 + n*mma_C::I + mma_C::get_i(2*l); dA[n][l] = x_df[i*MMQ_MMA_TILE_X_K_Q4_0 + k0/QI4_0]; } } #pragma unroll for (int j0 = 0; j0 < mmq_x; j0 += ntx*mma_C::J) { mma_B B; float dB[mma_C::ne/2]; B.load(y_qs + j0*MMQ_TILE_Y_K + (2*k0) % WARP_SIZE, MMQ_TILE_Y_K); #pragma unroll for (int l = 0; l < mma_C::ne/2; ++l) { const int j = j0 + mma_C::get_j(l); dB[l] = __low2float(y_ds[j*MMQ_TILE_Y_K + (2*k0/QI8_1) % (WARP_SIZE/QI8_1)]); } #pragma unroll for (int n = 0; n < ntx; ++n) { mma_C C; C.mma_K8(A[n], B); #pragma unroll for (int l = 0; l < mma_C::ne; ++l) { sum[(j0/mma_C::J + n)*mma_C::ne + l] += dA[n][l/2]*dB[l%2]*C.x[l]; } } } #else GGML_UNUSED(x); GGML_UNUSED(y); GGML_UNUSED(sum); NO_DEVICE_CODE; #endif // INT8_MMA_AVAILABLE } template static __device__ __forceinline__ void load_tiles_q4_1( const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) { #ifdef INT8_MMA_AVAILABLE int * x_qs = (int *) x_tile; half2 * x_dm = (half2 *) (x_qs + WARP_SIZE); #else constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q4_1, mmq_y); int * x_qs = (int *) x_tile; half2 * x_dm = (half2 *) (x_qs + txs.qs); #endif // INT8_MMA_AVAILABLE const int kbx = threadIdx.x / QI4_1; const int kqsx = threadIdx.x % QI4_1; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { int i = i0 + threadIdx.y; if (need_check) { i = min(i, i_max); } const block_q4_1 * bxi = (const block_q4_1 *) x + kbx0 + i*stride + kbx; #ifdef INT8_MMA_AVAILABLE x_qs[i*MMQ_MMA_TILE_X_K_Q4_1 + threadIdx.x] = get_int_from_uint8_aligned(bxi->qs, kqsx); #else x_qs[i*(WARP_SIZE + 1) + threadIdx.x] = get_int_from_uint8_aligned(bxi->qs, kqsx); #endif // INT8_MMA_AVAILABLE } const int blocks_per_tile_x_row = WARP_SIZE / QI4_1; const int kbxd = threadIdx.x % blocks_per_tile_x_row; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_1) { int i = i0 + threadIdx.y * QI4_1 + threadIdx.x / blocks_per_tile_x_row; if (need_check) { i = min(i, i_max); } const block_q4_1 * bxi = (const block_q4_1 *) x + kbx0 + i*stride + kbxd; #ifdef INT8_MMA_AVAILABLE x_dm[i*MMQ_MMA_TILE_X_K_Q4_1 + kbxd] = bxi->dm; #else x_dm[i*(WARP_SIZE/QI4_1) + i/QI4_1 + kbxd] = bxi->dm; #endif // INT8_MMA_AVAILABLE } } template static __device__ __forceinline__ void vec_dot_q4_1_q8_1_dp4a( const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k0) { constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q4_1, mmq_y); const int * x_qs = (const int *) x; const half2 * x_dm = (const half2 *) x_qs + txs.qs; const int * y_qs = (const int *) y + 4; const half2 * y_ds = (const half2 *) y; #pragma unroll for (int j0 = 0; j0 < mmq_x; j0 += nwarps) { const int j = j0 + threadIdx.y; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) { const int i = i0 + threadIdx.x; const int kyqs = k0 % (QI8_1/2) + QI8_1 * (k0 / (QI8_1/2)); int u[2*VDR_Q4_1_Q8_1_MMQ]; #pragma unroll for (int l = 0; l < VDR_Q4_1_Q8_1_MMQ; ++l) { u[2*l+0] = y_qs[j*MMQ_TILE_Y_K + (kyqs + l) % WARP_SIZE]; u[2*l+1] = y_qs[j*MMQ_TILE_Y_K + (kyqs + l + QI4_1) % WARP_SIZE]; } sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q4_1_q8_1_impl (&x_qs[i*(WARP_SIZE + 1) + k0], u, x_dm[i*(WARP_SIZE/QI4_1) + i/QI4_1 + k0/QI4_1], y_ds[j*MMQ_TILE_Y_K + (2*k0/QI8_1) % (WARP_SIZE/QI8_1)]); } } } template static __device__ __forceinline__ void vec_dot_q4_1_q8_1_mma( const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k0) { #ifdef INT8_MMA_AVAILABLE typedef mma_int_A_I16K8 mma_A; typedef mma_int_A_I16K4 mma_A_K4; typedef mma_int_B_J8K8 mma_B; typedef mma_int_C_I16J8 mma_C; constexpr int granularity = mmq_get_granularity_device(mmq_x); constexpr int rows_per_warp = 2 * granularity; constexpr int ntx = rows_per_warp/mma_C::I; // Number of x minitiles per warp. y += (threadIdx.y % ntx) * (mma_B::J*MMQ_TILE_Y_K); const int * x_qs = (const int *) x; const half2 * x_dm = (const half2 *) x_qs + WARP_SIZE; const int * y_qs = (const int *) y + 4; const half2 * y_ds = (const half2 *) y; mma_A A[ntx]; half2 dmA[ntx][mma_C::ne/2]; const int i0 = (threadIdx.y / ntx) * (ntx*mma_A::I); #pragma unroll for (int n = 0; n < ntx; ++n) { ((mma_A_K4 *) &A[n])[0].load(x_qs + (i0 + n*mma_A::I)*MMQ_MMA_TILE_X_K_Q4_1 + k0, MMQ_MMA_TILE_X_K_Q4_1); A[n].x[2] = (A[n].x[0] >> 4) & 0x0F0F0F0F; A[n].x[3] = (A[n].x[1] >> 4) & 0x0F0F0F0F; A[n].x[0] &= 0x0F0F0F0F; A[n].x[1] &= 0x0F0F0F0F; #pragma unroll for (int l = 0; l < mma_C::ne/2; ++l) { const int i = i0 + n*mma_C::I + mma_C::get_i(2*l); dmA[n][l] = x_dm[i*MMQ_MMA_TILE_X_K_Q4_1 + k0/QI4_1]; } } #pragma unroll for (int j0 = 0; j0 < mmq_x; j0 += ntx*mma_C::J) { mma_B B; half2 dsB[mma_C::ne/2]; B.load(y_qs + j0*MMQ_TILE_Y_K + (2*k0) % WARP_SIZE, MMQ_TILE_Y_K); #pragma unroll for (int l = 0; l < mma_C::ne/2; ++l) { const int j = j0 + mma_C::get_j(l); dsB[l] = y_ds[j*MMQ_TILE_Y_K + (2*k0/QI8_1) % (WARP_SIZE/QI8_1)]; } #pragma unroll for (int n = 0; n < ntx; ++n) { mma_C C; C.mma_K8(A[n], B); #pragma unroll for (int l = 0; l < mma_C::ne; ++l) { const half2 dmA_dsB = dmA[n][l/2]*dsB[l%2]; sum[(j0/mma_C::J + n)*mma_C::ne + l] += __low2float(dmA_dsB)*C.x[l] + __high2float(dmA_dsB); } } } #else GGML_UNUSED(x); GGML_UNUSED(y); GGML_UNUSED(sum); NO_DEVICE_CODE; #endif // INT8_MMA_AVAILABLE } template static __device__ __forceinline__ void load_tiles_q5_0( const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) { #ifdef INT8_MMA_AVAILABLE int * x_qs = (int *) x_tile; float * x_df = (float *) (x_qs + WARP_SIZE*2); #else constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q5_0, mmq_y); int * x_qs = (int *) x_tile; float * x_df = (float *) (x_qs + txs.qs); #endif // INT8_MMA_AVAILABLE const int kbx = threadIdx.x / QI5_0; const int kqsx = threadIdx.x % QI5_0; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { int i = i0 + threadIdx.y; if (need_check) { i = min(i, i_max); } const block_q5_0 * bxi = (const block_q5_0 *) x + kbx0 + i*stride + kbx; const int ql = get_int_from_uint8(bxi->qs, kqsx); const int qh = get_int_from_uint8(bxi->qh, 0) >> (4 * (threadIdx.x % QI5_0)); int qs0 = (ql >> 0) & 0x0F0F0F0F; qs0 |= (qh << 4) & 0x00000010; // 0 -> 4 qs0 |= (qh << 11) & 0x00001000; // 1 -> 12 qs0 |= (qh << 18) & 0x00100000; // 2 -> 20 qs0 |= (qh << 25) & 0x10000000; // 3 -> 28 qs0 = __vsubss4(qs0, 0x10101010); // subtract 16 int qs1 = (ql >> 4) & 0x0F0F0F0F; qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4 qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12 qs1 |= (qh << 2) & 0x00100000; // 18 -> 20 qs1 |= (qh << 9) & 0x10000000; // 19 -> 28 qs1 = __vsubss4(qs1, 0x10101010); // subtract 16 #ifdef INT8_MMA_AVAILABLE x_qs[i*MMQ_MMA_TILE_X_K_Q5_0 + kbx*(2*QI5_0) + kqsx + 0] = qs0; x_qs[i*MMQ_MMA_TILE_X_K_Q5_0 + kbx*(2*QI5_0) + kqsx + QI5_0] = qs1; #else x_qs[i*(2*WARP_SIZE + 1) + kbx*(2*QI5_0) + kqsx + 0] = qs0; x_qs[i*(2*WARP_SIZE + 1) + kbx*(2*QI5_0) + kqsx + QI5_0] = qs1; #endif // INT8_MMA_AVAILABLE } const int blocks_per_tile_x_row = WARP_SIZE / QI5_0; const int kbxd = threadIdx.x % blocks_per_tile_x_row; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_0) { int i = i0 + threadIdx.y * QI5_0 + threadIdx.x / blocks_per_tile_x_row; if (need_check) { i = min(i, i_max); } const block_q5_0 * bxi = (const block_q5_0 *) x + kbx0 + i*stride + kbxd; #ifdef INT8_MMA_AVAILABLE x_df[i*MMQ_MMA_TILE_X_K_Q5_0 + kbxd] = bxi->d; #else x_df[i*(WARP_SIZE/QI5_0) + i/QI5_0 + kbxd] = bxi->d; #endif // INT8_MMA_AVAILABLE } } template static __device__ __forceinline__ void vec_dot_q5_0_q8_1_dp4a( const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k0) { constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q5_0, mmq_y); const int * x_qs = (const int *) x; const float * x_df = (const float *) x_qs + txs.qs; const int * y_qs = (const int *) y + 4; const float * y_df = (const float *) y; #pragma unroll for (int j0 = 0; j0 < mmq_x; j0 += nwarps) { const int j = j0 + threadIdx.y; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) { const int i = i0 + threadIdx.x; sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q8_0_q8_1_impl (&x_qs[i*(2*WARP_SIZE + 1) + 2*k0], &y_qs[j*MMQ_TILE_Y_K + (2*k0) % WARP_SIZE], x_df[i*(WARP_SIZE/QI5_0) + i/QI5_0 + k0/QI5_0], y_df[j*MMQ_TILE_Y_K + (2*k0/QI8_1) % (WARP_SIZE/QI8_1)]); } } } template static __device__ __forceinline__ void vec_dot_q5_0_q8_1_mma( const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k0) { #ifdef INT8_MMA_AVAILABLE typedef mma_int_A_I16K8 mma_A; typedef mma_int_B_J8K8 mma_B; typedef mma_int_C_I16J8 mma_C; constexpr int granularity = mmq_get_granularity_device(mmq_x); constexpr int rows_per_warp = 2 * granularity; constexpr int ntx = rows_per_warp/mma_C::I; // Number of x minitiles per warp. y += (threadIdx.y % ntx) * (mma_B::J*MMQ_TILE_Y_K); const int * x_qs = (const int *) x; const float * x_df = (const float *) x_qs + WARP_SIZE*2; const int * y_qs = (const int *) y + 4; const float * y_df = (const float *) y; mma_A A[ntx]; float dA[ntx][mma_C::ne/2]; const int i0 = (threadIdx.y / ntx) * (ntx*mma_A::I); #pragma unroll for (int n = 0; n < ntx; ++n) { A[n].load(x_qs + (i0 + n*mma_A::I)*MMQ_MMA_TILE_X_K_Q5_0 + QR5_1*k0, MMQ_MMA_TILE_X_K_Q5_0); #pragma unroll for (int l = 0; l < mma_C::ne/2; ++l) { const int i = i0 + mma_C::get_i(2*l) + n*mma_C::I; dA[n][l] = x_df[i*MMQ_MMA_TILE_X_K_Q5_0 + k0/QI5_0]; } } #pragma unroll for (int j0 = 0; j0 < mmq_x; j0 += ntx*mma_C::J) { mma_B B; float dB[mma_C::ne/2]; B.load(y_qs + j0*MMQ_TILE_Y_K + (2*k0) % WARP_SIZE, MMQ_TILE_Y_K); #pragma unroll for (int l = 0; l < mma_C::ne/2; ++l) { const int j = j0 + mma_C::get_j(l); dB[l] = y_df[j*MMQ_TILE_Y_K + (2*k0/QI8_1) % (WARP_SIZE/QI8_1)]; } #pragma unroll for (int n = 0; n < ntx; ++n) { mma_C C; C.mma_K8(A[n], B); #pragma unroll for (int l = 0; l < mma_C::ne; ++l) { sum[(j0/mma_C::J + n)*mma_C::ne + l] += dA[n][l/2]*dB[l%2]*C.x[l]; } } } #else GGML_UNUSED(x); GGML_UNUSED(y); GGML_UNUSED(sum); NO_DEVICE_CODE; #endif // INT8_MMA_AVAILABLE } template static __device__ __forceinline__ void load_tiles_q5_1( const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) { #ifdef INT8_MMA_AVAILABLE int * x_qs = (int *) x_tile; half2 * x_dm = (half2 *) (x_qs + 2*WARP_SIZE); #else constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q5_1, mmq_y); int * x_qs = (int *) x_tile; half2 * x_dm = (half2 *) (x_qs + txs.qs); #endif // INT8_MMA_AVAILABLE const int kbx = threadIdx.x / QI5_1; const int kqsx = threadIdx.x % QI5_1; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { int i = i0 + threadIdx.y; if (need_check) { i = min(i, i_max); } const block_q5_1 * bxi = (const block_q5_1 *) x + kbx0 + i*stride + kbx; const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx); const int qh = get_int_from_uint8_aligned(bxi->qh, 0) >> (4 * (threadIdx.x % QI5_1)); int qs0 = (ql >> 0) & 0x0F0F0F0F; qs0 |= (qh << 4) & 0x00000010; // 0 -> 4 qs0 |= (qh << 11) & 0x00001000; // 1 -> 12 qs0 |= (qh << 18) & 0x00100000; // 2 -> 20 qs0 |= (qh << 25) & 0x10000000; // 3 -> 28 int qs1 = (ql >> 4) & 0x0F0F0F0F; qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4 qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12 qs1 |= (qh << 2) & 0x00100000; // 18 -> 20 qs1 |= (qh << 9) & 0x10000000; // 19 -> 28 #ifdef INT8_MMA_AVAILABLE x_qs[i*MMQ_MMA_TILE_X_K_Q5_1 + kbx*(2*QI5_1) + kqsx + 0] = qs0; x_qs[i*MMQ_MMA_TILE_X_K_Q5_1 + kbx*(2*QI5_1) + kqsx + QI5_1] = qs1; #else x_qs[i*(2*WARP_SIZE + 1) + kbx*(2*QI5_1) + kqsx + 0] = qs0; x_qs[i*(2*WARP_SIZE + 1) + kbx*(2*QI5_1) + kqsx + QI5_1] = qs1; #endif // INT8_MMA_AVAILABLE } const int blocks_per_tile_x_row = WARP_SIZE / QI5_1; const int kbxd = threadIdx.x % blocks_per_tile_x_row; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_1) { int i = i0 + threadIdx.y * QI5_1 + threadIdx.x / blocks_per_tile_x_row; if (need_check) { i = min(i, i_max); } const block_q5_1 * bxi = (const block_q5_1 *) x + kbx0 + i*stride + kbxd; #ifdef INT8_MMA_AVAILABLE x_dm[i*MMQ_MMA_TILE_X_K_Q5_1 + kbxd] = bxi->dm; #else x_dm[i*(WARP_SIZE/QI5_1) + i/QI5_1 + kbxd] = bxi->dm; #endif // INT8_MMA_AVAILABLE } } template static __device__ __forceinline__ void vec_dot_q5_1_q8_1_dp4a( const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k0) { constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q5_1, mmq_y); const int * x_qs = (const int *) x; const half2 * x_dm = (const half2 *) x_qs + txs.qs; const int * y_qs = (const int *) y + 4; const half2 * y_ds = (const half2 *) y; #pragma unroll for (int j0 = 0; j0 < mmq_x; j0 += nwarps) { const int j = j0 + threadIdx.y; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) { const int i = i0 + threadIdx.x; sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q8_1_q8_1_impl (&x_qs[i*(2*WARP_SIZE + 1) + 2*k0], &y_qs[j*MMQ_TILE_Y_K + (2*k0) % WARP_SIZE], x_dm[i*(WARP_SIZE/QI5_1) + i/QI5_1 + k0/QI5_1], y_ds[j*MMQ_TILE_Y_K + (2*k0/QI8_1) % (WARP_SIZE/QI8_1)]); } } } template static __device__ __forceinline__ void vec_dot_q5_1_q8_1_mma( const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k0) { #ifdef INT8_MMA_AVAILABLE typedef mma_int_A_I16K8 mma_A; typedef mma_int_B_J8K8 mma_B; typedef mma_int_C_I16J8 mma_C; constexpr int granularity = mmq_get_granularity_device(mmq_x); constexpr int rows_per_warp = 2 * granularity; constexpr int ntx = rows_per_warp/mma_C::I; // Number of x minitiles per warp. y += (threadIdx.y % ntx) * (mma_B::J*MMQ_TILE_Y_K); const int * x_qs = (const int *) x; const half2 * x_dm = (const half2 *) x_qs + 2*WARP_SIZE; const int * y_qs = (const int *) y + 4; const half2 * y_ds = (const half2 *) y; mma_A A[ntx]; half2 dmA[ntx][mma_C::ne/2]; const int i0 = (threadIdx.y / ntx) * (ntx*mma_A::I); #pragma unroll for (int n = 0; n < ntx; ++n) { A[n].load(x_qs + (i0 + n*mma_A::I)*MMQ_MMA_TILE_X_K_Q5_1 + QR5_1*k0, MMQ_MMA_TILE_X_K_Q5_1); #pragma unroll for (int l = 0; l < mma_C::ne/2; ++l) { const int i = i0 + mma_C::get_i(2*l) + n*mma_C::I; dmA[n][l] = x_dm[i*MMQ_MMA_TILE_X_K_Q5_1 + k0/QI5_1]; } } #pragma unroll for (int j0 = 0; j0 < mmq_x; j0 += ntx*mma_C::J) { mma_B B; half2 dsB[mma_C::ne/2]; B.load(y_qs + j0*MMQ_TILE_Y_K + (2*k0) % WARP_SIZE, MMQ_TILE_Y_K); #pragma unroll for (int l = 0; l < mma_C::ne/2; ++l) { const int j = j0 + mma_C::get_j(l); dsB[l] = y_ds[j*MMQ_TILE_Y_K + (2*k0/QI8_1) % (WARP_SIZE/QI8_1)]; } #pragma unroll for (int n = 0; n < ntx; ++n) { mma_C C; C.mma_K8(A[n], B); #pragma unroll for (int l = 0; l < mma_C::ne; ++l) { const half2 dmA_dsB = dmA[n][l/2]*dsB[l%2]; sum[(j0/mma_C::J + n)*mma_C::ne + l] += __low2float(dmA_dsB)*C.x[l] + __high2float(dmA_dsB); } } } #else GGML_UNUSED(x); GGML_UNUSED(y); GGML_UNUSED(sum); NO_DEVICE_CODE; #endif // INT8_MMA_AVAILABLE } template static __device__ __forceinline__ void load_tiles_q8_0( const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) { #ifdef INT8_MMA_AVAILABLE int * x_qs = (int *) x_tile; float * x_df = (float *) (x_tile + WARP_SIZE); #else constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q8_0, mmq_y); int * x_qs = (int *) x_tile; float * x_df = (float *) (x_qs + txs.qs); #endif // INT8_MMA_AVAILABLE const int kbx = threadIdx.x / QI8_0; const int kqsx = threadIdx.x % QI8_0; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { int i = i0 + threadIdx.y; if (need_check) { i = min(i, i_max); } const block_q8_0 * bxi = (const block_q8_0 *) x + kbx0 + i*stride + kbx; #ifdef INT8_MMA_AVAILABLE x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + threadIdx.x] = get_int_from_int8(bxi->qs, kqsx); #else x_qs[i*(WARP_SIZE + 1) + threadIdx.x] = get_int_from_int8(bxi->qs, kqsx); #endif // INT8_MMA_AVAILABLE } const int blocks_per_tile_x_row = WARP_SIZE / QI8_0; const int kbxd = threadIdx.x % blocks_per_tile_x_row; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI8_0) { int i = i0 + threadIdx.y * QI8_0 + threadIdx.x / blocks_per_tile_x_row; if (need_check) { i = min(i, i_max); } const block_q8_0 * bxi = (const block_q8_0 *) x + kbx0 + i*stride + kbxd; #ifdef INT8_MMA_AVAILABLE x_df[i*MMQ_MMA_TILE_X_K_Q8_0 + kbxd] = bxi->d; #else x_df[i*(WARP_SIZE/QI8_0) + i / QI8_0 + kbxd] = bxi->d; #endif // INT8_MMA_AVAILABLE } } template static __device__ __forceinline__ void vec_dot_q8_0_q8_1_dp4a( const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k0) { constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q8_0, mmq_y); const int * x_qs = (const int *) x; const float * x_df = (const float *) x_qs + txs.qs; const int * y_qs = (const int *) y + 4; const float * y_df = (const float *) y; #pragma unroll for (int j0 = 0; j0 < mmq_x; j0 += nwarps) { const int j = j0 + threadIdx.y; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) { const int i = i0 + threadIdx.x; sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q8_0_q8_1_impl (&x_qs[i*(WARP_SIZE + 1) + k0], &y_qs[j*MMQ_TILE_Y_K + k0], x_df[i*(WARP_SIZE/QI8_0) + i/QI8_0 + k0/QI8_0], y_df[j*MMQ_TILE_Y_K + k0/QI8_1]); } } } template static __device__ __forceinline__ void vec_dot_q8_0_q8_1_mma( const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k0) { #ifdef INT8_MMA_AVAILABLE typedef mma_int_A_I16K8 mma_A; typedef mma_int_B_J8K8 mma_B; typedef mma_int_C_I16J8 mma_C; constexpr int granularity = mmq_get_granularity_device(mmq_x); constexpr int rows_per_warp = 2 * granularity; constexpr int ntx = rows_per_warp/mma_C::I; // Number of x minitiles per warp. y += (threadIdx.y % ntx) * (mma_B::J*MMQ_TILE_Y_K); const int * x_qs = (const int *) x; const float * x_df = (const float *) x_qs + WARP_SIZE; const int * y_qs = (const int *) y + 4; const float * y_df = (const float *) y; mma_A A[ntx]; float dA[ntx][mma_C::ne/2]; const int i0 = (threadIdx.y/ntx)*rows_per_warp; #pragma unroll for (int n = 0; n < ntx; ++n) { A[n].load(x_qs + (i0 + n*mma_A::I)*MMQ_MMA_TILE_X_K_Q8_0 + k0, MMQ_MMA_TILE_X_K_Q8_0); #pragma unroll for (int l = 0; l < mma_C::ne/2; ++l) { const int i = i0 + n*mma_A::I + mma_C::get_i(2*l); dA[n][l] = x_df[i*MMQ_MMA_TILE_X_K_Q8_0 + k0/QI8_0]; } } #pragma unroll for (int j0 = 0; j0 < mmq_x; j0 += ntx*mma_C::J) { mma_B B; float dB[mma_C::ne/2]; B.load(y_qs + j0*MMQ_TILE_Y_K + k0, MMQ_TILE_Y_K); #pragma unroll for (int l = 0; l < mma_C::ne/2; ++l) { const int j = j0 + mma_C::get_j(l); dB[l] = y_df[j*MMQ_TILE_Y_K + k0/QI8_1]; } #pragma unroll for (int n = 0; n < ntx; ++n) { mma_C C; C.mma_K8(A[n], B); #pragma unroll for (int l = 0; l < mma_C::ne; ++l) { sum[(j0/mma_C::J + n)*mma_C::ne + l] += C.x[l]*dA[n][l/2]*dB[l%2]; } } } #else GGML_UNUSED(x); GGML_UNUSED(y); GGML_UNUSED(sum); NO_DEVICE_CODE; #endif // INT8_MMA_AVAILABLE } template static __device__ __forceinline__ void load_tiles_q2_K( const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) { #ifdef INT8_MMA_AVAILABLE int * x_qs = (int *) x_tile; half2 * x_dm = (half2 *) (x_qs + WARP_SIZE); #else constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q2_K, mmq_y); int * x_qs = (int *) x_tile; half2 * x_dm = (half2 *) (x_qs + txs.qs); #endif // INT8_MMA_AVAILABLE const int kbx = threadIdx.x / QI2_K; const int kqsx = threadIdx.x % QI2_K; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { int i = i0 + threadIdx.y; if (need_check) { i = min(i, i_max); } const block_q2_K * bxi = (const block_q2_K *) x + kbx0 + i*stride + kbx; const int x_ql_0 = get_int_from_uint8(bxi->qs, kqsx); #pragma unroll for (int l = 0; l < QR2_K; ++l) { const int k = kbx*QI2_K + (kqsx/8)*8 + l*2 + (kqsx % 8)/4; int x_qs_k = ((x_ql_0 >> (2*l)) & 0x03030303) << (2*(kqsx % 4)); x_qs_k |= __shfl_xor_sync(0xFFFFFFFF, x_qs_k, 1, WARP_SIZE); x_qs_k |= __shfl_xor_sync(0xFFFFFFFF, x_qs_k, 2, WARP_SIZE); if (kqsx % QR2_K != 0) { continue; } #ifdef INT8_MMA_AVAILABLE x_qs[i*MMQ_MMA_TILE_X_K_Q2_K + k] = x_qs_k; #else x_qs[i*(WARP_SIZE + 1) + k] = x_qs_k; #endif // INT8_MMA_AVAILABLE } const int sc_m = bxi->scales[kqsx]; #ifdef FAST_FP16_AVAILABLE const half2 x_dm_ik = __hmul2(bxi->dm, make_half2(sc_m & 0x0F, sc_m >> 4)); #else const float2 bxi_dmf = __half22float2(bxi->dm); const half2 x_dm_ik = make_half2(bxi_dmf.x*(sc_m & 0x0F), bxi_dmf.y*(sc_m >> 4)); #endif // FAST_FP16_AVAILABLE #ifdef INT8_MMA_AVAILABLE x_dm[i*MMQ_MMA_TILE_X_K_Q2_K + threadIdx.x] = x_dm_ik; #else x_dm[i*(WARP_SIZE + 1) + threadIdx.x] = x_dm_ik; #endif // INT8_MMA_AVAILABLE } } template static __device__ __forceinline__ void vec_dot_q2_K_q8_1_dp4a( const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k0) { constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q2_K, mmq_y); const int * x_qs = (const int *) x; const half2 * x_dm = (const half2 *) x_qs + txs.qs; const int * y_qs = (const int *) y + 4; const float * y_df = (const float *) y; #pragma unroll for (int j0 = 0; j0 < mmq_x; j0 += nwarps) { const int j = j0 + threadIdx.y; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) { const int i = i0 + threadIdx.x; sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q2_K_q8_1_impl_mmq( &x_qs[i*(WARP_SIZE + 1) + k0], &y_qs[j*MMQ_TILE_Y_K + (QR2_K*k0) % WARP_SIZE], &x_dm[i*(WARP_SIZE + 1) + k0], y_df[j*MMQ_TILE_Y_K + ((QR2_K*k0) % WARP_SIZE)/QI8_1]); } } } template static __device__ __forceinline__ void vec_dot_q2_K_q8_1_mma( const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k0) { #ifdef INT8_MMA_AVAILABLE typedef mma_int_A_I16K4 mma_A; typedef mma_int_B_J8K4 mma_B; typedef mma_int_C_I16J8 mma_C; constexpr int granularity = mmq_get_granularity_device(mmq_x); constexpr int rows_per_warp = 2 * granularity; constexpr int ntx = rows_per_warp/mma_C::I; // Number of x minitiles per warp. y += (threadIdx.y % ntx) * (mma_B::J*MMQ_TILE_Y_K); const int * x_qs = (const int *) x; const half2 * x_dm = (const half2 *) x_qs + WARP_SIZE; const int * y_qs = (const int *) y + 4; const float * y_df = (const float *) y; const int i0 = (threadIdx.y / ntx) * (ntx*mma_A::I); mma_A A[ntx][2]; float dA[ntx][mma_C::ne/2][2]; float mA[ntx][mma_C::ne/2][2]; #pragma unroll for (int n = 0; n < ntx; ++n) { #pragma unroll for (int l = 0; l < mma_A::ne; ++l) { const int i = i0 + n*mma_A::I + mma_A::get_i(l); const int shift = 2*mma_A::get_k(l); A[n][0].x[l] = (x_qs[i*MMQ_MMA_TILE_X_K_Q2_K + k0 + 0] >> shift) & 0x03030303; A[n][1].x[l] = (x_qs[i*MMQ_MMA_TILE_X_K_Q2_K + k0 + 1] >> shift) & 0x03030303; } #pragma unroll for (int l = 0; l < mma_C::ne/2; ++l) { const int i = i0 + n*mma_C::I + mma_C::get_i(2*l); #pragma unroll for (int kdm = 0; kdm < 2; ++kdm) { const float2 dm = __half22float2(x_dm[i*MMQ_MMA_TILE_X_K_Q2_K + k0 + kdm]); dA[n][l][kdm] = dm.x; mA[n][l][kdm] = dm.y; } } } #pragma unroll for (int j0 = 0; j0 < mmq_x; j0 += ntx*mma_C::J) { mma_B B[2]; float dB[mma_C::ne/2]; B[0].load(y_qs + j0*MMQ_TILE_Y_K + (QR2_K*k0 + 0) % WARP_SIZE, MMQ_TILE_Y_K); B[1].load(y_qs + j0*MMQ_TILE_Y_K + (QR2_K*k0 + mma_B::K) % WARP_SIZE, MMQ_TILE_Y_K); #pragma unroll for (int l = 0; l < mma_C::ne/2; ++l) { const int j = j0 + mma_C::get_j(l); dB[l] = y_df[j*MMQ_TILE_Y_K + ((4*k0)/QI8_1) % (WARP_SIZE/QI8_1)]; } mma_C Cm[2]; mma_A A1; A1.x[0] = 0x01010101; A1.x[1] = 0x01010101; Cm[0].mma_K4(A1, B[0]); Cm[1].mma_K4(A1, B[1]); #pragma unroll for (int n = 0; n < ntx; ++n) { mma_C Cd[2]; Cd[0].mma_K4(A[n][0], B[0]); Cd[1].mma_K4(A[n][1], B[1]); #pragma unroll for (int l = 0; l < mma_C::ne; ++l) { sum[(j0/mma_C::J + n)*mma_C::ne + l] += ( Cd[0].x[l]*dA[n][l/2][0] + Cd[1].x[l]*dA[n][l/2][1] - Cm[0].x[l]*mA[n][l/2][0] - Cm[1].x[l]*mA[n][l/2][1])*dB[l%2]; } } } #else GGML_UNUSED(x); GGML_UNUSED(y); GGML_UNUSED(sum); NO_DEVICE_CODE; #endif // INT8_MMA_AVAILABLE } template static __device__ __forceinline__ void load_tiles_q3_K( const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) { #ifdef INT8_MMA_AVAILABLE int * x_qs = (int *) x_tile; float * x_df = (float *) (x_qs + WARP_SIZE*2); int * x_sc = (int *) (x_df + WARP_SIZE/QI3_K); #else constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q3_K, mmq_y); int * x_qs = (int *) x_tile; float * x_df = (float *) (x_qs + txs.qs); int * x_sc = (int *) (x_df + txs.dm); #endif // INT8_MMA_AVAILABLE const int kbx = threadIdx.x / QI3_K; const int kqsx = threadIdx.x % QI3_K; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { int i = i0 + threadIdx.y; if (need_check) { i = min(i, i_max); } const block_q3_K * bxi = (const block_q3_K *) x + kbx0 + i*stride + kbx; const int x_ql_0 = get_int_from_uint8(bxi->qs, kqsx); const int x_qh_0 = get_int_from_uint8(bxi->hmask, kqsx % (QI3_K/2)) >> (4 * (kqsx / (QI3_K/2))); #pragma unroll for (int l = 0; l < QR3_K; ++l) { const int k = kbx*(QR3_K*QI3_K) + (kqsx/8)*32 + l*8 + kqsx % 8; const int x_ql_k = (x_ql_0 >> (2*l)) & 0x03030303; const int x_qh_k = ((x_qh_0 >> l) << 2) & 0x04040404; int x_qs_k = (x_ql_k | x_qh_k) << (4*(k%2)); x_qs_k |= __shfl_xor_sync(0xFFFFFFFF, x_qs_k, 1, WARP_SIZE); if (kqsx % 2 != 0) { continue; } #ifdef INT8_MMA_AVAILABLE x_qs[i*MMQ_MMA_TILE_X_K_Q3_K + k/2] = x_qs_k; #else x_qs[i*(2*WARP_SIZE + 1) + k/2] = x_qs_k; #endif // INT8_MMA_AVAILABLE } } const int blocks_per_tile_x_row = WARP_SIZE / QI3_K; const int kbxd = threadIdx.x % blocks_per_tile_x_row; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI3_K) { int i = (i0 + threadIdx.y * QI3_K + threadIdx.x / blocks_per_tile_x_row) % mmq_y; if (need_check) { i = min(i, i_max); } const block_q3_K * bxi = (const block_q3_K *) x + kbx0 + i*stride + kbxd; #ifdef INT8_MMA_AVAILABLE x_df[i*MMQ_MMA_TILE_X_K_Q3_K + kbxd] = bxi->d; #else x_df[i*(WARP_SIZE/QI3_K) + i/QI3_K + kbxd] = bxi->d; #endif // INT8_MMA_AVAILABLE } #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) { int i = i0 + threadIdx.y * 4 + threadIdx.x / (WARP_SIZE/4); if (need_check) { i = min(i, i_max); } const block_q3_K * bxi = (const block_q3_K *) x + kbx0 + i*stride + (threadIdx.x % (WARP_SIZE/4)) / (QI3_K/4); const int ksc = threadIdx.x % (QI3_K/4); const int ksc_low = ksc % (QI3_K/8); const int shift_low = 4 * (ksc / (QI3_K/8)); const int sc_low = (get_int_from_uint8(bxi->scales, ksc_low) >> shift_low) & 0x0F0F0F0F; const int ksc_high = QI3_K/8; const int shift_high = 2 * ksc; const int sc_high = ((get_int_from_uint8(bxi->scales, ksc_high) >> shift_high) << 4) & 0x30303030; const int sc = __vsubss4(sc_low | sc_high, 0x20202020); #ifdef INT8_MMA_AVAILABLE x_sc[i*MMQ_MMA_TILE_X_K_Q3_K + threadIdx.x % (WARP_SIZE/4)] = sc; #else x_sc[i*(WARP_SIZE/4) + i/4 + threadIdx.x % (WARP_SIZE/4)] = sc; #endif // INT8_MMA_AVAILABLE } } template static __device__ __forceinline__ void vec_dot_q3_K_q8_1_dp4a( const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k0) { constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q3_K, mmq_y); const int * x_qs = (const int *) x; const float * x_df = (const float *) x_qs + txs.qs; const int * x_sc = (const int *) x_df + txs.dm; const int * y_qs = (const int *) y + 4; const float * y_df = (const float *) y; #pragma unroll for (int j0 = 0; j0 < mmq_x; j0 += nwarps) { const int j = j0 + threadIdx.y; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) { const int i = i0 + threadIdx.x; const int kbx = k0 / QI3_K; const int ky = (k0 % QI3_K) * QR3_K; const int8_t * scales = ((const int8_t *) (x_sc + i * (WARP_SIZE/4) + i/4 + kbx*4)) + ky/4; sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q3_K_q8_1_impl_mmq( &x_qs[i*(2*WARP_SIZE + 1) + 2*k0], &y_qs[j*MMQ_TILE_Y_K + (k0*QR3_K) % WARP_SIZE], scales, x_df[i*(WARP_SIZE/QI3_K) + i/QI3_K + kbx], y_df[j*MMQ_TILE_Y_K + ((k0*QR3_K) % WARP_SIZE)/QI8_1]); } } } template static __device__ __forceinline__ void vec_dot_q3_K_q8_1_mma( const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k0) { #ifdef INT8_MMA_AVAILABLE typedef mma_int_A_I16K4 mma_A; typedef mma_int_B_J8K4 mma_B; typedef mma_int_C_I16J8 mma_C; constexpr int granularity = mmq_get_granularity_device(mmq_x); constexpr int rows_per_warp = 2 * granularity; constexpr int ntx = rows_per_warp/mma_C::I; // Number of x minitiles per warp. y += (threadIdx.y % ntx) * (mma_B::J*MMQ_TILE_Y_K); const int * x_qs = (const int *) x; const float * x_df = (const float *) x_qs + WARP_SIZE*2; const int * x_sc = (const int *) x_df + WARP_SIZE/QI3_K; const int * y_qs = (const int *) y + 4; const float * y_df = (const float *) y; const int i0 = (threadIdx.y / ntx) * (ntx*mma_A::I); mma_A A[ntx][2]; int scA[ntx][mma_C::ne/2][2]; float dA[ntx][mma_C::ne/2]; #pragma unroll for (int n = 0; n < ntx; ++n) { #pragma unroll for (int l = 0; l < mma_A::ne; ++l) { const int i = i0 + n*mma_A::I + mma_A::get_i(l); const int k = QR3_K*k0 + mma_A::get_k(l); A[n][0].x[l] = (x_qs[i*MMQ_MMA_TILE_X_K_Q3_K + k/2 + 0] >> (4*(k%2))) & 0x0F0F0F0F; A[n][1].x[l] = (x_qs[i*MMQ_MMA_TILE_X_K_Q3_K + k/2 + mma_A::K/2] >> (4*(k%2))) & 0x0F0F0F0F; A[n][0].x[l] = __vsubss4(A[n][0].x[l], 0x04040404); A[n][1].x[l] = __vsubss4(A[n][1].x[l], 0x04040404); } #pragma unroll for (int l = 0; l < mma_C::ne/2; ++l) { const int i = i0 + n*mma_C::I + mma_C::get_i(2*l); const int kbx = k0 / QI3_K; const int ky = (k0 % QI3_K) * QR3_K; const int8_t * sc = ((const int8_t *) (x_sc + i*MMQ_MMA_TILE_X_K_Q3_K + kbx*4)) + ky/4; scA[n][l][0] = sc[0]; scA[n][l][1] = sc[1]; } #pragma unroll for (int l = 0; l < mma_C::ne/2; ++l) { const int i = i0 + n*mma_C::I + mma_C::get_i(2*l); dA[n][l] = x_df[i*MMQ_MMA_TILE_X_K_Q3_K + k0/QI3_K]; } } #pragma unroll for (int j0 = 0; j0 < mmq_x; j0 += ntx*mma_C::J) { mma_B B[2]; float dB[mma_C::ne/2]; B[0].load(y_qs + j0*MMQ_TILE_Y_K + (QR3_K*k0 + 0) % WARP_SIZE, MMQ_TILE_Y_K); B[1].load(y_qs + j0*MMQ_TILE_Y_K + (QR3_K*k0 + mma_B::K) % WARP_SIZE, MMQ_TILE_Y_K); #pragma unroll for (int l = 0; l < mma_C::ne/2; ++l) { const int j = j0 + mma_C::get_j(l); dB[l] = y_df[j*MMQ_TILE_Y_K + ((4*k0)/QI8_1) % (WARP_SIZE/QI8_1)]; } #pragma unroll for (int n = 0; n < ntx; ++n) { mma_C C[2]; C[0].mma_K4(A[n][0], B[0]); C[1].mma_K4(A[n][1], B[1]); #pragma unroll for (int l = 0; l < mma_C::ne; ++l) { sum[(j0/mma_C::J + n)*mma_C::ne + l] += (C[0].x[l]*scA[n][l/2][0] + C[1].x[l]*scA[n][l/2][1])*dA[n][l/2]*dB[l%2]; } } } #else GGML_UNUSED(x); GGML_UNUSED(y); GGML_UNUSED(sum); NO_DEVICE_CODE; #endif // INT8_MMA_AVAILABLE } template static __device__ __forceinline__ void load_tiles_q4_K( const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) { #ifdef INT8_MMA_AVAILABLE int * x_qs = (int *) x_tile; half2 * x_dm = (half2 *) (x_qs + WARP_SIZE); int * x_sc = (int *) (x_dm + WARP_SIZE/QI4_K); #else constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q4_K, mmq_y); int * x_qs = (int *) x_tile; half2 * x_dm = (half2 *) (x_qs + txs.qs); int * x_sc = (int *) (x_dm + txs.dm); #endif // INT8_MMA_AVAILABLE const int kbx = 0; // threadIdx.x / QI4_K const int kqsx = threadIdx.x; // threadIdx.x % QI4_K #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { int i = i0 + threadIdx.y; if (need_check) { i = min(i, i_max); } const block_q4_K * bxi = (const block_q4_K *) x + kbx0 + i*stride + kbx; #ifdef INT8_MMA_AVAILABLE x_qs[i*MMQ_MMA_TILE_X_K_Q4_K + threadIdx.x] = get_int_from_uint8_aligned(bxi->qs, kqsx); #else x_qs[i*(WARP_SIZE + 1) + threadIdx.x] = get_int_from_uint8_aligned(bxi->qs, kqsx); #endif // INT8_MMA_AVAILABLE } const int blocks_per_tile_x_row = WARP_SIZE / QI4_K; // == 1 if QK_K == 256 const int kbxd = threadIdx.x % blocks_per_tile_x_row; // == 0 if QK_K == 256 #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_K) { int i = (i0 + threadIdx.y * QI4_K + threadIdx.x / blocks_per_tile_x_row) % mmq_y; if (need_check) { i = min(i, i_max); } const block_q4_K * bxi = (const block_q4_K *) x + kbx0 + i*stride + kbxd; #ifdef INT8_MMA_AVAILABLE x_dm[i*MMQ_MMA_TILE_X_K_Q4_K + kbxd] = bxi->dm; #else x_dm[i*(WARP_SIZE/QI4_K) + i/QI4_K + kbxd] = bxi->dm; #endif // INT8_MMA_AVAILABLE } #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) { int i = (i0 + threadIdx.y * 8 + threadIdx.x / (WARP_SIZE/8)) % mmq_y; if (need_check) { i = min(i, i_max); } const block_q4_K * bxi = (const block_q4_K *) x + kbx0 + i*stride + (threadIdx.x % (WARP_SIZE/8)) / (QI4_K/8); const int * scales = (const int *) bxi->scales; const int ksc = threadIdx.x % (WARP_SIZE/8); // scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8 int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits scales8 |= (scales[ksc/2] >> (2 * (ksc % 2))) & 0x30303030; // upper 2 bits #ifdef INT8_MMA_AVAILABLE x_sc[i*MMQ_MMA_TILE_X_K_Q4_K + ksc] = scales8; #else x_sc[i*(WARP_SIZE/8) + i/8 + ksc] = scales8; #endif // INT8_MMA_AVAILABLE } } template static __device__ __forceinline__ void vec_dot_q4_K_q8_1_dp4a( const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k0) { constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q4_K, mmq_y); const int * x_qs = (const int *) x; const half2 * x_dm = (const half2 *) x_qs + txs.qs; const int * x_sc = (const int *) x_dm + txs.dm; const int * y_qs = (const int *) y + 4; const half2 * y_ds = (const half2 *) y; #pragma unroll for (int j0 = 0; j0 < mmq_x; j0 += nwarps) { const int j = j0 + threadIdx.y; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) { const int i = i0 + threadIdx.x; const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k0/16]) + 2*((k0 % 16) / 8); sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q4_K_q8_1_impl_mmq( &x_qs[i*(WARP_SIZE + 1) + k0], &y_qs[j*MMQ_TILE_Y_K + (QR4_K*k0) % WARP_SIZE], sc, sc+8, x_dm[i*(WARP_SIZE/QI4_K) + i/QI4_K], &y_ds[j*MMQ_TILE_Y_K + ((QR4_K*k0) % WARP_SIZE)/QI8_1]); } } } template static __device__ __forceinline__ void vec_dot_q4_K_q8_1_mma( const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k0) { #ifdef INT8_MMA_AVAILABLE typedef mma_int_A_I16K8 mma_A; typedef mma_int_B_J8K8 mma_B; typedef mma_int_C_I16J8 mma_C; constexpr int granularity = mmq_get_granularity_device(mmq_x); constexpr int rows_per_warp = 2 * granularity; constexpr int ntx = rows_per_warp/mma_C::I; // Number of x minitiles per warp. y += (threadIdx.y % ntx) * (mma_B::J*MMQ_TILE_Y_K); const int * x_qs = (const int *) x; const half2 * x_dm = (const half2 *) x_qs + WARP_SIZE; const int * x_sc = (const int *) x_dm + WARP_SIZE/QI4_K; const int * y_qs = (const int *) y + 4; const half2 * y_ds = (const half2 *) y; const int i0 = (threadIdx.y / ntx) * (ntx*mma_A::I); mma_A A[ntx][2]; int scA[ntx][mma_C::ne/2][2]; int mA[ntx][mma_C::ne/2][2]; half2 dmA[ntx][mma_C::ne/2]; #pragma unroll for (int n = 0; n < ntx; ++n) { #pragma unroll for (int kvdr = 0; kvdr < VDR_Q4_K_Q8_1_MMQ; kvdr += 8) { A[n][kvdr/4 + 0].load(x_qs + (i0 + n*mma_A::I)*MMQ_MMA_TILE_X_K_Q4_K + k0, MMQ_MMA_TILE_X_K_Q4_K); #pragma unroll for (int l = 0; l < mma_A::ne; ++l) { A[n][kvdr/4 + 1].x[l] = (A[n][kvdr/4 + 0].x[l] >> 4) & 0x0F0F0F0F; A[n][kvdr/4 + 0].x[l] &= 0x0F0F0F0F; } } #pragma unroll for (int kvdr = 0; kvdr < VDR_Q4_K_Q8_1_MMQ; kvdr += 4) { #pragma unroll for (int l = 0; l < mma_C::ne/2; ++l) { const int i = i0 + n*mma_A::I + mma_C::get_i(2*l); const uint8_t * sc = ((const uint8_t *) &x_sc[i*MMQ_MMA_TILE_X_K_Q4_K + k0/16]) + 2 * ((k0 % 16) / 8); const uint8_t * m = sc + 8; scA[n][l][kvdr/4] = sc[kvdr/4]; mA[n][l][kvdr/4] = m[kvdr/4]; } } #pragma unroll for (int l = 0; l < mma_C::ne/2; ++l) { const int i = i0 + n*mma_A::I + mma_C::get_i(2*l); dmA[n][l] = x_dm[i*MMQ_MMA_TILE_X_K_Q4_K + k0/QI4_K]; } } #pragma unroll for (int j0 = 0; j0 < mmq_x; j0 += ntx*mma_C::J) { float tmpd[ntx][mma_C::ne] = {{0.0f}}; float tmpm[ntx][mma_C::ne] = {{0.0f}}; #pragma unroll for (int kvdr = 0; kvdr < VDR_Q4_K_Q8_1_MMQ; kvdr += 4) { mma_B B; half2 dsB[mma_C::ne/2]; B.load(y_qs + j0*MMQ_TILE_Y_K + (2*k0 + 2*kvdr) % WARP_SIZE, MMQ_TILE_Y_K); #pragma unroll for (int l = 0; l < mma_C::ne/2; ++l) { const int j = j0 + mma_C::get_j(l); dsB[l] = y_ds[j*MMQ_TILE_Y_K + ((2*k0 + 2*kvdr)/QI8_1) % (WARP_SIZE/QI8_1)]; } #pragma unroll for (int n = 0; n < ntx; ++n) { mma_C C; C.mma_K8(A[n][kvdr/4], B); #pragma unroll for (int l = 0; l < mma_C::ne; ++l) { tmpd[n][l] += (C.x[l]*scA[n][l/2][kvdr/4]) * __low2float(dsB[l%2]); tmpm[n][l] += mA[n][l/2][kvdr/4] * __high2float(dsB[l%2]); } } } #pragma unroll for (int n = 0; n < ntx; ++n) { #pragma unroll for (int l = 0; l < mma_C::ne; ++l) { sum[(j0/mma_C::J + n)*mma_C::ne + l] += __low2float(dmA[n][l/2])*tmpd[n][l] - __high2float(dmA[n][l/2])*tmpm[n][l]; } } } #else GGML_UNUSED(x); GGML_UNUSED(y); GGML_UNUSED(sum); NO_DEVICE_CODE; #endif // INT8_MMA_AVAILABLE } template static __device__ __forceinline__ void load_tiles_q5_K( const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) { #ifdef INT8_MMA_AVAILABLE int * x_qs = (int *) x_tile; half2 * x_dm = (half2 *) (x_qs + WARP_SIZE*2); int * x_sc = (int *) (x_dm + WARP_SIZE/QI5_K); #else constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q5_K, mmq_y); int * x_qs = (int *) x_tile; half2 * x_dm = (half2 *) (x_qs + txs.qs); int * x_sc = (int *) (x_dm + txs.dm); #endif // INT8_MMA_AVAILABLE const int kbx = 0; // threadIdx.x / QI5_K const int kqsx = threadIdx.x; // threadIdx.x % QI5_K #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { int i = i0 + threadIdx.y; if (need_check) { i = min(i, i_max); } const block_q5_K * bxi = (const block_q5_K *) x + kbx0 + i*stride + kbx; const int ky = QR5_K*kqsx; const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx); const int ql0 = (ql >> 0) & 0x0F0F0F0F; const int ql1 = (ql >> 4) & 0x0F0F0F0F; const int qh = get_int_from_uint8_aligned(bxi->qh, kqsx % (QI5_K/4)); const int qh0 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 0)) << 4) & 0x10101010; const int qh1 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 1)) << 4) & 0x10101010; const int kq0 = ky - ky % (QI5_K/2) + threadIdx.x % (QI5_K/4) + 0; const int kq1 = ky - ky % (QI5_K/2) + threadIdx.x % (QI5_K/4) + (QI5_K/4); #ifdef INT8_MMA_AVAILABLE x_qs[i*MMQ_MMA_TILE_X_K_Q5_K + kq0] = ql0 | qh0; x_qs[i*MMQ_MMA_TILE_X_K_Q5_K + kq1] = ql1 | qh1; #else x_qs[i*(2*WARP_SIZE + 1) + kq0] = ql0 | qh0; x_qs[i*(2*WARP_SIZE + 1) + kq1] = ql1 | qh1; #endif // INT8_MMA_AVAILABLE } const int blocks_per_tile_x_row = WARP_SIZE / QI5_K; // == 1 if QK_K == 256 const int kbxd = threadIdx.x % blocks_per_tile_x_row; // == 0 if QK_K == 256 #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_K) { int i = (i0 + threadIdx.y * QI5_K + threadIdx.x / blocks_per_tile_x_row) % mmq_y; if (need_check) { i = min(i, i_max); } const block_q5_K * bxi = (const block_q5_K *) x + kbx0 + i*stride + kbxd; #ifdef INT8_MMA_AVAILABLE x_dm[i*MMQ_MMA_TILE_X_K_Q5_K + kbxd] = bxi->dm; #else x_dm[i*(WARP_SIZE/QI5_K) + i/QI5_K + kbxd] = bxi->dm; #endif // INT8_MMA_AVAILABLE } #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) { int i = (i0 + threadIdx.y * 8 + threadIdx.x / (WARP_SIZE/8)) % mmq_y; if (need_check) { i = min(i, i_max); } const block_q5_K * bxi = (const block_q5_K *) x + kbx0 + i*stride + (threadIdx.x % (WARP_SIZE/8)) / (QI5_K/8); const int * scales = (const int *) bxi->scales; const int ksc = threadIdx.x % (WARP_SIZE/8); // scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8 int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits scales8 |= (scales[ksc/2] >> (2 * (ksc % 2))) & 0x30303030; // upper 2 bits #ifdef INT8_MMA_AVAILABLE x_sc[i*MMQ_MMA_TILE_X_K_Q5_K + ksc] = scales8; #else x_sc[i*(WARP_SIZE/8) + i/8 + ksc] = scales8; #endif // INT8_MMA_AVAILABLE } } template static __device__ __forceinline__ void vec_dot_q5_K_q8_1_dp4a( const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k0) { constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q5_K, mmq_y); const int * x_qs = (const int *) x; const half2 * x_dm = (const half2 *) x_qs + txs.qs; const int * x_sc = (const int *) x_dm + txs.dm; const int * y_qs = (const int *) y + 4; const half2 * y_ds = (const half2 *) y; #pragma unroll for (int j0 = 0; j0 < mmq_x; j0 += nwarps) { const int j = j0 + threadIdx.y; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) { const int i = i0 + threadIdx.x; const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k0/16]) + 2 * ((k0 % 16) / 8); sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q5_K_q8_1_impl_mmq( &x_qs[i*(QR5_K*WARP_SIZE + 1) + QR5_K*k0], &y_qs[j*MMQ_TILE_Y_K + (QR5_K*k0) % WARP_SIZE], sc, sc+8, x_dm[i*(WARP_SIZE/QI5_K) + i/QI5_K], &y_ds[j*MMQ_TILE_Y_K + ((QR5_K*k0) % WARP_SIZE)/QI8_1]); } } } template static __device__ __forceinline__ void vec_dot_q5_K_q8_1_mma( const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k0) { #ifdef INT8_MMA_AVAILABLE typedef mma_int_A_I16K8 mma_A; typedef mma_int_B_J8K8 mma_B; typedef mma_int_C_I16J8 mma_C; constexpr int granularity = mmq_get_granularity_device(mmq_x); constexpr int rows_per_warp = 2 * granularity; constexpr int ntx = rows_per_warp/mma_C::I; // Number of x minitiles per warp. y += (threadIdx.y % ntx) * (mma_B::J*MMQ_TILE_Y_K); const int * x_qs = (const int *) x; const half2 * x_dm = (const half2 *) x_qs + WARP_SIZE*2; const int * x_sc = (const int *) x_dm + WARP_SIZE/QI5_K; const int * y_qs = (const int *) y + 4; const half2 * y_ds = (const half2 *) y; const int i0 = (threadIdx.y / ntx) * (ntx*mma_A::I); mma_A A[ntx][2]; int scA[ntx][mma_C::ne/2][2]; int mA[ntx][mma_C::ne/2][2]; half2 dmA[ntx][mma_C::ne/2]; #pragma unroll for (int n = 0; n < ntx; ++n) { #pragma unroll for (int kvdr = 0; kvdr < VDR_Q5_K_Q8_1_MMQ; kvdr += 4) { A[n][kvdr/4].load(x_qs + (i0 + n*mma_A::I)*MMQ_MMA_TILE_X_K_Q5_K + (QR5_K*k0 + QR5_K*kvdr), MMQ_MMA_TILE_X_K_Q5_K); #pragma unroll for (int l = 0; l < mma_C::ne/2; ++l) { const int i = i0 + n*mma_C::I + mma_C::get_i(2*l); const uint8_t * sc = ((const uint8_t *) &x_sc[i*MMQ_MMA_TILE_X_K_Q5_K + k0/16]) + 2 * ((k0 % 16) / 8); const uint8_t * m = sc + 8; scA[n][l][kvdr/4] = sc[kvdr/4]; mA[n][l][kvdr/4] = m[kvdr/4]; } } #pragma unroll for (int l = 0; l < mma_C::ne/2; ++l) { const int i = i0 + n*mma_C::I + mma_C::get_i(2*l); dmA[n][l] = x_dm[i*MMQ_MMA_TILE_X_K_Q5_K + k0/QI5_K]; } } #pragma unroll for (int j0 = 0; j0 < mmq_x; j0 += ntx*mma_C::J) { float tmpd[ntx][mma_C::ne] = {{0.0f}}; float tmpm[ntx][mma_C::ne] = {{0.0f}}; #pragma unroll for (int kvdr = 0; kvdr < VDR_Q5_K_Q8_1_MMQ; kvdr += 4) { mma_B B; half2 dsB[mma_C::ne/2]; B.load(y_qs + j0*MMQ_TILE_Y_K + (2*k0 + 2*kvdr) % WARP_SIZE, MMQ_TILE_Y_K); #pragma unroll for (int l = 0; l < mma_C::ne/2; ++l) { const int j = j0 + mma_C::get_j(l); dsB[l] = y_ds[j*MMQ_TILE_Y_K + ((2*k0 + 2*kvdr)/QI8_1) % (WARP_SIZE/QI8_1)]; } #pragma unroll for (int n = 0; n < ntx; ++n) { mma_C C; C.mma_K8(A[n][kvdr/4], B); #pragma unroll for (int l = 0; l < mma_C::ne; ++l) { tmpd[n][l] += (C.x[l]*scA[n][l/2][kvdr/4]) * __low2float(dsB[l%2]); tmpm[n][l] += mA[n][l/2][kvdr/4] * __high2float(dsB[l%2]); } } } #pragma unroll for (int n = 0; n < ntx; ++n) { #pragma unroll for (int l = 0; l < mma_C::ne; ++l) { sum[(j0/mma_C::J + n)*mma_C::ne + l] += __low2float(dmA[n][l/2])*tmpd[n][l] - __high2float(dmA[n][l/2])*tmpm[n][l]; } } } #else GGML_UNUSED(x); GGML_UNUSED(y); GGML_UNUSED(sum); NO_DEVICE_CODE; #endif // INT8_MMA_AVAILABLE } template static __device__ __forceinline__ void load_tiles_q6_K( const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) { #ifdef INT8_MMA_AVAILABLE int * x_qs = (int *) x_tile; float * x_df = (float *) (x_qs + WARP_SIZE*2); int * x_sc = (int *) (x_df + WARP_SIZE/QI6_K); #else constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q6_K, mmq_y); int * x_qs = (int *) x_tile; float * x_df = (float *) (x_qs + txs.qs); int * x_sc = (int *) (x_df + txs.dm); #endif // INT8_MMA_AVAILABLE const int kbx = 0; // threadIdx.x / QI6_K const int kqsx = threadIdx.x; // threadIdx.x % QI6_K #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { int i = i0 + threadIdx.y; if (need_check) { i = min(i, i_max); } const block_q6_K * bxi = (const block_q6_K *) x + kbx0 + i*stride + kbx; const int ky = QR6_K*kqsx; const int ql = get_int_from_uint8(bxi->ql, kqsx); const int ql0 = (ql >> 0) & 0x0F0F0F0F; const int ql1 = (ql >> 4) & 0x0F0F0F0F; const int qh = get_int_from_uint8(bxi->qh, (QI6_K/4) * (kqsx / (QI6_K/2)) + kqsx % (QI6_K/4)); const int qh0 = ((qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4)))) << 4) & 0x30303030; const int qh1 = (qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4)))) & 0x30303030; const int kq0 = ky - ky % QI6_K + threadIdx.x % (QI6_K/2) + 0; const int kq1 = ky - ky % QI6_K + threadIdx.x % (QI6_K/2) + (QI6_K/2); #ifdef INT8_MMA_AVAILABLE x_qs[i*MMQ_MMA_TILE_X_K_Q6_K + kq0] = __vsubss4(ql0 | qh0, 0x20202020); x_qs[i*MMQ_MMA_TILE_X_K_Q6_K + kq1] = __vsubss4(ql1 | qh1, 0x20202020); #else x_qs[i*(2*WARP_SIZE + 1) + kq0] = __vsubss4(ql0 | qh0, 0x20202020); x_qs[i*(2*WARP_SIZE + 1) + kq1] = __vsubss4(ql1 | qh1, 0x20202020); #endif // INT8_MMA_AVAILABLE } const int blocks_per_tile_x_row = WARP_SIZE / QI6_K; // == 1 if QK_K == 256 const int kbxd = threadIdx.x % blocks_per_tile_x_row; // == 0 if QK_K == 256 #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI6_K) { int i = (i0 + threadIdx.y * QI6_K + threadIdx.x / blocks_per_tile_x_row) % mmq_y; if (need_check) { i = min(i, i_max); } const block_q6_K * bxi = (const block_q6_K *) x + kbx0 + i*stride + kbxd; #ifdef INT8_MMA_AVAILABLE x_df[i*MMQ_MMA_TILE_X_K_Q6_K + kbxd] = bxi->d; #else x_df[i*(WARP_SIZE/QI6_K) + i/QI6_K + kbxd] = bxi->d; #endif // INT8_MMA_AVAILABLE } #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) { int i = (i0 + threadIdx.y * 8 + threadIdx.x / (WARP_SIZE/8)) % mmq_y; if (need_check) { i = min(i, i_max); } const block_q6_K * bxi = (const block_q6_K *) x + kbx0 + i*stride + (threadIdx.x % (WARP_SIZE/8)) / 4; #ifdef INT8_MMA_AVAILABLE x_sc[i*MMQ_MMA_TILE_X_K_Q6_K + threadIdx.x % (WARP_SIZE/8)] = get_int_from_int8(bxi->scales, threadIdx.x % (QI6_K/8)); #else x_sc[i*(WARP_SIZE/8) + i/8 + threadIdx.x % (WARP_SIZE/8)] = get_int_from_int8(bxi->scales, threadIdx.x % (QI6_K/8)); #endif // INT8_MMA_AVAILABLE } } template static __device__ __forceinline__ void vec_dot_q6_K_q8_1_dp4a( const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k0) { constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q6_K, mmq_y); const int * x_qs = (const int *) x; const float * x_df = (const float *) x_qs + txs.qs; const int * x_sc = (const int *) x_df + txs.dm; const int * y_qs = (const int *) y + 4; const float * y_df = (const float *) y; #pragma unroll for (int j0 = 0; j0 < mmq_x; j0 += nwarps) { const int j = j0 + threadIdx.y; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) { const int i = i0 + threadIdx.x; const int8_t * sc = ((const int8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k0/8]); sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q6_K_q8_1_impl_mmq( &x_qs[i*(QR6_K*WARP_SIZE + 1) + QR6_K*k0], &y_qs[j*MMQ_TILE_Y_K + (QR6_K*k0) % WARP_SIZE], sc, x_df[i*(WARP_SIZE/QI6_K) + i/QI6_K], &y_df[j*MMQ_TILE_Y_K + ((QR6_K*k0) % WARP_SIZE)/QI8_1]); } } } template static __device__ __forceinline__ void vec_dot_q6_K_q8_1_mma( const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k0) { #ifdef INT8_MMA_AVAILABLE typedef mma_int_A_I16K4 mma_A; typedef mma_int_B_J8K4 mma_B; typedef mma_int_C_I16J8 mma_C; constexpr int granularity = mmq_get_granularity_device(mmq_x); constexpr int rows_per_warp = 2 * granularity; constexpr int ntx = rows_per_warp/mma_C::I; // Number of x minitiles per warp. y += (threadIdx.y % ntx) * (mma_B::J*MMQ_TILE_Y_K); const int * x_qs = (const int *) x; const float * x_df = (const float *) x_qs + WARP_SIZE*2; const int * x_sc = (const int *) x_df + WARP_SIZE/QI6_K; const int * y_qs = (const int *) y + 4; const float * y_df = (const float *) y; const int i0 = (threadIdx.y / ntx) * (ntx*mma_A::I); mma_A A[ntx][4]; int scA[ntx][mma_C::ne/2][4]; float dA[ntx][mma_C::ne/2]; #pragma unroll for (int n = 0; n < ntx; ++n) { #pragma unroll for (int kvdr = 0; kvdr < VDR_Q6_K_Q8_1_MMQ; kvdr += 4) { A[n][kvdr/2 + 0].load(x_qs + (i0 + n*mma_A::I)*MMQ_MMA_TILE_X_K_Q6_K + (QR6_K*k0 + QR6_K*kvdr + 0), MMQ_MMA_TILE_X_K_Q6_K); A[n][kvdr/2 + 1].load(x_qs + (i0 + n*mma_A::I)*MMQ_MMA_TILE_X_K_Q6_K + (QR6_K*k0 + QR6_K*kvdr + mma_A::K), MMQ_MMA_TILE_X_K_Q6_K); #pragma unroll for (int l = 0; l < mma_C::ne/2; ++l) { const int i = i0 + n*mma_C::I + mma_C::get_i(2*l); const int8_t * sc = ((const int8_t *) &x_sc[i*MMQ_MMA_TILE_X_K_Q6_K + k0/8]); scA[n][l][kvdr/2 + 0] = sc[kvdr/2 + 0]; scA[n][l][kvdr/2 + 1] = sc[kvdr/2 + 1]; } } #pragma unroll for (int l = 0; l < mma_C::ne/2; ++l) { const int i = i0 + n*mma_C::I + mma_C::get_i(2*l); dA[n][l] = x_df[i*MMQ_MMA_TILE_X_K_Q6_K + k0/QI6_K]; } } #pragma unroll for (int j0 = 0; j0 < mmq_x; j0 += ntx*mma_C::J) { float tmp[ntx][mma_C::ne] = {{0.0f}}; #pragma unroll for (int kvdr = 0; kvdr < VDR_Q6_K_Q8_1_MMQ; kvdr += 4) { mma_B B[2]; float dB[mma_C::ne/2]; const int k0B = (2*k0 + 2*kvdr) % WARP_SIZE; B[0].load(y_qs + j0*MMQ_TILE_Y_K + 0 + k0B, MMQ_TILE_Y_K); B[1].load(y_qs + j0*MMQ_TILE_Y_K + mma_B::K + k0B, MMQ_TILE_Y_K); #pragma unroll for (int l = 0; l < mma_C::ne/2; ++l) { const int j = j0 + mma_C::get_j(l); dB[l] = y_df[j*MMQ_TILE_Y_K + ((2*k0 + 2*kvdr)/QI8_1) % (WARP_SIZE/QI8_1)]; } #pragma unroll for (int n = 0; n < ntx; ++n) { mma_C C[2]; C[0].mma_K4(A[n][kvdr/2 + 0], B[0]); C[1].mma_K4(A[n][kvdr/2 + 1], B[1]); #pragma unroll for (int l = 0; l < mma_C::ne; ++l) { tmp[n][l] += (C[0].x[l]*scA[n][l/2][kvdr/2 + 0] + C[1].x[l]*scA[n][l/2][kvdr/2 + 1])*dB[l%2]; } } } #pragma unroll for (int n = 0; n < ntx; ++n) { #pragma unroll for (int l = 0; l < mma_C::ne; ++l) { sum[(j0/mma_C::J + n)*mma_C::ne + l] += tmp[n][l]*dA[n][l/2]; } } } #else GGML_UNUSED(x); GGML_UNUSED(y); GGML_UNUSED(sum); NO_DEVICE_CODE; #endif // INT8_MMA_AVAILABLE } template static __device__ __forceinline__ void mmq_write_back_dp4a( const float * __restrict__ sum, float * __restrict__ dst, const int & stride, const int & i_max, const int & j_max) { #pragma unroll for (int j0 = 0; j0 < mmq_x; j0 += nwarps) { const int j = j0 + threadIdx.y; if (j > j_max) { return; } #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) { const int i = i0 + threadIdx.x; if (need_check && i > i_max) { continue; } dst[j*stride + i] = sum[(j0/nwarps) * (mmq_y/WARP_SIZE) + i0/WARP_SIZE]; } } } template static __device__ __forceinline__ void mmq_write_back_mma( const float * __restrict__ sum, float * __restrict__ dst, const int & stride, const int & i_max, const int & j_max) { typedef mma_int_C_I16J8 mma_C; constexpr int granularity = mmq_get_granularity_device(mmq_x); constexpr int rows_per_warp = 2 * granularity; constexpr int ntx = rows_per_warp/mma_C::I; // Number of x minitiles per warp. const int i0 = (threadIdx.y / ntx) * (ntx*mma_C::I); #ifdef INT8_MMA_AVAILABLE static_assert(nwarps*mma_C::I == mmq_y, "nwarps*mma_C::I != mmq_y"); #endif // INT8_MMA_AVAILABLE #pragma unroll for (int j0 = 0; j0 < mmq_x; j0 += ntx*mma_C::J) { #pragma unroll for (int n = 0; n < ntx; ++n) { #pragma unroll for (int l = 0; l < mma_C::ne; ++l) { const int j = j0 + (threadIdx.y % ntx) * mma_C::J + mma_C::get_j(l); if (j > j_max) { continue; } const int i = i0 + n*mma_C::I + mma_C::get_i(l); if (need_check && i > i_max) { continue; } dst[j*stride + i] = sum[(j0/mma_C::J + n)*mma_C::ne + l]; } } } } // ------------------------------------------------------------------------------------------------------------------------------------- template struct mmq_type_traits; template struct mmq_type_traits { static constexpr int vdr = VDR_Q4_0_Q8_1_MMQ; static constexpr load_tiles_mmq_t load_tiles = load_tiles_q4_0; static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q4_0_q8_1_mma; static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q4_0_q8_1_dp4a; }; template struct mmq_type_traits { static constexpr int vdr = VDR_Q4_1_Q8_1_MMQ; static constexpr load_tiles_mmq_t load_tiles = load_tiles_q4_1; static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q4_1_q8_1_mma; static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q4_1_q8_1_dp4a; }; template struct mmq_type_traits { static constexpr int vdr = VDR_Q5_0_Q8_1_MMQ; static constexpr load_tiles_mmq_t load_tiles = load_tiles_q5_0; static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q5_0_q8_1_mma; static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q5_0_q8_1_dp4a; }; template struct mmq_type_traits { static constexpr int vdr = VDR_Q5_1_Q8_1_MMQ; static constexpr load_tiles_mmq_t load_tiles = load_tiles_q5_1; static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q5_1_q8_1_mma; static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q5_1_q8_1_dp4a; }; template struct mmq_type_traits { static constexpr int vdr = VDR_Q8_0_Q8_1_MMQ; static constexpr load_tiles_mmq_t load_tiles = load_tiles_q8_0; static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_q8_1_mma; static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_0_q8_1_dp4a; }; template struct mmq_type_traits { static constexpr int vdr = VDR_Q2_K_Q8_1_MMQ; static constexpr load_tiles_mmq_t load_tiles = load_tiles_q2_K; static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q2_K_q8_1_mma; static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q2_K_q8_1_dp4a; }; template struct mmq_type_traits { static constexpr int vdr = VDR_Q3_K_Q8_1_MMQ; static constexpr load_tiles_mmq_t load_tiles = load_tiles_q3_K; static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q3_K_q8_1_mma; static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q3_K_q8_1_dp4a; }; template struct mmq_type_traits { static constexpr int vdr = VDR_Q4_K_Q8_1_MMQ; static constexpr load_tiles_mmq_t load_tiles = load_tiles_q4_K; static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q4_K_q8_1_mma; static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q4_K_q8_1_dp4a; }; template struct mmq_type_traits { static constexpr int vdr = VDR_Q5_K_Q8_1_MMQ; static constexpr load_tiles_mmq_t load_tiles = load_tiles_q5_K; static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q5_K_q8_1_mma; static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q5_K_q8_1_dp4a; }; template struct mmq_type_traits { static constexpr int vdr = VDR_Q6_K_Q8_1_MMQ; static constexpr load_tiles_mmq_t load_tiles = load_tiles_q6_K; static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q6_K_q8_1_mma; static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q6_K_q8_1_dp4a; }; static bool mmq_need_sum(const ggml_type type_x) { switch (type_x) { case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: return true; case GGML_TYPE_Q5_0: return false; case GGML_TYPE_Q5_1: return true; case GGML_TYPE_Q8_0: case GGML_TYPE_Q2_K: case GGML_TYPE_Q3_K: return false; case GGML_TYPE_Q4_K: case GGML_TYPE_Q5_K: return true; case GGML_TYPE_Q6_K: return false; default: GGML_ASSERT(false); break; } return false; } template static __device__ void mul_mat_q_process_tile( const char * __restrict__ x, const char * __restrict__ yc, float * __restrict__ dst, float * __restrict__ tmp_fixup, const int & ne00, const int & ne01, const int & stride01, const int & ne10, const int & ne11, const int & stride11, const int & ne0, const int & it, const int & jt, const int & kb0_start, const int & kb0_stop) { constexpr int qk = ggml_cuda_type_traits::qk; constexpr int qr = ggml_cuda_type_traits::qr; constexpr int qi = ggml_cuda_type_traits::qi; constexpr int mmq_y = get_mmq_y_device(); constexpr int vdr = mmq_type_traits::vdr; constexpr load_tiles_mmq_t load_tiles = mmq_type_traits::load_tiles; extern __shared__ char data_mul_mat_q[]; int * tile_y = (int *) data_mul_mat_q; int * tile_x = tile_y + GGML_PAD(mmq_x*(WARP_SIZE + WARP_SIZE/QI8_1), nwarps*WARP_SIZE); #ifdef INT8_MMA_AVAILABLE constexpr vec_dot_mmq_t vec_dot = mmq_type_traits::vec_dot_mma; constexpr mmq_write_back_t write_back = mmq_write_back_mma; #else constexpr vec_dot_mmq_t vec_dot = mmq_type_traits::vec_dot_dp4a; constexpr mmq_write_back_t write_back = mmq_write_back_dp4a; #endif // INT8_MMA_AVAILABLE constexpr int blocks_per_warp = WARP_SIZE / qi; float sum[mmq_x*mmq_y / (nwarps*WARP_SIZE)] = {0.0f}; const int tile_x_max_i = ne01 - it*mmq_y - 1; const int tile_y_max_j = ne11 - jt*mmq_x - 1; const int * y = (const int *) yc + jt*(mmq_x*sizeof(block_q8_1_mmq)/sizeof(int)); for (int kb0 = kb0_start; kb0 < kb0_stop; kb0 += blocks_per_warp) { load_tiles(x, tile_x, stride01*it*mmq_y + kb0, tile_x_max_i, stride01); #pragma unroll for (int kr = 0; kr < qr; ++kr) { const int * by0 = y + stride11*(kb0*(qk*sizeof(block_q8_1_mmq) / (4*QK8_1*sizeof(int))) + kr*sizeof(block_q8_1_mmq)/sizeof(int)); #pragma unroll for (int l0 = 0; l0 < mmq_x*MMQ_TILE_Y_K; l0 += nwarps*WARP_SIZE) { int l = l0 + threadIdx.y*WARP_SIZE + threadIdx.x; tile_y[l] = by0[l]; } __syncthreads(); // #pragma unroll // unrolling this loop causes too much register pressure for (int k0 = kr*WARP_SIZE/qr; k0 < (kr+1)*WARP_SIZE/qr; k0 += vdr) { vec_dot(tile_x, tile_y, sum, k0); } __syncthreads(); } } if (fixup) { write_back(sum, tmp_fixup + blockIdx.x*(mmq_x*mmq_y), mmq_y, mmq_y, mmq_x); } else { write_back(sum, dst + jt*mmq_x*ne0 + it*mmq_y, ne0, tile_x_max_i, tile_y_max_j); } } // The mul_mat_q kernel implements "stream-k" work partitioning as described in https://arxiv.org/abs/2301.03598 template #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) #if defined(RDNA3) || defined(RDNA2) || defined(RDNA1) __launch_bounds__(WARP_SIZE*nwarps, 2) #endif // defined(RDNA3) || defined(RDNA2) || defined(RDNA1) #else #if __CUDA_ARCH__ >= CC_VOLTA __launch_bounds__(WARP_SIZE*nwarps, 1) #else __launch_bounds__(WARP_SIZE*nwarps, 2) #endif // __CUDA_ARCH__ >= CC_VOLTA #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) static __global__ void mul_mat_q( const char * __restrict__ x, const char * __restrict__ yc, float * __restrict__ dst, float * __restrict__ tmp_fixup, const int ne00, const int ne01, const int stride01, const int ne10, const int ne11, const int stride11, const int ne0) { // Skip unused template specializations for faster compilation: if (mmq_x > get_mmq_x_max_device() || mmq_x % mmq_get_granularity_device(mmq_x) != 0) { NO_DEVICE_CODE; return; } constexpr int qk = ggml_cuda_type_traits::qk; constexpr int qi = ggml_cuda_type_traits::qi; constexpr int mmq_y = get_mmq_y_device(); // On AMD or old CUDA the performance with stream-k was worse, use conventional tiling instead: #if (defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ < CC_VOLTA { constexpr bool fixup = false; mul_mat_q_process_tile (x, yc, dst, tmp_fixup, ne00, ne01, stride01, ne10, ne11, stride11, ne0, blockIdx.x, blockIdx.y, 0, ne00/qk); return; } #endif // (defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ < CC_VOLTA const int64_t blocks_per_ne00 = ne00 / qk; constexpr int blocks_per_warp = WARP_SIZE / qi; const int ntx = (ne11 + mmq_x - 1) / mmq_x; // Number of tiles x const int nty = (ne01 + mmq_y - 1) / mmq_y; // Number of tiles y // kbc == k block continuous, current index in continuous ijk space. int64_t kbc = GGML_PAD((int64_t) blockIdx.x *blocks_per_ne00*ntx*nty / gridDim.x, blocks_per_warp); const int64_t kbc_stop = GGML_PAD((int64_t)(blockIdx.x + 1)*blocks_per_ne00*ntx*nty / gridDim.x, blocks_per_warp); // kb0 == k index when doing the matrix multiplication for an output tile. int kb0_start = kbc % blocks_per_ne00; int kb0_stop = min(blocks_per_ne00, kb0_start + kbc_stop - kbc); while (kbc < kbc_stop && kb0_stop == blocks_per_ne00) { const int jt = kbc / (blocks_per_ne00*nty); // j index of current tile. const int it = (kbc - jt*(blocks_per_ne00*nty)) / blocks_per_ne00; // i index of current tile. constexpr bool fixup = false; // All but (potentially) the last iterations write their data to dst rather than the fixup buffer. mul_mat_q_process_tile (x, yc, dst, tmp_fixup, ne00, ne01, stride01, ne10, ne11, stride11, ne0, it, jt, kb0_start, kb0_stop); kbc += blocks_per_ne00; kbc -= kbc % blocks_per_ne00; kb0_start = 0; kb0_stop = min(blocks_per_ne00, kbc_stop - kbc); } if (kbc >= kbc_stop) { return; } const int jt = kbc / (blocks_per_ne00*nty); const int it = (kbc - jt*(blocks_per_ne00*nty)) / blocks_per_ne00; constexpr bool fixup = true; // Last index writes it data to fixup buffer to avoid data races with other blocks. mul_mat_q_process_tile (x, yc, dst, tmp_fixup, ne00, ne01, stride01, ne10, ne11, stride11, ne0, it, jt, kb0_start, kb0_stop); } template static __global__ void mul_mat_q_stream_k_fixup( float * __restrict__ dst, const float * __restrict__ tmp_last_tile, const int ne00, const int ne01, const int ne11, const int ne0, const int block_num_mmq) { constexpr int mmq_y = get_mmq_y_device(); constexpr int qk = ggml_cuda_type_traits::qk; constexpr int qi = ggml_cuda_type_traits::qi; constexpr int blocks_per_warp = WARP_SIZE / qi; const int64_t blocks_per_ne00 = ne00 / qk; float sum[mmq_x*mmq_y / (nwarps*WARP_SIZE)] = {0.0f}; const int ntx = (ne11 + mmq_x - 1) / mmq_x; const int nty = (ne01 + mmq_y - 1) / mmq_y; bool any_fixup = false; const int bidx_start = (blockIdx.y*nty + blockIdx.x) * block_num_mmq / (gridDim.y*gridDim.x); const int bidx_stop = (blockIdx.y*nty + blockIdx.x + 1) * block_num_mmq / (gridDim.y*gridDim.x) + 1; for (int bidx = bidx_start; bidx < bidx_stop; ++bidx) { const int64_t kbc = GGML_PAD((int64_t) bidx *blocks_per_ne00*ntx*nty / block_num_mmq, blocks_per_warp); const int64_t kbc_stop = GGML_PAD((int64_t)(bidx + 1)*blocks_per_ne00*ntx*nty / block_num_mmq, blocks_per_warp); // Skip fixup tile if the MMQ CUDA block never wrote anything to it: if (kbc == kbc_stop || kbc_stop % blocks_per_ne00 == 0) { continue; } const int jt = kbc_stop / (blocks_per_ne00*nty); const int it = (kbc_stop - jt*(blocks_per_ne00*nty)) / blocks_per_ne00; // Skip fixup tile if it's unrelated to the output tile assigned to this CUDA block: if (it != blockIdx.x || jt != blockIdx.y) { continue; } any_fixup = true; #pragma unroll for (int j0 = 0; j0 < mmq_x; j0 += nwarps) { const int j = j0 + threadIdx.y; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) { const int i = i0 + threadIdx.x; sum[(j0/nwarps) * (mmq_y/WARP_SIZE) + i0/WARP_SIZE] += tmp_last_tile[bidx*(mmq_x*mmq_y) + j*mmq_y + i]; } } } if (!any_fixup) { return; } dst += blockIdx.y*mmq_x*ne0 + blockIdx.x*mmq_y; const int i_max = ne01 - blockIdx.x*mmq_y - 1; const int j_max = ne11 - blockIdx.y*mmq_x - 1; #pragma unroll for (int j0 = 0; j0 < mmq_x; j0 += nwarps) { const int j = j0 + threadIdx.y; if (j > j_max) { return; } #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) { const int i = i0 + threadIdx.x; if (need_check && i > i_max) { continue; } dst[j*ne0 + i] += sum[(j0/nwarps) * (mmq_y/WARP_SIZE) + i0/WARP_SIZE]; } } } struct mmq_args { const char * x; const char * y; float * dst; int64_t ne00; int64_t ne01; int64_t stride01; int64_t ne10; int64_t ne11; int64_t stride11; int64_t ne0; }; template static int mmq_get_shmem(const int mmq_x, const int mmq_y, const int cc) { const tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(type, mmq_y); const int mmq_tile_x_k = mmq_get_mma_tile_x_k(type); const int shmem_x = int8_mma_available(cc) ? mmq_y*mmq_tile_x_k*sizeof(int) : txs.qs*sizeof(int) + txs.dm*sizeof(half2) + txs.sc*sizeof(int); const int shmem_y = mmq_x*sizeof(block_q8_1_mmq); return shmem_x + GGML_PAD(shmem_y, MMQ_NWARPS*WARP_SIZE*sizeof(int)); } template static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & args, cudaStream_t stream) { const int id = ggml_cuda_get_device(); const int cc = ggml_cuda_info().devices[id].cc; const int nsm = ggml_cuda_info().devices[id].nsm; const int mmq_y = get_mmq_y_host(cc); const dim3 block_dims(WARP_SIZE, MMQ_NWARPS, 1); const int shmem = mmq_get_shmem(mmq_x, mmq_y, cc); #if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) static bool shmem_limit_raised[GGML_CUDA_MAX_DEVICES] = {false}; if (!shmem_limit_raised[id]) { CUDA_CHECK(cudaFuncSetAttribute(mul_mat_q, cudaFuncAttributeMaxDynamicSharedMemorySize, shmem)); CUDA_CHECK(cudaFuncSetAttribute(mul_mat_q, cudaFuncAttributeMaxDynamicSharedMemorySize, shmem)); shmem_limit_raised[id] = true; } #endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) const int nty = (args.ne01 + mmq_y - 1) / mmq_y; const int ntx = (args.ne11 + mmq_x - 1) / mmq_x; const dim3 block_nums_xy_tiling(nty, ntx, 1); const bool use_stream_k = cc >= CC_VOLTA && cc < CC_OFFSET_AMD; if (!use_stream_k) { if (args.ne01 % mmq_y == 0) { constexpr bool need_check = false; mul_mat_q<<>> (args.x, args.y, args.dst, nullptr, args.ne00, args.ne01, args.stride01, args.ne10, args.ne11, args.stride11, args.ne0); } else { constexpr bool need_check = true; mul_mat_q<<>> (args.x, args.y, args.dst, nullptr, args.ne00, args.ne01, args.stride01, args.ne10, args.ne11, args.stride11, args.ne0); } return; } const dim3 block_nums_mmq(nsm, 1, 1); ggml_cuda_pool & pool = ctx.pool(id); ggml_cuda_pool_alloc tmp_fixup(pool, block_nums_mmq.x * mmq_x*mmq_y); if (args.ne01 % mmq_y == 0) { constexpr bool need_check = false; mul_mat_q<<>> (args.x, args.y, args.dst, tmp_fixup.ptr, args.ne00, args.ne01, args.stride01, args.ne10, args.ne11, args.stride11, args.ne0); mul_mat_q_stream_k_fixup<<>> (args.dst, tmp_fixup.ptr, args.ne00, args.ne01, args.ne11, args.ne0, block_nums_mmq.x); } else { constexpr bool need_check = true; mul_mat_q<<>> (args.x, args.y, args.dst, tmp_fixup.ptr, args.ne00, args.ne01, args.stride01, args.ne10, args.ne11, args.stride11, args.ne0); mul_mat_q_stream_k_fixup<<>> (args.dst, tmp_fixup.ptr, args.ne00, args.ne01, args.ne11, args.ne0, block_nums_mmq.x); } } template void mul_mat_q_case(ggml_backend_cuda_context & ctx, const mmq_args & args, cudaStream_t stream) { const int id = ggml_cuda_get_device(); const int nsm = ggml_cuda_info().devices[id].nsm; const int cc = ggml_cuda_info().devices[id].cc; const int smpbo = ggml_cuda_info().devices[id].smpbo; const int mmq_x_max = get_mmq_x_max_host(cc); const int mmq_y = get_mmq_y_host(cc); const int block_num_y = (args.ne01 + mmq_y - 1) / mmq_y; const bool use_stream_k = cc >= CC_VOLTA && cc < CC_OFFSET_AMD; int mmq_x_best = 0; int nparts_best = INT_MAX; for (int mmq_x = 8; mmq_x <= mmq_x_max && nparts_best > 1; mmq_x += 8) { const int granularity = mmq_get_granularity_host(mmq_x, cc); if (mmq_x % granularity != 0 || mmq_get_shmem(mmq_x, mmq_y, cc) > smpbo) { continue; } const int ntiles_x = (args.ne11 + mmq_x - 1) / mmq_x; const int nwaves_xy_tiling = ntiles_x*block_num_y; const int nparts = use_stream_k ? ntiles_x : nwaves_xy_tiling; if (nparts < nparts_best) { mmq_x_best = mmq_x; nparts_best = nparts; } } switch (mmq_x_best) { case 8: launch_mul_mat_q(ctx, args, stream); break; case 16: launch_mul_mat_q(ctx, args, stream); break; case 24: launch_mul_mat_q(ctx, args, stream); break; case 32: launch_mul_mat_q(ctx, args, stream); break; case 40: launch_mul_mat_q(ctx, args, stream); break; case 48: launch_mul_mat_q(ctx, args, stream); break; case 56: launch_mul_mat_q(ctx, args, stream); break; case 64: launch_mul_mat_q(ctx, args, stream); break; case 72: launch_mul_mat_q(ctx, args, stream); break; case 80: launch_mul_mat_q(ctx, args, stream); break; case 88: launch_mul_mat_q(ctx, args, stream); break; case 96: launch_mul_mat_q(ctx, args, stream); break; case 104: launch_mul_mat_q(ctx, args, stream); break; case 112: launch_mul_mat_q(ctx, args, stream); break; case 120: launch_mul_mat_q(ctx, args, stream); break; case 128: launch_mul_mat_q(ctx, args, stream); break; default: fprintf(stderr, "mmq_x_best=%d\n", mmq_x_best); GGML_ASSERT(false); break; } } #define DECL_MMQ_CASE(type) \ template void mul_mat_q_case(ggml_backend_cuda_context & ctx, const mmq_args & args, cudaStream_t stream) \ extern DECL_MMQ_CASE(GGML_TYPE_Q4_0); extern DECL_MMQ_CASE(GGML_TYPE_Q4_1); extern DECL_MMQ_CASE(GGML_TYPE_Q5_0); extern DECL_MMQ_CASE(GGML_TYPE_Q5_1); extern DECL_MMQ_CASE(GGML_TYPE_Q8_0); extern DECL_MMQ_CASE(GGML_TYPE_Q2_K); extern DECL_MMQ_CASE(GGML_TYPE_Q3_K); extern DECL_MMQ_CASE(GGML_TYPE_Q4_K); extern DECL_MMQ_CASE(GGML_TYPE_Q5_K); extern DECL_MMQ_CASE(GGML_TYPE_Q6_K); // ------------------------------------------------------------------------------------------------------------------------- void ggml_cuda_op_mul_mat_q( ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i, const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols, const int64_t src1_padded_row_size, cudaStream_t stream); bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11);