/* * Copyright (c) 2023-2024 The ggml authors * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "aclnn_ops.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "kernels/ascendc_kernels.h" #define GGML_COMMON_DECL_C #include "../ggml-common.h" /** * @brief Repeats elements of a tensor along each dimension according to the * specified repeat array. * * @param ctx The context for the CANN backend operations. * @param acl_src The source tensor to be repeated. * @param acl_dst The destination tensor after repeating. * @param repeat_array The array specifying the number of repetitions along each * dimension. */ static void aclnn_repeat(ggml_backend_cann_context& ctx, aclTensor* acl_src, aclTensor* acl_dst, int64_t* repeat_array) { // repeat tensor along each dim with repeat_array aclIntArray* repeats = aclCreateIntArray(repeat_array, GGML_MAX_DIMS); uint64_t workspaceSize = 0; aclOpExecutor* executor; void* workspaceAddr = nullptr; ACL_CHECK(aclnnRepeatGetWorkspaceSize(acl_src, repeats, acl_dst, &workspaceSize, &executor)); if (workspaceSize > 0) { // Memory from allocator will "free" immediately, and this memory // will be alloced to other pointers, but it won't access before // this async task end because all tasks in same stream will execute // in queue. ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); workspaceAddr = workspace_allocator.get(); } ACL_CHECK( aclnnRepeat(workspaceAddr, workspaceSize, executor, ctx.stream())); ACL_CHECK(aclDestroyIntArray(repeats)); } void ggml_cann_repeat(ggml_backend_cann_context& ctx, ggml_tensor* dst) { ggml_tensor* src = dst->src[0]; GGML_ASSERT(ggml_can_repeat(src, dst)); aclTensor* acl_src = ggml_cann_create_tensor(src); aclTensor* acl_dst = ggml_cann_create_tensor(dst); int64_t repeatsArray[] = {dst->ne[3] / src->ne[3], dst->ne[2] / src->ne[2], dst->ne[1] / src->ne[1], dst->ne[0] / src->ne[0]}; aclnn_repeat(ctx, acl_src, acl_dst, repeatsArray); ACL_CHECK(aclDestroyTensor(acl_src)); ACL_CHECK(aclDestroyTensor(acl_dst)); } /** * @brief Adds two tensors element-wise and stores the result in a destination * tensor. * * This function performs the operation: * \f[ * dst = acl\_src0 + alpha \times acl\_src1 * \f] * where alpha is a scalar value and defaults to 1.0f. * * @param ctx The context for the CANN backend operations. * @param acl_src0 The first source tensor. * @param acl_src1 The second source tensor. * @param acl_dst The destination tensor where the result will be stored. */ static void aclnn_add(ggml_backend_cann_context& ctx, aclTensor* acl_src0, aclTensor* acl_src1, aclTensor* acl_dst) { aclScalar* alpha = nullptr; float alphaValue = 1.0f; alpha = aclCreateScalar(&alphaValue, aclDataType::ACL_FLOAT); uint64_t workspaceSize = 0; aclOpExecutor* executor; void* workspaceAddr = nullptr; ACL_CHECK(aclnnAddGetWorkspaceSize(acl_src0, acl_src1, alpha, acl_dst, &workspaceSize, &executor)); if (workspaceSize > 0) { ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); workspaceAddr = workspace_allocator.get(); } ACL_CHECK(aclnnAdd(workspaceAddr, workspaceSize, executor, ctx.stream())); ACL_CHECK(aclDestroyScalar(alpha)); } void ggml_cann_add(ggml_backend_cann_context& ctx, ggml_tensor* dst) { ggml_tensor* src0 = dst->src[0]; ggml_tensor* src1 = dst->src[1]; GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst)); aclTensor* acl_src0; aclTensor* acl_src1; aclTensor* acl_dst; // Need bcast if (!ggml_are_same_shape(src0, src1) && ggml_cann_need_bcast(src0, src1)) { BCAST_SHAPE(src0, src1) acl_src0 = ggml_cann_create_tensor(src0, BCAST_PARAM(src0)); acl_src1 = ggml_cann_create_tensor(src1, BCAST_PARAM(src1)); acl_dst = ggml_cann_create_tensor(dst, BCAST_PARAM(src0)); } else { acl_src0 = ggml_cann_create_tensor(src0); acl_src1 = ggml_cann_create_tensor(src1); acl_dst = ggml_cann_create_tensor(dst); } aclnn_add(ctx, acl_src0, acl_src1, acl_dst); ACL_CHECK(aclDestroyTensor(acl_src0)); ACL_CHECK(aclDestroyTensor(acl_src1)); ACL_CHECK(aclDestroyTensor(acl_dst)); } void ggml_cann_leaky_relu(ggml_backend_cann_context& ctx, ggml_tensor* dst) { ggml_tensor* src = dst->src[0]; GGML_ASSERT(src->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32); aclTensor* acl_src = ggml_cann_create_tensor(src); aclTensor* acl_dst = ggml_cann_create_tensor(dst); float negative_slope; memcpy(&negative_slope, dst->op_params, sizeof(float)); aclScalar* acl_negative_slope = aclCreateScalar(&negative_slope, aclDataType::ACL_FLOAT); uint64_t workspaceSize = 0; aclOpExecutor* executor; void* workspaceAddr = nullptr; ACL_CHECK(aclnnLeakyReluGetWorkspaceSize( acl_src, acl_negative_slope, acl_dst, &workspaceSize, &executor)); if (workspaceSize > 0) { ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); workspaceAddr = workspace_allocator.get(); } ACL_CHECK( aclnnLeakyRelu(workspaceAddr, workspaceSize, executor, ctx.stream())); ACL_CHECK(aclDestroyScalar(acl_negative_slope)); ACL_CHECK(aclDestroyTensor(acl_src)); ACL_CHECK(aclDestroyTensor(acl_dst)); } /** * @brief Concatenates a list of tensors along a specified dimension and stores * the result in a destination tensor. * * @param ctx The context for the CANN backend operations. * @param tensorList The list of tensors to be concatenated. * @param acl_dst The destination tensor where the concatenated result will be * stored. * @param concat_dim The dimension along which the tensors will be concatenated. */ static void aclnn_concat(ggml_backend_cann_context& ctx, aclTensorList* tensorList, aclTensor* acl_dst, int64_t concat_dim) { uint64_t workspaceSize = 0; aclOpExecutor* executor; void* workspaceAddr = nullptr; ACL_CHECK(aclnnCatGetWorkspaceSize(tensorList, concat_dim, acl_dst, &workspaceSize, &executor)); if (workspaceSize > 0) { ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); workspaceAddr = workspace_allocator.get(); } ACL_CHECK(aclnnCat(workspaceAddr, workspaceSize, executor, ctx.stream())); } void ggml_cann_concat(ggml_backend_cann_context& ctx, ggml_tensor* dst) { ggml_tensor* src0 = dst->src[0]; ggml_tensor* src1 = dst->src[1]; aclTensor* acl_src0 = ggml_cann_create_tensor(src0); aclTensor* acl_src1 = ggml_cann_create_tensor(src1); aclTensor* acl_dst = ggml_cann_create_tensor(dst); int64_t concat_dim = 1; aclTensor* tensors[] = {acl_src0, acl_src1}; aclTensorList* tensorList = aclCreateTensorList(tensors, 2); aclnn_concat(ctx, tensorList, acl_dst, concat_dim); ACL_CHECK(aclDestroyTensorList(tensorList)); ACL_CHECK(aclDestroyTensor(acl_dst)); } /** * @brief Creates a tensor with values starting from `start`, incremented by * `step`, and ending before `stop`. * * This function performs the operation: * \f[ * \text {out }_{i+1}=\text {out }_i+\text {step} * \f] * the range is [start, stop). * * @param ctx The context for the CANN backend operations. * @param acl_dst The destination tensor where the values will be stored. * @param start The starting value of the range. * @param stop The ending value of the range (exclusive). * @param step The step size between consecutive values. * @param n_elements The number of elements in the destination tensor. */ static void aclnn_arange(ggml_backend_cann_context& ctx, aclTensor* acl_dst, float start, float stop, float step, int64_t n_elements) { int64_t steps = (int64_t)std::ceil((stop - start) / step); GGML_ASSERT(n_elements == steps); uint64_t workspaceSize = 0; aclOpExecutor* executor; void* workspaceAddr = nullptr; aclScalar* acl_start = aclCreateScalar(&start, aclDataType::ACL_FLOAT); aclScalar* acl_end = aclCreateScalar(&stop, aclDataType::ACL_FLOAT); aclScalar* acl_step = aclCreateScalar(&step, aclDataType::ACL_FLOAT); ACL_CHECK(aclnnArangeGetWorkspaceSize(acl_start, acl_end, acl_step, acl_dst, &workspaceSize, &executor)); if (workspaceSize > 0) { ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); workspaceAddr = workspace_allocator.get(); } ACL_CHECK( aclnnArange(workspaceAddr, workspaceSize, executor, ctx.stream())); ACL_CHECK(aclDestroyScalar(acl_start)); ACL_CHECK(aclDestroyScalar(acl_end)); ACL_CHECK(aclDestroyScalar(acl_step)); } void ggml_cann_arange(ggml_backend_cann_context& ctx, ggml_tensor* dst) { GGML_ASSERT(dst->type == GGML_TYPE_F32); aclTensor* acl_dst = ggml_cann_create_tensor(dst); int64_t n_elements = ggml_nelements(dst); float start; float stop; float step; memcpy(&start, (float*)dst->op_params + 0, sizeof(float)); memcpy(&stop, (float*)dst->op_params + 1, sizeof(float)); memcpy(&step, (float*)dst->op_params + 2, sizeof(float)); aclnn_arange(ctx, acl_dst, start, stop, step, n_elements); ACL_CHECK(aclDestroyTensor(acl_dst)); } void ggml_cann_sqr(ggml_backend_cann_context& ctx, ggml_tensor* dst) { dst->src[1] = dst->src[0]; ggml_cann_mul_div(ctx, dst); } void ggml_cann_clamp(ggml_backend_cann_context& ctx, ggml_tensor* dst) { ggml_tensor* src = dst->src[0]; GGML_ASSERT(src->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32); float min; float max; memcpy(&min, dst->op_params, sizeof(float)); memcpy(&max, (float*)dst->op_params + 1, sizeof(float)); aclTensor* acl_src = ggml_cann_create_tensor(src); aclTensor* acl_dst = ggml_cann_create_tensor(dst); aclScalar* acl_min = aclCreateScalar(&min, aclDataType::ACL_FLOAT); aclScalar* acl_max = aclCreateScalar(&max, aclDataType::ACL_FLOAT); uint64_t workspaceSize = 0; aclOpExecutor* executor; void* workspaceAddr = nullptr; ACL_CHECK(aclnnClampGetWorkspaceSize(acl_src, acl_min, acl_max, acl_dst, &workspaceSize, &executor)); if (workspaceSize > 0) { ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); workspaceAddr = workspace_allocator.get(); } ACL_CHECK(aclnnClamp(workspaceAddr, workspaceSize, executor, ctx.stream())); ACL_CHECK(aclDestroyScalar(acl_min)); ACL_CHECK(aclDestroyScalar(acl_max)); ACL_CHECK(aclDestroyTensor(acl_src)); ACL_CHECK(aclDestroyTensor(acl_dst)); } void ggml_cann_scale(ggml_backend_cann_context& ctx, ggml_tensor* dst) { ggml_tensor* src = dst->src[0]; // scale factor float v; memcpy(&v, dst->op_params, sizeof(float)); aclScalar* scale = aclCreateScalar(&v, aclDataType::ACL_FLOAT); aclTensor* acl_src = ggml_cann_create_tensor(src); aclTensor* acl_dst = ggml_cann_create_tensor(dst); uint64_t workspaceSize = 0; aclOpExecutor* executor; void* workspaceAddr = nullptr; ACL_CHECK(aclnnMulsGetWorkspaceSize(acl_src, scale, acl_dst, &workspaceSize, &executor)); if (workspaceSize > 0) { ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); workspaceAddr = workspace_allocator.get(); } ACL_CHECK(aclnnMuls(workspaceAddr, workspaceSize, executor, ctx.stream())); ACL_CHECK(aclDestroyScalar(scale)); ACL_CHECK(aclDestroyTensor(acl_src)); ACL_CHECK(aclDestroyTensor(acl_dst)); } void ggml_cann_argsort(ggml_backend_cann_context& ctx, ggml_tensor* dst) { ggml_tensor* src = dst->src[0]; enum ggml_sort_order order = (enum ggml_sort_order)dst->op_params[0]; aclTensor* acl_src = ggml_cann_create_tensor(src); aclTensor* acl_dst = ggml_cann_create_tensor(dst); ggml_cann_pool_alloc temp_buffer_allocator( ctx.pool(), ggml_nelements(dst) * sizeof(int64_t)); void* buffer = temp_buffer_allocator.get(); aclTensor* tmp_tensor = ggml_cann_create_tensor(buffer, ACL_INT64, ggml_type_size(dst->type), dst->ne, dst->nb, GGML_MAX_DIMS); uint64_t workspaceSize = 0; aclOpExecutor* executor; void* workspaceAddr = nullptr; ACL_CHECK(aclnnArgsortGetWorkspaceSize( acl_src, -1, (order == GGML_SORT_ORDER_DESC ? true : false), tmp_tensor, &workspaceSize, &executor)); if (workspaceSize > 0) { ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); workspaceAddr = workspace_allocator.get(); } ACL_CHECK( aclnnArgsort(workspaceAddr, workspaceSize, executor, ctx.stream())); workspaceSize = 0; ACL_CHECK(aclnnCastGetWorkspaceSize(tmp_tensor, ggml_cann_type_mapping(dst->type), acl_dst, &workspaceSize, &executor)); if (workspaceSize > 0) { ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); workspaceAddr = workspace_allocator.get(); } ACL_CHECK(aclnnCast(workspaceAddr, workspaceSize, executor, ctx.stream())); ACL_CHECK(aclDestroyTensor(acl_src)); ACL_CHECK(aclDestroyTensor(tmp_tensor)); ACL_CHECK(aclDestroyTensor(acl_dst)); } void ggml_cann_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst) { ggml_tensor* src = dst->src[0]; aclTensor* acl_src = ggml_cann_create_tensor(src); aclTensor* acl_dst = ggml_cann_create_tensor(dst); float eps; memcpy(&eps, dst->op_params, sizeof(float)); uint64_t workspaceSize = 0; aclOpExecutor* executor; void* workspaceAddr = nullptr; std::vector normData = {dst->ne[0]}; aclIntArray* norm = aclCreateIntArray(normData.data(), normData.size()); ACL_CHECK(aclnnLayerNormGetWorkspaceSize(acl_src, norm, nullptr, nullptr, eps, acl_dst, nullptr, nullptr, &workspaceSize, &executor)); if (workspaceSize > 0) { ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); workspaceAddr = workspace_allocator.get(); } ACL_CHECK( aclnnLayerNorm(workspaceAddr, workspaceSize, executor, ctx.stream())); ACL_CHECK(aclDestroyIntArray(norm)); ACL_CHECK(aclDestroyTensor(acl_src)); ACL_CHECK(aclDestroyTensor(acl_dst)); } void ggml_cann_group_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst) { ggml_tensor* src = dst->src[0]; aclTensor* acl_src = ggml_cann_create_tensor(src); aclTensor* acl_dst = ggml_cann_create_tensor(dst); int n_groups = dst->op_params[0]; float eps; memcpy(&eps, dst->op_params + 1, sizeof(float)); uint64_t workspaceSize = 0; aclOpExecutor* executor; void* workspaceAddr = nullptr; int64_t N = src->ne[3]; int64_t C = src->ne[2]; int64_t HxW = src->ne[1] * src->ne[0]; size_t type_size = ggml_type_size(src->type); int64_t ne[] = {n_groups, N}; size_t nb[] = {type_size, type_size * n_groups}; size_t n_bytes = N * n_groups; ggml_cann_pool_alloc temp_buffer_allocator(ctx.pool(), n_bytes * 2); void* buffer = temp_buffer_allocator.get(); aclTensor* acl_mean_out = ggml_cann_create_tensor( buffer, ACL_FLOAT, type_size, ne, nb, ACL_FORMAT_ND); aclTensor* acl_rstd_out = ggml_cann_create_tensor( (char*)buffer + n_bytes, ACL_FLOAT, type_size, ne, nb, ACL_FORMAT_ND); ACL_CHECK(aclnnGroupNormGetWorkspaceSize( acl_src, nullptr, nullptr, N, C, HxW, n_groups, eps, acl_dst, acl_mean_out, acl_rstd_out, &workspaceSize, &executor)); if (workspaceSize > 0) { ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); workspaceAddr = workspace_allocator.get(); } ACL_CHECK( aclnnGroupNorm(workspaceAddr, workspaceSize, executor, ctx.stream())); ACL_CHECK(aclDestroyTensor(acl_src)); ACL_CHECK(aclDestroyTensor(acl_dst)); ACL_CHECK(aclDestroyTensor(acl_mean_out)); ACL_CHECK(aclDestroyTensor(acl_rstd_out)); } void ggml_cann_acc(ggml_backend_cann_context& ctx, ggml_tensor* dst) { ggml_tensor* src0 = dst->src[0]; ggml_tensor* src1 = dst->src[1]; size_t nb1 = ((int32_t*)dst->op_params)[0]; size_t nb2 = ((int32_t*)dst->op_params)[1]; size_t nb3 = ((int32_t*)dst->op_params)[2]; size_t offset = ((int32_t*)dst->op_params)[3]; bool inplace = (bool)((int32_t*)dst->op_params)[4]; size_t param_nb[] = {ggml_element_size(src0), nb1, nb2, nb3}; aclTensor* acl_dst = ggml_cann_create_tensor( dst, src1->ne, param_nb, GGML_MAX_DIMS, ACL_FORMAT_ND, offset); aclTensor* acl_src1 = ggml_cann_create_tensor(src1); aclScalar* alpha = nullptr; float alphaValue = 1.0f; alpha = aclCreateScalar(&alphaValue, aclDataType::ACL_FLOAT); uint64_t workspaceSize = 0; aclOpExecutor* executor; void* workspaceAddr = nullptr; if (!inplace) { size_t cpy_size = ggml_nbytes(dst); ACL_CHECK(aclrtMemcpyAsync(dst->data, cpy_size, src0->data, cpy_size, ACL_MEMCPY_DEVICE_TO_DEVICE, ctx.stream())); aclTensor* acl_src0 = ggml_cann_create_tensor( src0, src1->ne, src0->nb, GGML_MAX_DIMS, ACL_FORMAT_ND, offset); ACL_CHECK(aclnnAddGetWorkspaceSize(acl_src0, acl_src1, alpha, acl_dst, &workspaceSize, &executor)); if (workspaceSize > 0) { ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); workspaceAddr = workspace_allocator.get(); } ACL_CHECK( aclnnAdd(workspaceAddr, workspaceSize, executor, ctx.stream())); ACL_CHECK(aclDestroyTensor(acl_src0)); } else { ACL_CHECK(aclnnInplaceAddGetWorkspaceSize(acl_dst, acl_src1, alpha, &workspaceSize, &executor)); if (workspaceSize > 0) { ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); workspaceAddr = workspace_allocator.get(); } ACL_CHECK(aclnnInplaceAdd(workspaceAddr, workspaceSize, executor, ctx.stream())); } ACL_CHECK(aclDestroyTensor(acl_src1)); ACL_CHECK(aclDestroyTensor(acl_dst)); } void ggml_cann_sum_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) { ggml_tensor* src = dst->src[0]; aclTensor* acl_src = ggml_cann_create_tensor(src); GGML_ASSERT(dst->ne[0] == 1); aclTensor* acl_dst = ggml_cann_create_tensor(dst); int64_t reduce_dims_host[] = {3}; aclIntArray* reduce_dims = aclCreateIntArray(reduce_dims_host, 1); uint64_t workspaceSize = 0; aclOpExecutor* executor; void* workspaceAddr = nullptr; ACL_CHECK(aclnnReduceSumGetWorkspaceSize( acl_src, reduce_dims, true, ggml_cann_type_mapping(src->type), acl_dst, &workspaceSize, &executor)); if (workspaceSize > 0) { ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); workspaceAddr = workspace_allocator.get(); } ACL_CHECK( aclnnReduceSum(workspaceAddr, workspaceSize, executor, ctx.stream())); ACL_CHECK(aclDestroyTensor(acl_src)); ACL_CHECK(aclDestroyTensor(acl_dst)); } void ggml_cann_upsample_nearest2d(ggml_backend_cann_context& ctx, ggml_tensor* dst) { ggml_tensor* src = dst->src[0]; aclTensor* acl_src = ggml_cann_create_tensor(src, nullptr, nullptr, 0, ACL_FORMAT_NCHW); aclTensor* acl_dst = ggml_cann_create_tensor(dst, nullptr, nullptr, 0, ACL_FORMAT_NCHW); std::vector output_size{dst->ne[1], dst->ne[0]}; auto output_size_array = aclCreateIntArray(output_size.data(), 2); uint64_t workspaceSize = 0; aclOpExecutor* executor; void* workspaceAddr = nullptr; ACL_CHECK(aclnnUpsampleNearest2dGetWorkspaceSize( acl_src, output_size_array, acl_dst, &workspaceSize, &executor)); if (workspaceSize > 0) { ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); workspaceAddr = workspace_allocator.get(); } ACL_CHECK(aclnnUpsampleNearest2d(workspaceAddr, workspaceSize, executor, ctx.stream())); ACL_CHECK(aclDestroyIntArray(output_size_array)); ACL_CHECK(aclDestroyTensor(acl_src)); ACL_CHECK(aclDestroyTensor(acl_dst)); } /** * @brief Pads a tensor with a specified value along each dimension. * * This function performs padding of the source tensor `acl_src` and stores the * result in the destination tensor `acl_dst`. The padding values for each * dimension are specified in the `paddings` array. * * @param ctx The context for the CANN backend operations. * @param acl_src The source tensor to be padded. * @param acl_dst The destination tensor where the padded result will be stored. * @param paddings An array specifying the padding values for each dimension. * The size of the array should be twice the number of dimensions of the tensor. * @param value The value to be used for padding. The default value is 0.0. */ static void aclnn_pad(ggml_backend_cann_context& ctx, aclTensor* acl_src, aclTensor* acl_dst, int64_t* paddings, float value = 0.0f) { aclIntArray* acl_pad = aclCreateIntArray(paddings, GGML_MAX_DIMS * 2); aclScalar* acl_value = aclCreateScalar(&value, aclDataType::ACL_FLOAT); uint64_t workspaceSize = 0; aclOpExecutor* executor; void* workspaceAddr = nullptr; ACL_CHECK(aclnnConstantPadNdGetWorkspaceSize( acl_src, acl_pad, acl_value, acl_dst, &workspaceSize, &executor)); if (workspaceSize > 0) { ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); workspaceAddr = workspace_allocator.get(); } ACL_CHECK(aclnnConstantPadNd(workspaceAddr, workspaceSize, executor, ctx.stream())); ACL_CHECK(aclDestroyIntArray(acl_pad)); ACL_CHECK(aclDestroyScalar(acl_value)); } void ggml_cann_pad(ggml_backend_cann_context& ctx, ggml_tensor* dst) { ggml_tensor* src = dst->src[0]; aclTensor* acl_src = ggml_cann_create_tensor(src); aclTensor* acl_dst = ggml_cann_create_tensor(dst); // padding: value in the array means how much distance will be padding. // the position of elements in the array means which dirction to padding, // each position means: [dim0.front, dim0.behind, dim1.front, dim1.behind, // dim2.front, dim2.behind, dim3.front, dim3.behind] int64_t paddings[] = { 0, dst->ne[0] - src->ne[0], 0, dst->ne[1] - src->ne[1], 0, dst->ne[2] - src->ne[2], 0, dst->ne[3] - src->ne[3]}; aclnn_pad(ctx, acl_src, acl_dst, paddings); ACL_CHECK(aclDestroyTensor(acl_dst)); ACL_CHECK(aclDestroyTensor(acl_src)); } /** * @brief Performs 2D average pooling on the input tensor and stores the result * in the destination tensor. * * This function performs average pooling on the source tensor and stores the * result in the destination tensor. The pooling parameters (kernel size, * strides, padding) are specified in the `op_params` of the destination tensor. * * @param ctx The context for the CANN backend operations. * @param dst The destination tensor where the result will be stored. The source * tensor is referenced by `dst->src[0]`. */ static void ggml_cann_avg_pool2d(ggml_backend_cann_context& ctx, ggml_tensor* dst) { ggml_tensor* src = dst->src[0]; GGML_ASSERT(src->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32); aclTensor* acl_src = ggml_cann_create_tensor(src, nullptr, nullptr, 0, ACL_FORMAT_NCHW); aclTensor* acl_dst = ggml_cann_create_tensor(dst, nullptr, nullptr, 0, ACL_FORMAT_NCHW); const int32_t* opts = (const int32_t*)dst->op_params; const int k0 = opts[1]; const int k1 = opts[2]; const int s0 = opts[3]; const int s1 = opts[4]; const int p0 = opts[5]; const int p1 = opts[6]; std::vector kernel_dims = {k1, k0}; std::vector stride_dims = {s1, s0}; std::vector padding_avg_dims = {p1, p0}; // (padH, padW) auto* kernel_size = aclCreateIntArray(kernel_dims.data(), 2); auto* strides = aclCreateIntArray(stride_dims.data(), 2); auto* paddings_avg = aclCreateIntArray(padding_avg_dims.data(), 2); bool ceil_mode = false; bool count_include_pad = true; int64_t divisor_override = 0; int8_t cube_math_type = 0; uint64_t workspaceSize = 0; aclOpExecutor* executor; void* workspaceAddr = nullptr; ACL_CHECK(aclnnAvgPool2dGetWorkspaceSize( acl_src, kernel_size, strides, paddings_avg, ceil_mode, count_include_pad, divisor_override, cube_math_type, acl_dst, &workspaceSize, &executor)); if (workspaceSize > 0) { ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); workspaceAddr = workspace_allocator.get(); } ACL_CHECK( aclnnAvgPool2d(workspaceAddr, workspaceSize, executor, ctx.stream())); ACL_CHECK(aclDestroyTensor(acl_src)); ACL_CHECK(aclDestroyTensor(acl_dst)); ACL_CHECK(aclDestroyIntArray(kernel_size)); ACL_CHECK(aclDestroyIntArray(strides)); ACL_CHECK(aclDestroyIntArray(paddings_avg)); } /** * @brief Performs 2D max pooling on the input tensor and stores the result in * the destination tensor. * * This function performs max pooling on the source tensor and stores the result * in the destination tensor. The pooling parameters (kernel size, strides, * padding) are specified in the `op_params` of the destination tensor. * * @param ctx The context for the CANN backend operations. * @param dst The destination tensor where the result will be stored. The source * tensor is referenced by `dst->src[0]`. */ static void ggml_cann_max_pool2d(ggml_backend_cann_context& ctx, ggml_tensor* dst) { ggml_tensor* src = dst->src[0]; GGML_ASSERT(src->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32); aclTensor* acl_src = ggml_cann_create_tensor(src, nullptr, nullptr, 0, ACL_FORMAT_NCHW); aclTensor* acl_dst = ggml_cann_create_tensor(dst, nullptr, nullptr, 0, ACL_FORMAT_NCHW); const int32_t* opts = (const int32_t*)dst->op_params; const int k0 = opts[1]; const int k1 = opts[2]; const int s0 = opts[3]; const int s1 = opts[4]; const int p0 = opts[5]; const int p1 = opts[6]; int64_t temp_ne[] = {src->ne[0] + p0 * 2, src->ne[1] + p1 * 2, src->ne[2], src->ne[3]}; size_t temp_nb[GGML_MAX_DIMS]; temp_nb[0] = ggml_element_size(src); for (int i = 1; i < GGML_MAX_DIMS; i++) { temp_nb[i] = temp_nb[i - 1] * temp_ne[i - 1]; } ggml_cann_pool_alloc temp_buffer_allocator( ctx.pool(), ggml_nbytes(src) + p0 * 2 + p1 * 2 * src->nb[1]); void* buffer = temp_buffer_allocator.get(); aclTensor* tmp_tensor = ggml_cann_create_tensor( buffer, ACL_FLOAT, ggml_element_size(src), temp_ne, temp_nb, GGML_MAX_DIMS, ACL_FORMAT_NCHW); // pad: see padding in ggml_cann_pad() int64_t paddings[] = {p0, p0, p1, p1, 0, 0, 0, 0}; float value = -FLT_MAX; aclnn_pad(ctx, acl_src, tmp_tensor, paddings, value); // max_pool std::vector kernel_dims = {k1, k0}; std::vector stride_dims = {s1, s0}; // padding_max_dims: [dim0_start, dim0_end, dim1_start, dim1_end] std::vector padding_max_dims = {0, 0, 0, 0}; std::vector dilation_size = {1, 1}; auto* kernel_size = aclCreateIntArray(kernel_dims.data(), 2); auto* strides = aclCreateIntArray(stride_dims.data(), 2); auto* paddings_max = aclCreateIntArray(padding_max_dims.data(), 4); auto* dilations = aclCreateIntArray(dilation_size.data(), 2); bool ceil_mode = false; int64_t auto_pads = 0; uint64_t workspaceSize = 0; aclOpExecutor* executor; void* workspaceAddr = nullptr; ACL_CHECK(aclnnMaxPoolGetWorkspaceSize( tmp_tensor, kernel_size, strides, auto_pads, paddings_max, dilations, ceil_mode, acl_dst, &workspaceSize, &executor)); if (workspaceSize > 0) { ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); workspaceAddr = workspace_allocator.get(); } ACL_CHECK( aclnnMaxPool(workspaceAddr, workspaceSize, executor, ctx.stream())); ACL_CHECK(aclDestroyTensor(acl_src)); ACL_CHECK(aclDestroyTensor(acl_dst)); ACL_CHECK(aclDestroyTensor(tmp_tensor)); ACL_CHECK(aclDestroyIntArray(kernel_size)); ACL_CHECK(aclDestroyIntArray(strides)); ACL_CHECK(aclDestroyIntArray(paddings_max)); ACL_CHECK(aclDestroyIntArray(dilations)); } void ggml_cann_pool2d(ggml_backend_cann_context& ctx, ggml_tensor* dst) { const int32_t* opts = (const int32_t*)dst->op_params; enum ggml_op_pool op = static_cast(opts[0]); switch (op) { case GGML_OP_POOL_AVG: ggml_cann_avg_pool2d(ctx, dst); break; case GGML_OP_POOL_MAX: ggml_cann_max_pool2d(ctx, dst); break; case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error"); break; } } /** * @brief Copies data from the source tensor to the destination tensor. * * This function copies data from the source tensor `acl_src` to the destination * tensor `acl_dst`. * * @param ctx The context for the CANN backend operations. * @param acl_src The source tensor from which data will be copied. * @param acl_dst The destination tensor where the data will be copied to. */ static void cann_copy(ggml_backend_cann_context& ctx, aclTensor* acl_src, aclTensor* acl_dst) { uint64_t workspaceSize = 0; aclOpExecutor* executor; void* workspaceAddr = nullptr; ACL_CHECK(aclnnInplaceCopyGetWorkspaceSize(acl_dst, acl_src, &workspaceSize, &executor)); if (workspaceSize > 0) { ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); workspaceAddr = workspace_allocator.get(); } ACL_CHECK( aclnnInplaceCopy(workspaceAddr, workspaceSize, executor, ctx.stream())); } void ggml_cann_dup(ggml_backend_cann_context& ctx, ggml_tensor* dst) { ggml_tensor* src = dst->src[0]; aclTensor* acl_src = ggml_cann_create_tensor(src); aclTensor* acl_dst = ggml_cann_create_tensor(dst); ggml_cann_pool_alloc src_extra_allocator(ctx.pool(), sizeof(ggml_tensor)); ggml_cann_pool_alloc dst_extra_allocator(ctx.pool(), sizeof(ggml_tensor)); src->extra = src_extra_allocator.get(); dst->extra = dst_extra_allocator.get(); ACL_CHECK(aclrtMemcpyAsync(src->extra, sizeof(ggml_tensor), src, sizeof(ggml_tensor), ACL_MEMCPY_HOST_TO_DEVICE, ctx.stream())); ACL_CHECK(aclrtMemcpyAsync(dst->extra, sizeof(ggml_tensor), dst, sizeof(ggml_tensor), ACL_MEMCPY_HOST_TO_DEVICE, ctx.stream())); if ((dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32) && ggml_are_same_shape(src, dst)) { cann_copy(ctx, acl_src, acl_dst); ACL_CHECK(aclDestroyTensor(acl_src)); ACL_CHECK(aclDestroyTensor(acl_dst)); return; } // TODO: simplify if (src->type == GGML_TYPE_F16) { if (dst->type == GGML_TYPE_Q8_0) { aclrtlaunch_ascendc_quantize_f16_q8_0( 24, ctx.stream(), src->data, dst->data, ((ggml_tensor*)src->extra)->ne, ((ggml_tensor*)src->extra)->nb, ((ggml_tensor*)dst->extra)->ne); return; } if (dst->type == GGML_TYPE_Q4_0) { aclrtlaunch_ascendc_quantize_f16_to_q4_0( 24, ctx.stream(), src->data, dst->data, ((ggml_tensor*)src->extra)->ne, ((ggml_tensor*)src->extra)->nb, ((ggml_tensor*)dst->extra)->ne); return; } if (dst->type == GGML_TYPE_F16) { if (ggml_are_same_shape(src, dst)) { cann_copy(ctx, acl_src, acl_dst); ACL_CHECK(aclDestroyTensor(acl_src)); ACL_CHECK(aclDestroyTensor(acl_dst)); return; } if (ggml_is_contiguous(dst)) { const size_t src_type_size = ggml_type_size(src->type); if (src->nb[0] == src_type_size) { // src0 is contigous on first dimension, copy by rows int64_t rows_num = ggml_nrows(src); aclrtlaunch_ascendc_dup_by_rows_fp16( rows_num, ctx.stream(), src->data, dst->data, ((ggml_tensor*)src->extra)->ne, ((ggml_tensor*)src->extra)->nb, ((ggml_tensor*)dst->extra)->ne, ((ggml_tensor*)dst->extra)->nb); return; } GGML_ABORT("fatal error"); } GGML_ABORT("fatal error"); } if (dst->type == GGML_TYPE_F32) { if (ggml_are_same_shape(src, dst)) { cann_copy(ctx, acl_src, acl_dst); ACL_CHECK(aclDestroyTensor(acl_src)); ACL_CHECK(aclDestroyTensor(acl_dst)); return; } if (ggml_is_contiguous(dst)) { const size_t src_type_size = ggml_type_size(src->type); if (src->nb[0] == src_type_size) { // src0 is contigous on first dimension, copy by rows int64_t rows_num = ggml_nrows(src); aclrtlaunch_ascendc_dup_by_rows_fp16_to_fp32( rows_num, ctx.stream(), src->data, dst->data, ((ggml_tensor*)src->extra)->ne, ((ggml_tensor*)src->extra)->nb, ((ggml_tensor*)dst->extra)->ne, ((ggml_tensor*)dst->extra)->nb); return; } GGML_ABORT("fatal error"); } GGML_ABORT("fatal error"); } // TODO GGML_ABORT("fatal error"); } else if (src->type == GGML_TYPE_F32) { // TODO: if (src0->type == dst->type && ne00 == ne0 && nb00 == type_size // && nb0 == type_size) if (dst->type == GGML_TYPE_Q8_0) { aclrtlaunch_ascendc_quantize_f32_q8_0( 24, ctx.stream(), src->data, dst->data, ((ggml_tensor*)src->extra)->ne, ((ggml_tensor*)src->extra)->nb, ((ggml_tensor*)dst->extra)->ne); return; } if (dst->type == GGML_TYPE_Q4_0) { aclrtlaunch_ascendc_quantize_f32_to_q4_0( 24, ctx.stream(), src->data, dst->data, ((ggml_tensor*)src->extra)->ne, ((ggml_tensor*)src->extra)->nb, ((ggml_tensor*)dst->extra)->ne); return; } if (dst->type == GGML_TYPE_F32) { if (ggml_are_same_shape(src, dst)) { cann_copy(ctx, acl_src, acl_dst); ACL_CHECK(aclDestroyTensor(acl_src)); ACL_CHECK(aclDestroyTensor(acl_dst)); return; } if (ggml_is_contiguous(dst)) { const size_t src_type_size = ggml_type_size(src->type); if (src->nb[0] == src_type_size) { // src0 is contigous on first dimension, copy by rows int64_t rows_num = ggml_nrows(src); aclrtlaunch_ascendc_dup_by_rows_fp32( rows_num, ctx.stream(), src->data, dst->data, ((ggml_tensor*)src->extra)->ne, ((ggml_tensor*)src->extra)->nb, ((ggml_tensor*)dst->extra)->ne, ((ggml_tensor*)dst->extra)->nb); return; } GGML_ABORT("fatal error"); } else { // TODO: dst not contiguous GGML_ABORT("fatal error"); } } if (dst->type == GGML_TYPE_F16) { if (ggml_are_same_shape(src, dst)) { cann_copy(ctx, acl_src, acl_dst); ACL_CHECK(aclDestroyTensor(acl_src)); ACL_CHECK(aclDestroyTensor(acl_dst)); return; } if (ggml_is_contiguous(dst)) { const size_t src_type_size = ggml_type_size(src->type); if (src->nb[0] == src_type_size) { // src0 is contigous on first dimension, copy by rows int64_t rows_num = ggml_nrows(src); aclrtlaunch_ascendc_dup_by_rows_fp32_to_fp16( rows_num, ctx.stream(), src->data, dst->data, ((ggml_tensor*)src->extra)->ne, ((ggml_tensor*)src->extra)->nb, ((ggml_tensor*)dst->extra)->ne, ((ggml_tensor*)dst->extra)->nb); return; } GGML_ABORT("fatal error"); } } // TODO GGML_ABORT("fatal error"); } else { if (ggml_are_same_shape(src, dst)) { cann_copy(ctx, acl_src, acl_dst); ACL_CHECK(aclDestroyTensor(acl_src)); ACL_CHECK(aclDestroyTensor(acl_dst)); return; } GGML_ABORT("fatal error"); } } #ifdef __cplusplus extern "C" { #endif aclnnStatus aclnnRmsNormGetWorkspaceSize(const aclTensor* x, const aclTensor* gamma, double epsilon, const aclTensor* yOut, const aclTensor* rstdOout, uint64_t* workspaceSize, aclOpExecutor** executor); aclnnStatus aclnnRmsNorm(void* workspace, uint64_t workspaceSize, aclOpExecutor* executor, aclrtStream stream); #ifdef __cplusplus } #endif /** * @brief Creates an ACL tensor initialized with zeros using a provided buffer. * * This function initializes a tensor with zeros using the specified buffer and * tensor parameters. * * @param ctx The context for the CANN backend operations. * @param buffer The buffer to be used for the tensor data. * @param n_bytes The size of the buffer in bytes. * @param ne An array specifying the extents (sizes) of each dimension of the * tensor. * @param dims The number of dimensions of the tensor. * @param type The data type of the tensor. * @param type_size The size of each element in the tensor data type. * @return An ACL tensor initialized with zeros. */ static aclTensor* aclnn_zero(ggml_backend_cann_context& ctx, void* buffer, size_t n_bytes, int64_t* ne, int64_t dims, aclDataType type, size_t type_size) { size_t nb[GGML_MAX_DIMS]; nb[0] = type_size; for (int i = 1; i < dims; i++) { nb[i] = nb[i - 1] * ne[i - 1]; } ACL_CHECK(aclrtMemsetAsync(buffer, n_bytes, 0, n_bytes, ctx.stream())); aclTensor* zero = ggml_cann_create_tensor(buffer, type, type_size, ne, nb, dims); return zero; } /** * @brief Creates an ACL tensor initialized with ones using a provided buffer. * * This function initializes a tensor with ones using the specified buffer and * tensor parameters. * * @param ctx The context for the CANN backend operations. * @param buffer The buffer to be used for the tensor data. * @param n_bytes The size of the buffer in bytes. * @param ne An array specifying the extents (sizes) of each dimension of the * tensor. * @param dims The number of dimensions of the tensor. * @param type The data type of the tensor. * @param type_size The size of each element in the tensor data type. * @param value The value to be used for initializing the tensor (default * is 1.0). * @return An ACL tensor initialized with ones. */ static aclTensor* aclnn_ones(ggml_backend_cann_context& ctx, void* buffer, size_t n_bytes, int64_t* ne, int64_t dims, aclDataType type, size_t type_size, float value = 1.0f) { aclTensor* acl_tensor = aclnn_zero(ctx, buffer, n_bytes, ne, dims, type, type_size); float alpha_host = 1.0f; aclScalar* alpha = aclCreateScalar(&alpha_host, aclDataType::ACL_FLOAT); aclScalar* other = aclCreateScalar(&value, aclDataType::ACL_FLOAT); uint64_t workspaceSize = 0; aclOpExecutor* executor; void* workspaceAddr = nullptr; ACL_CHECK(aclnnInplaceAddsGetWorkspaceSize(acl_tensor, other, alpha, &workspaceSize, &executor)); if (workspaceSize > 0) { ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); workspaceAddr = workspace_allocator.get(); } ACL_CHECK( aclnnInplaceAdds(workspaceAddr, workspaceSize, executor, ctx.stream())); return acl_tensor; } void ggml_cann_rms_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst) { ggml_tensor* src = dst->src[0]; aclTensor* acl_src = ggml_cann_create_tensor(src); aclTensor* acl_dst = ggml_cann_create_tensor(dst); float eps; memcpy(&eps, dst->op_params, sizeof(float)); GGML_ASSERT(eps > 0.0f); uint64_t workspaceSize = 0; aclOpExecutor* executor; void* workspaceAddr = nullptr; size_t one_tensor_n_bytes = src->ne[0] * ggml_element_size(src); ggml_cann_pool_alloc one_tensor_allocator(ctx.pool(), one_tensor_n_bytes); aclTensor* acl_gamma = aclnn_ones( ctx, one_tensor_allocator.get(), one_tensor_n_bytes, src->ne, 1, ggml_cann_type_mapping(src->type), ggml_element_size(src)); size_t zero_tensor_n_bytes = src->ne[1] * src->ne[2] * src->ne[3] * ggml_element_size(src); ggml_cann_pool_alloc zero_tensor_allocator(ctx.pool(), zero_tensor_n_bytes); aclTensor* acl_rstd = aclnn_zero(ctx, zero_tensor_allocator.get(), zero_tensor_n_bytes, src->ne, GGML_MAX_DIMS, ggml_cann_type_mapping(src->type), ggml_element_size(src)); ACL_CHECK(aclnnRmsNormGetWorkspaceSize( acl_src, acl_gamma, eps, acl_dst, acl_rstd, &workspaceSize, &executor)); if (workspaceSize > 0) { ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); workspaceAddr = workspace_allocator.get(); } ACL_CHECK( aclnnRmsNorm(workspaceAddr, workspaceSize, executor, ctx.stream())); ACL_CHECK(aclDestroyTensor(acl_src)); ACL_CHECK(aclDestroyTensor(acl_dst)); ACL_CHECK(aclDestroyTensor(acl_gamma)); ACL_CHECK(aclDestroyTensor(acl_rstd)); } // TODO: performace is low. void ggml_cann_diag_mask(ggml_backend_cann_context& ctx, ggml_tensor* dst, float value) { ggml_tensor* src = dst->src[0]; aclTensor* acl_src = ggml_cann_create_tensor(src); aclTensor* acl_dst = ggml_cann_create_tensor(dst); const int n_past = ((int32_t*)dst->op_params)[0]; size_t one_tensor_n_bytes = src->ne[0] * src->ne[1] * src->ne[2] * src->ne[3] * ggml_element_size(src); ggml_cann_pool_alloc one_tensor_allocator(ctx.pool(), one_tensor_n_bytes); aclTensor* mask_tensor = aclnn_ones(ctx, one_tensor_allocator.get(), one_tensor_n_bytes, src->ne, GGML_MAX_DIMS, ggml_cann_type_mapping(src->type), ggml_element_size(src), value); uint64_t workspaceSize = 0; aclOpExecutor* executor; void* workspaceAddr = nullptr; ACL_CHECK(aclnnInplaceTriuGetWorkspaceSize(mask_tensor, n_past + 1, &workspaceSize, &executor)); if (workspaceSize > 0) { ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); workspaceAddr = workspace_allocator.get(); } ACL_CHECK( aclnnInplaceTriu(workspaceAddr, workspaceSize, executor, ctx.stream())); ACL_CHECK(aclnnTrilGetWorkspaceSize(acl_src, n_past + 1, acl_dst, &workspaceSize, &executor)); if (workspaceSize > 0) { ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); workspaceAddr = workspace_allocator.get(); } ACL_CHECK(aclnnTril(workspaceAddr, workspaceSize, executor, ctx.stream())); aclScalar* alpha = nullptr; float alphaValue = 1.0f; alpha = aclCreateScalar(&alphaValue, aclDataType::ACL_FLOAT); ACL_CHECK(aclnnInplaceAddGetWorkspaceSize(acl_dst, mask_tensor, alpha, &workspaceSize, &executor)); if (workspaceSize > 0) { ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); workspaceAddr = workspace_allocator.get(); } ACL_CHECK( aclnnInplaceAdd(workspaceAddr, workspaceSize, executor, ctx.stream())); ACL_CHECK(aclDestroyScalar(alpha)); ACL_CHECK(aclDestroyTensor(mask_tensor)); ACL_CHECK(aclDestroyTensor(acl_src)); ACL_CHECK(aclDestroyTensor(acl_dst)); } /** * @brief Casts the data type of a source tensor to a destination tensor. * * This function casts the data type of the source tensor `acl_src` to the * specified data type `cast_data_type` and stores the result in the destination * tensor `acl_dst`. * * @param ctx The context for the CANN backend operations. * @param acl_src The source tensor whose data type will be casted. * @param acl_dst The destination tensor where the casted result will be stored. * @param cast_data_type The target data type to which the source tensor will be * casted. */ static void aclnn_cast(ggml_backend_cann_context& ctx, aclTensor* acl_src, aclTensor* acl_dst, aclDataType cast_data_type) { uint64_t workspaceSize = 0; aclOpExecutor* executor; void* workspaceAddr = nullptr; ACL_CHECK(aclnnCastGetWorkspaceSize(acl_src, cast_data_type, acl_dst, &workspaceSize, &executor)); if (workspaceSize > 0) { ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); workspaceAddr = workspace_allocator.get(); } ACL_CHECK(aclnnCast(workspaceAddr, workspaceSize, executor, ctx.stream())); } /** * @brief Permutes the dimensions of a tensor according to a specified order. * * This function permutes the dimensions of the source tensor `acl_src` * according to the order specified in the `new_dim` array and stores the result * in the destination tensor `acl_dst`. * * @param ctx The context for the CANN backend operations. * @param acl_src The source tensor whose dimensions will be permuted. * @param acl_dst The destination tensor where the permuted result will be * stored. * @param new_dim An array specifying the new order of dimensions for the * tensor. * @param dims The number of dimensions in the tensor. */ static void aclnn_permute(ggml_backend_cann_context& ctx, aclTensor* acl_src, aclTensor* acl_dst, int64_t* new_dim, uint64_t dims) { aclIntArray* acl_dims = aclCreateIntArray(new_dim, dims); uint64_t workspaceSize = 0; aclOpExecutor* executor; void* workspaceAddr = nullptr; ACL_CHECK(aclnnPermuteGetWorkspaceSize(acl_src, acl_dims, acl_dst, &workspaceSize, &executor)); if (workspaceSize > 0) { ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); workspaceAddr = workspace_allocator.get(); } ACL_CHECK( aclnnPermute(workspaceAddr, workspaceSize, executor, ctx.stream())); ACL_CHECK(aclDestroyIntArray(acl_dims)); } #ifdef __cplusplus extern "C" { #endif aclnnStatus aclnnIm2colGetWorkspaceSize(const aclTensor* self, const aclIntArray* kernelSize, const aclIntArray* dilation, const aclIntArray* padding, const aclIntArray* stride, aclTensor* out, uint64_t* workspaceSize, aclOpExecutor** executor); aclnnStatus aclnnIm2col(void* workspace, uint64_t workspaceSize, aclOpExecutor* executor, aclrtStream stream); #ifdef __cplusplus } #endif static void ggml_cann_im2col_2d_post_process(ggml_backend_cann_context& ctx, ggml_tensor* dst, ggml_tensor* src1, aclTensor* tmp_cast_tensor, aclTensor* tmp_im2col_tensor) { // Permute: [N, IC * KH * KW, OW * OH] -> [N, OW * OH, IC * KH * KW] int64_t dst_ne[] = {dst->ne[0], dst->ne[1] * dst->ne[2], dst->ne[3]}; size_t dst_nb[] = {dst->nb[0], dst->nb[1], dst->nb[3]}; aclTensor* acl_dst = ggml_cann_create_tensor(dst, dst_ne, dst_nb, GGML_MAX_DIMS - 1); int64_t permute_dim[] = {0, 2, 1}; if (src1->type != dst->type) { aclnn_permute(ctx, tmp_cast_tensor, acl_dst, permute_dim, 3); } else { aclnn_permute(ctx, tmp_im2col_tensor, acl_dst, permute_dim, 3); } // release ACL_CHECK(aclDestroyTensor(acl_dst)); } static void ggml_cann_im2col_1d_post_process( ggml_backend_cann_context& ctx, ggml_tensor* dst, ggml_tensor* src1, aclTensor* tmp_cast_tensor, aclTensor* tmp_im2col_tensor, const std::vector& im2col_op_params) { // get params const int64_t KH = im2col_op_params[0]; const int64_t KW = im2col_op_params[1]; const int64_t IW = im2col_op_params[2]; const int64_t IC = im2col_op_params[3]; const int64_t N = im2col_op_params[4]; const int64_t OH = im2col_op_params[5]; const int64_t OW = im2col_op_params[6]; const int64_t s0 = im2col_op_params[7]; const int64_t p0 = im2col_op_params[8]; const int64_t d0 = im2col_op_params[9]; const int64_t n_bytes_factor = im2col_op_params[10]; // Permute: [N, IC * KH * KW, OW * OH] -> // [N, OW * OH * n_bytes_factor, IC * KH * KW] aclTensor* tmp_permute_tensor = nullptr; ggml_cann_pool_alloc tmp_permute_allocator(ctx.pool()); tmp_permute_allocator.alloc(ggml_nbytes(dst) * n_bytes_factor); void* tmp_permute_buffer = tmp_permute_allocator.get(); int64_t tmp_permute_ne[] = {IC * KH * KW, OW * OH * n_bytes_factor, N}; size_t tmp_permute_nb[GGML_MAX_DIMS - 1]; tmp_permute_nb[0] = ggml_type_size(dst->type); for (int i = 1; i < GGML_MAX_DIMS - 1; i++) { tmp_permute_nb[i] = tmp_permute_nb[i - 1] * tmp_permute_ne[i - 1]; } tmp_permute_tensor = ggml_cann_create_tensor( tmp_permute_buffer, ggml_cann_type_mapping(dst->type), ggml_type_size(dst->type), tmp_permute_ne, tmp_permute_nb, GGML_MAX_DIMS - 1, ACL_FORMAT_ND); int64_t permute_dim[] = {0, 2, 1}; if (src1->type != dst->type) { aclnn_permute(ctx, tmp_cast_tensor, tmp_permute_tensor, permute_dim, 3); } else { aclnn_permute(ctx, tmp_im2col_tensor, tmp_permute_tensor, permute_dim, 3); } // number of times the kernel moves in W dimension const int n_step_w = (IW + 2 * p0 - d0 * (KW - 1) - 1) / s0 + 1; size_t offset; void *cur_dst_buffer = dst->data, *cur_permute_buffer = tmp_permute_buffer; // memory copy with offset to restore 1D im2col from 2d if (IC > 1) { offset = IC * KH * KW * n_step_w * ggml_type_size(dst->type); size_t size_cpy = KH * KW * ggml_type_size(dst->type); for (int c = 0; c < IC; c++) { cur_permute_buffer = (char*)tmp_permute_buffer + offset + KH * KW * c * ggml_type_size(dst->type); cur_dst_buffer = (char*)dst->data + c * KH * KW * n_step_w * ggml_type_size(dst->type); for (int i = 0; i < n_step_w; i++) { ACL_CHECK(aclrtMemcpyAsync( cur_dst_buffer, size_cpy, cur_permute_buffer, size_cpy, ACL_MEMCPY_DEVICE_TO_DEVICE, ctx.stream())); cur_dst_buffer = (char*)cur_dst_buffer + KH * KW * ggml_type_size(dst->type); cur_permute_buffer = (char*)cur_permute_buffer + KH * KW * IC * ggml_type_size(dst->type); } } } else { offset = KH * KW * n_step_w * ggml_type_size(dst->type); // equal to ggml_nbytes(dst) ACL_CHECK(aclrtMemcpyAsync(dst->data, offset, (char*)tmp_permute_buffer + offset, offset, ACL_MEMCPY_DEVICE_TO_DEVICE, ctx.stream())); } // release ACL_CHECK(aclDestroyTensor(tmp_permute_tensor)); } void ggml_cann_im2col(ggml_backend_cann_context& ctx, ggml_tensor* dst) { ggml_tensor* src0 = dst->src[0]; // kernel ggml_tensor* src1 = dst->src[1]; // input GGML_ASSERT(src0->type == GGML_TYPE_F16); GGML_ASSERT(src1->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32); GGML_TENSOR_BINARY_OP_LOCALS; // aclnnIm2col only works on 2D. set s1, p1, d1 to 1 to perform 2D // im2col and do post-processing to restore it to 1D. const bool is_2D = ((const int32_t*)(dst->op_params))[6] == 1; const int32_t s0 = ((const int32_t*)(dst->op_params))[0]; const int32_t s1 = is_2D ? ((const int32_t*)(dst->op_params))[1] : 1; const int32_t p0 = ((const int32_t*)(dst->op_params))[2]; const int32_t p1 = is_2D ? ((const int32_t*)(dst->op_params))[3] : 1; const int32_t d0 = ((const int32_t*)(dst->op_params))[4]; const int32_t d1 = is_2D ? ((const int32_t*)(dst->op_params))[5] : 1; const int64_t N = ne13; const int64_t IC = ne12; const int64_t KH = ne01; const int64_t KW = ne00; const int64_t IW = ne10; const int64_t OH = is_2D ? ne2 : 1; const int64_t OW = ne1; GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); GGML_ASSERT(nb10 == sizeof(float)); // memory allocated increased to 3x when is_2D == false const int64_t n_bytes_factor = is_2D ? 1 : 3; // im2col: [N,C,H,W] -> [N, IC * KH * KW, OW * OH * n_bytes_factor] aclTensor* acl_src1 = ggml_cann_create_tensor(src1); int64_t tmp_im2col_ne[] = {OW * OH * n_bytes_factor, IC * KH * KW, N}; size_t tmp_im2col_nb[GGML_MAX_DIMS - 1]; tmp_im2col_nb[0] = ggml_type_size(src1->type); for (int i = 1; i < GGML_MAX_DIMS - 1; i++) { tmp_im2col_nb[i] = tmp_im2col_nb[i - 1] * tmp_im2col_ne[i - 1]; } // Calculate im2col. // If dst is f16, tmp_buffer is f32, we need alloc src.typesize * // dst.elemcount. ggml_cann_pool_alloc im2col_allocator( ctx.pool(), ggml_nelements(dst) * ggml_element_size(src1) * n_bytes_factor); void* tmp_im2col_buffer = im2col_allocator.get(); aclTensor* tmp_im2col_tensor = ggml_cann_create_tensor( tmp_im2col_buffer, ggml_cann_type_mapping(src1->type), ggml_type_size(src1->type), tmp_im2col_ne, tmp_im2col_nb, GGML_MAX_DIMS - 1, ACL_FORMAT_ND); std::vector kernel_dims = {KH, KW}; std::vector dilation_size = {d1, d0}; std::vector padding_dims = {p1, p0}; std::vector stride_dims = {s1, s0}; auto* kernel_size = aclCreateIntArray(kernel_dims.data(), 2); auto* dilations = aclCreateIntArray(dilation_size.data(), 2); auto* paddings = aclCreateIntArray(padding_dims.data(), 2); auto* strides = aclCreateIntArray(stride_dims.data(), 2); uint64_t workspaceSize = 0; aclOpExecutor* executor; void* workspaceAddr = nullptr; ACL_CHECK(aclnnIm2colGetWorkspaceSize(acl_src1, kernel_size, dilations, paddings, strides, tmp_im2col_tensor, &workspaceSize, &executor)); ggml_cann_pool_alloc workspace_allocator(ctx.pool()); if (workspaceSize > 0) { workspace_allocator.alloc(workspaceSize); workspaceAddr = workspace_allocator.get(); } ACL_CHECK( aclnnIm2col(workspaceAddr, workspaceSize, executor, ctx.stream())); // Cast if dst is f16. aclTensor* tmp_cast_tensor = nullptr; ggml_cann_pool_alloc tmp_cast_allocator(ctx.pool()); void* tmp_cast_buffer = nullptr; if (src1->type != dst->type) { tmp_cast_allocator.alloc(ggml_nbytes(dst) * n_bytes_factor); tmp_cast_buffer = tmp_cast_allocator.get(); size_t temp_cast_nb[GGML_MAX_DIMS - 1]; temp_cast_nb[0] = ggml_type_size(dst->type); for (int i = 1; i < GGML_MAX_DIMS - 1; i++) { temp_cast_nb[i] = temp_cast_nb[i - 1] * tmp_im2col_ne[i - 1]; } tmp_cast_tensor = ggml_cann_create_tensor( tmp_cast_buffer, ggml_cann_type_mapping(dst->type), ggml_type_size(dst->type), tmp_im2col_ne, temp_cast_nb, GGML_MAX_DIMS - 1, ACL_FORMAT_ND); aclnn_cast(ctx, tmp_im2col_tensor, tmp_cast_tensor, ggml_cann_type_mapping(dst->type)); } // post-processing if (is_2D) { ggml_cann_im2col_2d_post_process(ctx, dst, src1, tmp_cast_tensor, tmp_im2col_tensor); } else { std::vector im2col_op_params = { KH, KW, IW, IC, N, OH, OW, s0, p0, d0, n_bytes_factor}; ggml_cann_im2col_1d_post_process(ctx, dst, src1, tmp_cast_tensor, tmp_im2col_tensor, im2col_op_params); } // release ACL_CHECK(aclDestroyTensor(acl_src1)); ACL_CHECK(aclDestroyTensor(tmp_im2col_tensor)); ACL_CHECK(aclDestroyTensor(tmp_cast_tensor)); ACL_CHECK(aclDestroyIntArray(kernel_size)); ACL_CHECK(aclDestroyIntArray(dilations)); ACL_CHECK(aclDestroyIntArray(paddings)); ACL_CHECK(aclDestroyIntArray(strides)); } /** * @brief Applies element-wise exponential function to the elements of a tensor. * * This function computes the exponential of each element in the source tensor * `acl_src` and stores the result back into the same tensor. * The operation is defined as: * \f[ * \text {acl_src }_i=e^{acl\_src_i} * \f] * * @param ctx The context for the CANN backend operations. * @param acl_src The tensor on which the exponential function will be applied. */ static void aclnn_exp(ggml_backend_cann_context& ctx, aclTensor* acl_src) { uint64_t workspaceSize = 0; aclOpExecutor* executor; void* workspaceAddr = nullptr; ACL_CHECK( aclnnInplaceExpGetWorkspaceSize(acl_src, &workspaceSize, &executor)); if (workspaceSize > 0) { ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); workspaceAddr = workspace_allocator.get(); } ACL_CHECK( aclnnInplaceExp(workspaceAddr, workspaceSize, executor, ctx.stream())); } /** * @brief Multiplies elements of a tensor by a scalar value, optionally * in-place. * * This function multiplies each element of the source tensor `acl_src` by the * scalar `scale` and stores the result in the destination tensor `acl_dst`. If * `inplace` is true, `acl_dst` will not be used and the operation is performed * in-place on `acl_src`. * The operation is defined as: * \f[ * \text {acl_dst }_i=\text {acl_src }_i \times \text {scale} * \f] * * @param ctx The context for the CANN backend operations. * @param acl_src The source tensor whose elements will be multiplied. * @param scale The scalar value by which each element of `acl_src` will be * multiplied. * @param acl_dst The destination tensor where the result will be stored if * `inplace` is false. * @param inplace Flag indicating whether to perform the operation in-place on * `acl_src`. */ static void aclnn_muls(ggml_backend_cann_context& ctx, aclTensor* acl_src, float scale, aclTensor* acl_dst, bool inplace) { aclScalar* acl_scale = aclCreateScalar(&scale, aclDataType::ACL_FLOAT); uint64_t workspaceSize = 0; aclOpExecutor* executor; void* workspaceAddr = nullptr; if (inplace) { ACL_CHECK(aclnnInplaceMulsGetWorkspaceSize(acl_src, acl_scale, &workspaceSize, &executor)); if (workspaceSize > 0) { ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); workspaceAddr = workspace_allocator.get(); } ACL_CHECK(aclnnInplaceMuls(workspaceAddr, workspaceSize, executor, ctx.stream())); } else { ACL_CHECK(aclnnMulsGetWorkspaceSize(acl_src, acl_scale, acl_dst, &workspaceSize, &executor)); if (workspaceSize > 0) { ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); workspaceAddr = workspace_allocator.get(); } ACL_CHECK( aclnnMuls(workspaceAddr, workspaceSize, executor, ctx.stream())); } ACL_CHECK(aclDestroyScalar(acl_scale)); } /** * @brief Performs an in-place element-wise multiplication of two tensors. * * This function performs an element-wise multiplication of the tensors * `acl_src` and `acl_other` and stores the result in `acl_src`. * The operation is defined as: * \f[ * \text {acl_src }_i=\text {acl_src }_i \times \text {acl_other }_i * \f] * * @param ctx The context for the CANN backend operations. * @param acl_src The source tensor where the multiplication result will be * stored. * @param acl_other The tensor whose elements will be multiplied with `acl_src`. */ static void aclnn_inplace_mul(ggml_backend_cann_context& ctx, aclTensor* acl_src, aclTensor* acl_other) { uint64_t workspaceSize = 0; aclOpExecutor* executor; void* workspaceAddr = nullptr; ACL_CHECK(aclnnInplaceMulGetWorkspaceSize(acl_src, acl_other, &workspaceSize, &executor)); if (workspaceSize > 0) { ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); workspaceAddr = workspace_allocator.get(); } ACL_CHECK( aclnnInplaceMul(workspaceAddr, workspaceSize, executor, ctx.stream())); } /** * @brief Performs element-wise multiplication of two tensors and stores the * result in a destination tensor. * * This function performs element-wise multiplication of the tensors `acl_src` * and `acl_other` and stores the result in the destination tensor `acl_dst`. * The operation is defined as: * \f[ * \text {acl_dst }_i=\text {acl_src }_i \times \text {acl_other }_i * \f] * * @param ctx The context for the CANN backend operations. * @param acl_src The first tensor for element-wise multiplication. * @param acl_other The second tensor for element-wise multiplication. * @param acl_dst The destination tensor where the result will be stored. */ static void aclnn_mul(ggml_backend_cann_context& ctx, aclTensor* acl_src, aclTensor* acl_other, aclTensor* acl_dst) { uint64_t workspaceSize = 0; aclOpExecutor* executor; void* workspaceAddr = nullptr; ACL_CHECK(aclnnMulGetWorkspaceSize(acl_src, acl_other, acl_dst, &workspaceSize, &executor)); if (workspaceSize > 0) { ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); workspaceAddr = workspace_allocator.get(); } ACL_CHECK(aclnnMul(workspaceAddr, workspaceSize, executor, ctx.stream())); } /** * @brief Applies element-wise cosine function to the elements of a tensor. * * This function computes the cosine of each element in the source tensor * `acl_src` and stores the result in the destination tensor `acl_dst`. The * operation is defined as: \f[ \text {acl_dst }_i=\cos \left(\text {acl_src * }_i\right) \f] * * @param ctx The context for the CANN backend operations. * @param acl_src The source tensor on which the cosine function will be * applied. * @param acl_dst The destination tensor where the cosine results will be * stored. */ static void aclnn_cos(ggml_backend_cann_context& ctx, aclTensor* acl_src, aclTensor* acl_dst) { uint64_t workspaceSize = 0; aclOpExecutor* executor; void* workspaceAddr = nullptr; ACL_CHECK( aclnnCosGetWorkspaceSize(acl_src, acl_dst, &workspaceSize, &executor)); if (workspaceSize > 0) { ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); workspaceAddr = workspace_allocator.get(); } ACL_CHECK(aclnnCos(workspaceAddr, workspaceSize, executor, ctx.stream())); } /** * @brief Applies element-wise sine function to the elements of a tensor. * * This function computes the sine of each element in the source tensor `acl_src` * and stores the result in the destination tensor `acl_dst`. * The operation is defined as: * \f[ * \text {acl_dst }_i=\sin \left(\text {acl_src }_i\right) * \f] * @param ctx The context for the CANN backend operations. * @param acl_src The source tensor on which the sine function will be applied. * @param acl_dst The destination tensor where the sine results will be stored. */ static void aclnn_sin(ggml_backend_cann_context& ctx, aclTensor* acl_src, aclTensor* acl_dst) { uint64_t workspaceSize = 0; aclOpExecutor* executor; void* workspaceAddr = nullptr; ACL_CHECK( aclnnSinGetWorkspaceSize(acl_src, acl_dst, &workspaceSize, &executor)); if (workspaceSize > 0) { ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); workspaceAddr = workspace_allocator.get(); } ACL_CHECK(aclnnSin(workspaceAddr, workspaceSize, executor, ctx.stream())); } void ggml_cann_timestep_embedding(ggml_backend_cann_context& ctx, ggml_tensor* dst) { const ggml_tensor* src = dst->src[0]; GGML_ASSERT(src->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32); const int dim = dst->op_params[0]; const int max_period = dst->op_params[1]; int half = dim / 2; aclTensor* acl_src = ggml_cann_create_tensor(src); // arange: [0, ..., half) float start = 0; float stop = half; float step = 1; int64_t n_elements_arange = half; int64_t tmp_arange_ne[] = {half}; size_t tmp_arange_nb[] = {sizeof(dst->type)}; ggml_cann_pool_alloc arange_allocator(ctx.pool(), half * sizeof(dst->type)); void* tmp_arange_buffer = arange_allocator.get(); aclTensor* tmp_arange_tensor = ggml_cann_create_tensor( tmp_arange_buffer, ggml_cann_type_mapping(dst->type), ggml_type_size(dst->type), tmp_arange_ne, tmp_arange_nb, GGML_MAX_DIMS - 3, ACL_FORMAT_ND); aclnn_arange(ctx, tmp_arange_tensor, start, stop, step, n_elements_arange); // freq float freq_param = -logf(max_period) / half; bool inplace = true; aclnn_muls(ctx, tmp_arange_tensor, freq_param, nullptr, inplace); aclnn_exp(ctx, tmp_arange_tensor); // permute: src [0,1,2,3]->[0,1,3,2] int64_t tmp_permute_ne[] = {src->ne[1], src->ne[0], src->ne[2], src->ne[3]}; size_t tmp_permute_nb[GGML_MAX_DIMS]; tmp_permute_nb[0] = ggml_type_size(src->type); for (int i = 1; i < GGML_MAX_DIMS; i++) { tmp_permute_nb[i] = tmp_permute_nb[i - 1] * tmp_permute_ne[i - 1]; } ggml_cann_pool_alloc permute_allocator(ctx.pool(), ggml_nbytes(src)); void* tmp_permute_buffer = permute_allocator.get(); aclTensor* tmp_permute_tenosr = ggml_cann_create_tensor( tmp_permute_buffer, ggml_cann_type_mapping(src->type), ggml_type_size(src->type), tmp_permute_ne, tmp_permute_nb, GGML_MAX_DIMS, ACL_FORMAT_ND); int64_t permute_dim[] = {0, 1, 3, 2}; int64_t num_dims = 4; aclnn_permute(ctx, acl_src, tmp_permute_tenosr, permute_dim, num_dims); // timestep * freq int64_t tmp_mul_ne[] = {src->ne[1] * half, src->ne[0], src->ne[2], src->ne[3]}; size_t tmp_mul_nb[GGML_MAX_DIMS]; tmp_mul_nb[0] = ggml_type_size(src->type); for (int i = 1; i < GGML_MAX_DIMS; i++) { tmp_mul_nb[i] = tmp_mul_nb[i - 1] * tmp_mul_ne[i - 1]; } int mul_nelements = src->ne[1] * half * src->ne[0] * src->ne[2] * src->ne[3]; ggml_cann_pool_alloc mul_allocator( ctx.pool(), mul_nelements * ggml_type_size(src->type)); void* tmp_mul_buffer = mul_allocator.get(); aclTensor* tmp_mul_tensor = ggml_cann_create_tensor( tmp_mul_buffer, ggml_cann_type_mapping(src->type), ggml_type_size(src->type), tmp_mul_ne, tmp_mul_nb, GGML_MAX_DIMS, ACL_FORMAT_ND); aclnn_mul(ctx, tmp_permute_tenosr, tmp_arange_tensor, tmp_mul_tensor); // cos ggml_cann_pool_alloc cos_allocator( ctx.pool(), mul_nelements * ggml_type_size(src->type)); void* tmp_cos_buffer = cos_allocator.get(); aclTensor* tmp_cos_tensor = ggml_cann_create_tensor( tmp_cos_buffer, ggml_cann_type_mapping(dst->type), ggml_type_size(dst->type), tmp_mul_ne, tmp_mul_nb, GGML_MAX_DIMS, ACL_FORMAT_ND); aclnn_cos(ctx, tmp_mul_tensor, tmp_cos_tensor); // sin ggml_cann_pool_alloc sin_allocator( ctx.pool(), mul_nelements * ggml_type_size(src->type)); void* tmp_sin_buffer = sin_allocator.get(); aclTensor* tmp_sin_tensor = ggml_cann_create_tensor( tmp_sin_buffer, ggml_cann_type_mapping(dst->type), ggml_type_size(dst->type), tmp_mul_ne, tmp_mul_nb, GGML_MAX_DIMS, ACL_FORMAT_ND); aclnn_sin(ctx, tmp_mul_tensor, tmp_sin_tensor); // concat int64_t concat_dim = 3; aclTensor* acl_dst = ggml_cann_create_tensor(dst); aclTensor* tensors[] = {tmp_cos_tensor, tmp_sin_tensor}; aclTensorList* tensorList = aclCreateTensorList(tensors, 2); aclnn_concat(ctx, tensorList, acl_dst, concat_dim); // release // segmentation fault when delete both tensorList and his elements. ACL_CHECK(aclDestroyTensorList(tensorList)); ACL_CHECK(aclDestroyTensor(acl_src)); ACL_CHECK(aclDestroyTensor(tmp_arange_tensor)); ACL_CHECK(aclDestroyTensor(tmp_permute_tenosr)); ACL_CHECK(aclDestroyTensor(tmp_mul_tensor)); ACL_CHECK(aclDestroyTensor(acl_dst)); } /** * @brief Fills a tensor with a scalar value. * * This function fills the destination tensor `acl_dst` with the scalar value * `scalar`. * * @param ctx The context for the CANN backend operations. * @param scalar The scalar value used to fill the tensor. * @param acl_dst The destination tensor to be filled with the scalar value. */ static void aclnn_fill_scalar(ggml_backend_cann_context& ctx, float scalar, aclTensor* acl_dst) { auto acl_scalar = aclCreateScalar(&scalar, aclDataType::ACL_FLOAT); uint64_t workspaceSize = 0; aclOpExecutor* executor; void* workspaceAddr = nullptr; ACL_CHECK(aclnnInplaceFillScalarGetWorkspaceSize( acl_dst, acl_scalar, &workspaceSize, &executor)); if (workspaceSize > 0) { ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); workspaceAddr = workspace_allocator.get(); } ACL_CHECK(aclnnInplaceFillScalar(workspaceAddr, workspaceSize, executor, ctx.stream())); ACL_CHECK(aclDestroyScalar(acl_scalar)); } /** * @brief Raises each element of a tensor to the power of the corresponding * element in another tensor. * * This function computes the element-wise power of the destination tensor * `acl_dst` raised to the power of the exponent tensor `acl_exp`. * The operation is defined as: * \f[ * \text {acl_dst }_i=acl\_dst_i^{\text {acl_exp }_i} * \f] * * @param ctx The context for the CANN backend operations. * @param acl_dst The destination tensor, which also serves as the base tensor. * @param acl_exp The exponent tensor, each element of which is used to raise * the corresponding element in the destination tensor. */ static void aclnn_pow_tensor_tensor(ggml_backend_cann_context& ctx, aclTensor* acl_dst, aclTensor* acl_exp) { uint64_t workspaceSize = 0; aclOpExecutor* executor; void* workspaceAddr = nullptr; ACL_CHECK(aclnnInplacePowTensorTensorGetWorkspaceSize( acl_dst, acl_exp, &workspaceSize, &executor)); if (workspaceSize > 0) { ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); workspaceAddr = workspace_allocator.get(); } ACL_CHECK(aclnnInplacePowTensorTensor(workspaceAddr, workspaceSize, executor, ctx.stream())); } /** * @brief Applies the Alibi (Attention with Linear Biases) mechanism to the * @details This function implements the Alibi mechanism, which introduces * learnable biases into the attention scores to simulate relative * position encoding without the need for explicit positional * embeddings. * * @param ctx The backend CANN context for executing operations. * @param acl_src The source tensor representing the query or key. * @param acl_position The position tensor containing relative positions. * @param acl_dst The destination tensor where the result will be stored. * @param n_head The number of attention heads. * @param src_ne The dimensions of the source tensor. * @param src_nb0 The byte size of the first dimension of the source tensor. * @param max_bias The maximum bias value used in the Alibi mechanism. * @param dst The destination tensor object for additional metadata. * * The function performs the following steps: * 1. Calculates the logarithm floor of the number of heads to determine the base for bias calculation. * 2. Initializes arrays with arithmetic sequences and fills them with bias values. * 3. Computes the bias tensor based on the calculated biases and arithmetic sequences. * 4. Reshapes the bias tensor to match the dimensions of the input tensors. * 5. Multiplies the position tensor by the bias tensor. * 6. Adds the result of the multiplication to the source tensor to produce the final output. */ static void aclnn_alibi(ggml_backend_cann_context& ctx, aclTensor* acl_src, aclTensor* acl_position, aclTensor* acl_dst, const int n_head, int64_t* src_ne, const size_t src_nb0, float max_bias, ggml_tensor* dst) { const int64_t ne2_ne3 = src_ne[2] * src_ne[3]; GGML_ASSERT(src_nb0 == sizeof(float)); GGML_ASSERT(n_head == src_ne[2]); const int n_heads_log2_floor = 1u << (uint32_t)floor(log2(n_head)); float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor); float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor); // init arange ggml_cann_pool_alloc arange_allocator(ctx.pool(), ne2_ne3 * ggml_type_size(dst->type)); void* tmp_arange_buffer = arange_allocator.get(); // arange1: [1, ..., n_heads_log2_floor+1) float start = 1; float stop = n_heads_log2_floor + 1; float step = 1; int64_t n_elements_arange = n_heads_log2_floor; int64_t tmp_arange1_ne[] = {n_heads_log2_floor}; size_t tmp_arange1_nb[] = {sizeof(dst->type)}; aclTensor* tmp_arange1_tensor = ggml_cann_create_tensor( tmp_arange_buffer, ggml_cann_type_mapping(dst->type), ggml_type_size(dst->type), tmp_arange1_ne, tmp_arange1_nb, GGML_MAX_DIMS - 3, ACL_FORMAT_ND); aclnn_arange(ctx, tmp_arange1_tensor, start, stop, step, n_elements_arange); aclTensor* tmp_arange2_tensor = nullptr; if (n_heads_log2_floor < ne2_ne3) { // arange2: [1, ..., 2 * (k - n_heads_log2_floor) + 1) start = 1; stop = 2 * (ne2_ne3 - n_heads_log2_floor) + 1; step = 2; n_elements_arange = ne2_ne3 - n_heads_log2_floor; int64_t tmp_arange2_ne[] = {ne2_ne3 - n_heads_log2_floor}; size_t tmp_arange2_nb[] = {sizeof(dst->type)}; aclTensor* tmp_arange2_tensor = ggml_cann_create_tensor( (char*)tmp_arange_buffer + n_heads_log2_floor * ggml_type_size(dst->type), ggml_cann_type_mapping(dst->type), ggml_type_size(dst->type), tmp_arange2_ne, tmp_arange2_nb, GGML_MAX_DIMS - 3, ACL_FORMAT_ND); aclnn_arange(ctx, tmp_arange2_tensor, start, stop, step, n_elements_arange); } // init mk_base ggml_cann_pool_alloc mk_base_allocator(ctx.pool(), ne2_ne3 * ggml_type_size(dst->type)); void* tmp_mk_base_buffer = mk_base_allocator.get(); int64_t tmp_mk_base1_ne[] = {n_heads_log2_floor}; size_t tmp_mk_base1_nb[] = {sizeof(dst->type)}; aclTensor* tmp_mk_base1_tensor = ggml_cann_create_tensor( tmp_mk_base_buffer, ggml_cann_type_mapping(dst->type), ggml_type_size(dst->type), tmp_mk_base1_ne, tmp_mk_base1_nb, GGML_MAX_DIMS - 3, ACL_FORMAT_ND); aclnn_fill_scalar(ctx, m0, tmp_mk_base1_tensor); aclTensor* tmp_mk_base2_tensor = nullptr; if (n_heads_log2_floor < ne2_ne3) { int64_t tmp_mk_base2_ne[] = {ne2_ne3 - n_heads_log2_floor}; size_t tmp_mk_base2_nb[] = {sizeof(dst->type)}; aclTensor* tmp_mk_base2_tensor = ggml_cann_create_tensor( (char*)tmp_mk_base_buffer + n_heads_log2_floor * ggml_type_size(dst->type), ggml_cann_type_mapping(dst->type), ggml_type_size(dst->type), tmp_mk_base2_ne, tmp_mk_base2_nb, GGML_MAX_DIMS - 3, ACL_FORMAT_ND); aclnn_fill_scalar(ctx, m1, tmp_mk_base2_tensor); } // init mk int64_t tmp_mk_base_ne[] = {ne2_ne3}; size_t tmp_mk_base_nb[] = {sizeof(dst->type)}; aclTensor* tmp_mk_base_tensor = ggml_cann_create_tensor( tmp_mk_base_buffer, ggml_cann_type_mapping(dst->type), ggml_type_size(dst->type), tmp_mk_base_ne, tmp_mk_base_nb, GGML_MAX_DIMS - 3, ACL_FORMAT_ND); aclTensor* tmp_arange_tensor = ggml_cann_create_tensor( tmp_arange_buffer, ggml_cann_type_mapping(dst->type), ggml_type_size(dst->type), tmp_mk_base_ne, tmp_mk_base_nb, GGML_MAX_DIMS - 3, ACL_FORMAT_ND); aclnn_pow_tensor_tensor(ctx, tmp_mk_base_tensor, tmp_arange_tensor); // reshape mk int64_t tmp_mk_ne[] = {1, 1, src_ne[2], src_ne[3]}; size_t tmp_mk_nb[GGML_MAX_DIMS]; tmp_mk_nb[0] = ggml_type_size(dst->type); for (int i = 1; i < GGML_MAX_DIMS; i++) { tmp_mk_nb[i] = tmp_mk_nb[i - 1] * tmp_mk_ne[i - 1]; } aclTensor* tmp_mk_tensor = ggml_cann_create_tensor( tmp_mk_base_buffer, ggml_cann_type_mapping(dst->type), ggml_type_size(dst->type), tmp_mk_ne, tmp_mk_nb, GGML_MAX_DIMS, ACL_FORMAT_ND); // acl_position * mk int64_t tmp_output_ne[] = {src_ne[0], src_ne[1], src_ne[2], src_ne[3]}; size_t tmp_output_nb[GGML_MAX_DIMS]; tmp_output_nb[0] = ggml_type_size(dst->type); for (int i = 1; i < GGML_MAX_DIMS; i++) { tmp_output_nb[i] = tmp_output_nb[i - 1] * tmp_output_ne[i - 1]; } ggml_cann_pool_alloc output_allocator(ctx.pool(), ggml_nbytes(dst)); void* tmp_output_buffer = output_allocator.get(); aclTensor* tmp_output_tensor = ggml_cann_create_tensor( tmp_output_buffer, ggml_cann_type_mapping(dst->type), ggml_type_size(dst->type), tmp_output_ne, tmp_output_nb, GGML_MAX_DIMS, ACL_FORMAT_ND); aclnn_mul(ctx, acl_position, tmp_mk_tensor, tmp_output_tensor); // add aclnn_add(ctx, tmp_output_tensor, acl_src, acl_dst); ACL_CHECK(aclDestroyTensor(tmp_arange1_tensor)); ACL_CHECK(aclDestroyTensor(tmp_arange2_tensor)); ACL_CHECK(aclDestroyTensor(tmp_mk_base1_tensor)); ACL_CHECK(aclDestroyTensor(tmp_mk_base2_tensor)); ACL_CHECK(aclDestroyTensor(tmp_mk_base_tensor)); ACL_CHECK(aclDestroyTensor(tmp_arange_tensor)); ACL_CHECK(aclDestroyTensor(tmp_mk_tensor)); ACL_CHECK(aclDestroyTensor(tmp_output_tensor)); } void ggml_cann_cpy(ggml_backend_cann_context& ctx, ggml_tensor* dst) { ggml_cann_dup(ctx, dst); } /** * @brief Performs element-wise addition of two tensors in place. * * This function adds the source tensor `acl_src` to the destination tensor * `acl_dst` element-wise and stores the result in the destination tensor * `acl_dst`. * * @param ctx The context for the CANN backend operations. * @param acl_src The source tensor to be added. * @param acl_dst The destination tensor which will hold the result of the * addition. */ static void aclnn_inplace_add(ggml_backend_cann_context& ctx, aclTensor* acl_src, aclTensor* acl_dst) { aclScalar* alpha = nullptr; float alphaValue = 1.0f; alpha = aclCreateScalar(&alphaValue, aclDataType::ACL_FLOAT); uint64_t workspaceSize = 0; aclOpExecutor* executor; void* workspaceAddr = nullptr; ACL_CHECK(aclnnInplaceAddGetWorkspaceSize(acl_dst, acl_src, alpha, &workspaceSize, &executor)); if (workspaceSize > 0) { ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); workspaceAddr = workspace_allocator.get(); } ACL_CHECK( aclnnInplaceAdd(workspaceAddr, workspaceSize, executor, ctx.stream())); ACL_CHECK(aclDestroyScalar(alpha)); } /** * @brief Applies the softmax function to a tensor along a specified dimension. * * This function computes the softmax of the source tensor `acl_src` along the * specified dimension `dim` and stores the result in the destination tensor * `acl_dst`. * * @param ctx The context for the CANN backend operations. * @param acl_src The source tensor on which the softmax function will be * applied. * @param dim The dimension along which the softmax function will be computed. * @param acl_dst The destination tensor where the softmax results will be * stored. */ static void aclnn_softmax(ggml_backend_cann_context& ctx, aclTensor* acl_src, int64_t dim, aclTensor* acl_dst) { uint64_t workspaceSize = 0; aclOpExecutor* executor; void* workspaceAddr = nullptr; ACL_CHECK(aclnnSoftmaxGetWorkspaceSize(acl_src, dim, acl_dst, &workspaceSize, &executor)); if (workspaceSize > 0) { ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); workspaceAddr = workspace_allocator.get(); } aclrtStream stream = ctx.stream(); ACL_CHECK(aclnnSoftmax(workspaceAddr, workspaceSize, executor, stream)); } void ggml_cann_softmax(ggml_backend_cann_context& ctx, ggml_tensor* dst) { ggml_tensor* src0 = dst->src[0]; ggml_tensor* src1 = dst->src[1]; // mask aclTensor* acl_src0 = ggml_cann_create_tensor(src0); aclTensor* acl_dst = ggml_cann_create_tensor(dst); float scale = 1.0f; float max_bias = 0.0f; memcpy(&scale, (float*)dst->op_params + 0, sizeof(float)); memcpy(&max_bias, (float*)dst->op_params + 1, sizeof(float)); // input mul scale aclScalar* acl_scale = aclCreateScalar(&scale, aclDataType::ACL_FLOAT); size_t n_bytes = ggml_nbytes(src0); ggml_cann_pool_alloc mul_scale_allocator(ctx.pool(), n_bytes); void* input_mul_scale_buffer = mul_scale_allocator.get(); aclTensor* acl_input_mul_scale_tensor = ggml_cann_create_tensor( input_mul_scale_buffer, ACL_FLOAT, ggml_type_size(src0->type), src0->ne, src0->nb, GGML_MAX_DIMS); bool inplace = false; aclnn_muls(ctx, acl_src0, scale, acl_input_mul_scale_tensor, inplace); // mask aclTensor* acl_src1_fp32_tensor = nullptr; aclTensor* tmp_mask_tensor = nullptr; ggml_cann_pool_alloc src1_fp32_allocator(ctx.pool()); if (src1) { const bool use_f16 = src1->type == GGML_TYPE_F16; if (use_f16) { // cast to fp32 size_t n_bytes = ggml_nelements(src1) * sizeof(float_t); size_t src1_fp32_nb[GGML_MAX_DIMS]; src1_fp32_nb[0] = sizeof(float_t); for (int i = 1; i < GGML_MAX_DIMS; i++) { src1_fp32_nb[i] = src1_fp32_nb[i - 1] * src1->ne[i - 1]; } src1_fp32_allocator.alloc(n_bytes); void* src1_fp32_buffer = src1_fp32_allocator.get(); acl_src1_fp32_tensor = ggml_cann_create_tensor( src1_fp32_buffer, ACL_FLOAT, sizeof(float), src1->ne, src1_fp32_nb, GGML_MAX_DIMS); aclTensor* acl_src1 = ggml_cann_create_tensor(src1); aclnn_cast(ctx, acl_src1, acl_src1_fp32_tensor, ACL_FLOAT); ACL_CHECK(aclDestroyTensor(acl_src1)); } else { acl_src1_fp32_tensor = ggml_cann_create_tensor(src1); } // broadcast the mask across rows, only use ne11 of ne01 in mask if (src1->ne[1] != src0->ne[1]) { // mask shape: [1,1,ne11,ne10] int64_t tmp_mask_ne[] = {src0->ne[0], src0->ne[1], 1, 1}; size_t tmp_mask_nb[GGML_MAX_DIMS]; tmp_mask_nb[0] = sizeof(float_t); for (int i = 1; i < GGML_MAX_DIMS; i++) { tmp_mask_nb[i] = tmp_mask_nb[i - 1] * tmp_mask_ne[i - 1]; } tmp_mask_tensor = ggml_cann_create_tensor( src1->data, ACL_FLOAT, sizeof(float), tmp_mask_ne, tmp_mask_nb, GGML_MAX_DIMS, ACL_FORMAT_ND); } // alibi const int n_head = src0->ne[2]; const size_t src_nb0 = src0->nb[0]; n_bytes = ggml_nbytes(dst); ggml_cann_pool_alloc output_allocator(ctx.pool(), n_bytes); void* output_buffer = output_allocator.get(); aclTensor* alibi_output_tensor = ggml_cann_create_tensor( output_buffer, ACL_FLOAT, ggml_type_size(dst->type), dst->ne, dst->nb, GGML_MAX_DIMS); if (max_bias <= 0.0f) { // slope = 1.0 if (tmp_mask_tensor) { aclnn_add(ctx, tmp_mask_tensor, acl_input_mul_scale_tensor, alibi_output_tensor); } else { aclnn_add(ctx, acl_src1_fp32_tensor, acl_input_mul_scale_tensor, alibi_output_tensor); } } else { // slope != 1.0 if (tmp_mask_tensor) { aclnn_alibi(ctx, acl_input_mul_scale_tensor, tmp_mask_tensor, alibi_output_tensor, n_head, src0->ne, src_nb0, max_bias, dst); } else { aclnn_alibi(ctx, acl_input_mul_scale_tensor, acl_src1_fp32_tensor, alibi_output_tensor, n_head, src0->ne, src_nb0, max_bias, dst); } } // softmax aclnn_softmax(ctx, alibi_output_tensor, 3, acl_dst); ACL_CHECK(aclDestroyTensor(alibi_output_tensor)); } else { aclnn_softmax(ctx, acl_input_mul_scale_tensor, 3, acl_dst); } ACL_CHECK(aclDestroyTensor(acl_src0)); ACL_CHECK(aclDestroyTensor(acl_src1_fp32_tensor)); ACL_CHECK(aclDestroyTensor(acl_dst)); ACL_CHECK(aclDestroyScalar(acl_scale)); ACL_CHECK(aclDestroyTensor(acl_input_mul_scale_tensor)); ACL_CHECK(aclDestroyTensor(tmp_mask_tensor)); } void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) { ggml_tensor* src0 = dst->src[0]; ggml_tensor* src1 = dst->src[1]; ggml_cann_pool_alloc src0_extra_allocator(ctx.pool(), sizeof(ggml_tensor)); ggml_cann_pool_alloc src1_extra_allocator(ctx.pool(), sizeof(ggml_tensor)); ggml_cann_pool_alloc dst_extra_allocator(ctx.pool(), sizeof(ggml_tensor)); src0->extra = src0_extra_allocator.get(); src1->extra = src1_extra_allocator.get(); dst->extra = dst_extra_allocator.get(); ACL_CHECK(aclrtMemcpyAsync(src0->extra, sizeof(ggml_tensor), src0, sizeof(ggml_tensor), ACL_MEMCPY_HOST_TO_DEVICE, ctx.stream())); ACL_CHECK(aclrtMemcpyAsync(src1->extra, sizeof(ggml_tensor), src1, sizeof(ggml_tensor), ACL_MEMCPY_HOST_TO_DEVICE, ctx.stream())); ACL_CHECK(aclrtMemcpyAsync(dst->extra, sizeof(ggml_tensor), dst, sizeof(ggml_tensor), ACL_MEMCPY_HOST_TO_DEVICE, ctx.stream())); switch (src0->type) { case GGML_TYPE_F32: aclrtlaunch_ascendc_get_row_f32( 24, ctx.stream(), src0->data, src1->data, dst->data, ((ggml_tensor*)src0->extra)->ne, ((ggml_tensor*)src0->extra)->nb, ((ggml_tensor*)src1->extra)->ne, ((ggml_tensor*)src1->extra)->nb, ((ggml_tensor*)dst->extra)->ne, ((ggml_tensor*)dst->extra)->nb); break; case GGML_TYPE_F16: aclrtlaunch_ascendc_get_row_f16( 24, ctx.stream(), src0->data, src1->data, dst->data, ((ggml_tensor*)src0->extra)->ne, ((ggml_tensor*)src0->extra)->nb, ((ggml_tensor*)src1->extra)->ne, ((ggml_tensor*)src1->extra)->nb, ((ggml_tensor*)dst->extra)->ne, ((ggml_tensor*)dst->extra)->nb); break; case GGML_TYPE_Q4_0: aclrtlaunch_ascendc_get_row_q4_0( 24, ctx.stream(), src0->data, src1->data, dst->data, ((ggml_tensor*)src0->extra)->ne, ((ggml_tensor*)src1->extra)->ne, ((ggml_tensor*)src1->extra)->nb, ((ggml_tensor*)dst->extra)->ne, ((ggml_tensor*)dst->extra)->nb); break; case GGML_TYPE_Q8_0: aclrtlaunch_ascendc_get_row_q8_0( 24, ctx.stream(), src0->data, src1->data, dst->data, ((ggml_tensor*)src0->extra)->ne, ((ggml_tensor*)src1->extra)->ne, ((ggml_tensor*)src1->extra)->nb, ((ggml_tensor*)dst->extra)->ne, ((ggml_tensor*)dst->extra)->nb); break; default: GGML_ABORT("fatal error"); break; } } /** * @brief Repeats elements of a tensor along a specified dimension. * * This function repeats each element of the source tensor `acl_src` a specified * number of times (`repeats`) along the specified dimension `dim` and stores * the result in the destination tensor `acl_dst`. * * @param ctx The context for the CANN backend operations. * @param acl_src The source tensor whose elements will be repeated. * @param acl_dst The destination tensor where the repeated elements will be * stored. * @param dim The dimension along which the elements will be repeated. * @param repeats The number of times each element will be repeated. * @param output_size The size of the output tensor. */ static void aclnn_repeat_interleave(ggml_backend_cann_context& ctx, aclTensor* acl_src, aclTensor* acl_dst, int64_t dim, int64_t repeats, int64_t output_size) { uint64_t workspaceSize = 0; aclOpExecutor* executor; void* workspaceAddr = nullptr; ACL_CHECK(aclnnRepeatInterleaveIntWithDimGetWorkspaceSize( acl_src, repeats, dim, output_size, acl_dst, &workspaceSize, &executor)); if (workspaceSize > 0) { ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); workspaceAddr = workspace_allocator.get(); } ACL_CHECK(aclnnRepeatInterleaveIntWithDim(workspaceAddr, workspaceSize, executor, ctx.stream())); } /** * @brief Performs matrix multiplication of two tensors. * * This function computes the matrix multiplication of the input tensor * `acl_input` and the weight tensor `acl_weight`, and stores the result in the * destination tensor `acl_dst`. * The operation is defined as: * \f[ * \text {acl_dst}=\text {acl_input@acl_weight} * \f] * * @param ctx The context for the CANN backend operations. * @param acl_input The input tensor for the matrix multiplication. * @param acl_weight The weight tensor for the matrix multiplication. * @param acl_dst The destination tensor where the result of the matrix * multiplication will be stored. */ static void aclnn_mat_mul(ggml_backend_cann_context& ctx, aclTensor* acl_input, aclTensor* acl_weight, aclTensor* acl_dst) { int8_t cube_math_type = 1; // ALLOW_FP32_DOWN_PRECISION, when input is // fp32, atlas a2 will transpose it to HFLOAT32. uint64_t workspaceSize = 0; aclOpExecutor* executor; void* workspaceAddr = nullptr; ACL_CHECK(aclnnMatmulGetWorkspaceSize(acl_input, acl_weight, acl_dst, cube_math_type, &workspaceSize, &executor)); if (workspaceSize > 0) { ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); workspaceAddr = workspace_allocator.get(); } ACL_CHECK( aclnnMatmul(workspaceAddr, workspaceSize, executor, ctx.stream())); } /** * @brief Performs matrix multiplication with floating-point precision on * tensors using the CANN backend. * * This function performs matrix multiplication of the input tensor and the * weight tensor, handling broadcasting and transposing as needed, and stores * the result in the destination tensor `dst`. * * @param ctx The context for the CANN backend operations. * @param dst The destination tensor where the result of the matrix * multiplication will be stored. */ static void ggml_cann_mat_mul_fp(ggml_backend_cann_context& ctx, ggml_tensor* dst) { ggml_tensor* weight = dst->src[0]; // weight ggml_tensor* input = dst->src[1]; // input // when weight ne2 or ne3 is 1, aclnnMatmulGetWorkspaceSize will auto // broadcast, when weight ne2 or ne3 is not 1, weight need repeat. BCAST_MUL_MAT_SHAPE(input, weight, dst); // transpose weight: [1,2,3,4] -> [1,2,4,3] int64_t transpose_ne[] = {bcast_weight_ne[1], bcast_weight_ne[0], bcast_weight_ne[2], bcast_weight_ne[3], bcast_weight_ne[4], bcast_weight_ne[5]}; size_t transpose_nb[] = {bcast_weight_nb[1], bcast_weight_nb[0], bcast_weight_nb[2], bcast_weight_nb[3], bcast_weight_nb[4], bcast_weight_nb[5]}; aclTensor* acl_weight_tensor = ggml_cann_create_tensor(weight, transpose_ne, transpose_nb, bcast_dims); aclTensor* acl_input_tensor = ggml_cann_create_tensor(input, BCAST_MUL_MAT_PARAM(input)); aclTensor* acl_dst = ggml_cann_create_tensor(dst, BCAST_MUL_MAT_PARAM(dst)); aclnn_mat_mul(ctx, acl_input_tensor, acl_weight_tensor, acl_dst); ACL_CHECK(aclDestroyTensor(acl_weight_tensor)); ACL_CHECK(aclDestroyTensor(acl_input_tensor)); ACL_CHECK(aclDestroyTensor(acl_dst)); } /** * @brief Performs matrix multiplication with quantized weights and * floating-point inputs using the CANN backend. * * This function performs matrix multiplication of the input tensor `src1` and * the weight tensor `src0`, handling broadcasting, transposing, and * quantization as needed, and stores the result in the destination tensor * `dst`. * * @param ctx The context for the CANN backend operations. * @param dst The destination tensor where the result of the matrix * multiplication will be stored. */ static void ggml_cann_mul_mat_quant(ggml_backend_cann_context& ctx, ggml_tensor* dst, const enum ggml_type type) { ggml_tensor* src0 = dst->src[0]; // weight ggml_tensor* src1 = dst->src[1]; // input // The shape of the weight is NCHW. Matrix multiplication uses HW dims. HC // is regarded as batch. weight need transpose. int64_t weight_ne[] = {src0->ne[1], src0->ne[0]}; float weight_elem_size; if (type == GGML_TYPE_Q4_0) { weight_elem_size = float(sizeof(uint8_t)) / 2; } else if (type == GGML_TYPE_Q8_0) { weight_elem_size = float(sizeof(uint8_t)); } else { GGML_ABORT("Only support Q4_0 and Q8_0 MUL_MAT"); } float weight_nb[] = {weight_elem_size * src0->ne[0], weight_elem_size}; // size of one matrix is element_size * height * width. size_t weight_stride = weight_elem_size * src0->ne[0] * src0->ne[1]; size_t weight_size = weight_stride * src0->ne[2] * src0->ne[3]; // scale stored at the end of weight. Also need transpose. GGML_ASSERT(QK4_0 == QK8_0); int64_t scale_ne[] = {src0->ne[1], src0->ne[0] / QK8_0}; size_t scale_elem_size = sizeof(uint16_t); size_t scale_nb[] = {src0->ne[0] / QK8_0 * scale_elem_size, scale_elem_size}; size_t scale_stride = scale_elem_size * src0->ne[0] * src0->ne[1] / QK8_0; char* scale_offset = (char*)src0->data + weight_size; // input void* input_buffer; size_t input_elem_size = sizeof(uint16_t); int64_t input_ne[] = {src1->ne[0], src1->ne[1]}; size_t input_nb[] = {input_elem_size, input_elem_size * src1->ne[0]}; size_t input_stride = input_elem_size * src1->ne[0] * src1->ne[1]; ggml_cann_pool_alloc input_alloctor(ctx.pool()); if (src1->type != GGML_TYPE_F16) { aclTensor* acl_src1_tensor = ggml_cann_create_tensor(src1); input_alloctor.alloc(ggml_nelements(src1) * input_elem_size); input_buffer = input_alloctor.get(); int64_t* input_cast_ne = src1->ne; size_t input_cast_nb[GGML_MAX_DIMS]; input_cast_nb[0] = sizeof(uint16_t); for (int i = 1; i < GGML_MAX_DIMS; i++) { input_cast_nb[i] = input_cast_nb[i - 1] * input_cast_ne[i - 1]; } aclTensor* acl_input_tensor = ggml_cann_create_tensor( input_buffer, ACL_FLOAT16, input_elem_size, input_cast_ne, input_cast_nb, GGML_MAX_DIMS); aclnn_cast(ctx, acl_src1_tensor, acl_input_tensor, ACL_FLOAT16); ACL_CHECK(aclDestroyTensor(acl_input_tensor)); ACL_CHECK(aclDestroyTensor(acl_src1_tensor)); } else { input_buffer = src1->data; } // output size_t output_elem_size = sizeof(uint16_t); int64_t output_ne[] = {dst->ne[0], dst->ne[1]}; size_t output_nb[] = {output_elem_size, output_elem_size * dst->ne[0]}; ggml_cann_pool_alloc output_alloctor( ctx.pool(), ggml_nelements(dst) * output_elem_size); void* output_buffer = output_alloctor.get(); size_t output_stride = output_elem_size * dst->ne[0] * dst->ne[1]; // aclnn uint64_t workspaceSize = 0; aclOpExecutor* executor; void* workspaceAddr = nullptr; for (int64_t n1 = 0; n1 < src1->ne[3]; n1++) { for (int64_t c1 = 0; c1 < src1->ne[2]; c1++) { int64_t n0 = n1 / (src1->ne[3] / src0->ne[3]); int64_t c0 = c1 / (src1->ne[2] / src0->ne[2]); int64_t batch1 = n1 * src1->ne[2] + c1; int64_t batch0 = n0 * src0->ne[2] + c0; aclTensor* acl_input_tensor = ggml_cann_create_tensor( (char*)input_buffer + batch1 * input_stride, ACL_FLOAT16, input_elem_size, input_ne, input_nb, 2); aclTensor* acl_weight_tensor = ggml_cann_create_tensor( (char*)src0->data + batch0 * weight_stride, ggml_cann_type_mapping(type), weight_elem_size, weight_ne, weight_nb, 2); aclTensor* acl_scale_tensor = ggml_cann_create_tensor( scale_offset + batch0 * scale_stride, ACL_FLOAT16, scale_elem_size, scale_ne, scale_nb, 2); aclTensor* acl_output_tensor = ggml_cann_create_tensor( (char*)output_buffer + batch1 * output_stride, ACL_FLOAT16, output_elem_size, output_ne, output_nb, 2); ACL_CHECK(aclnnWeightQuantBatchMatmulV2GetWorkspaceSize( acl_input_tensor, acl_weight_tensor, acl_scale_tensor, nullptr, nullptr, nullptr, nullptr, QK8_0, acl_output_tensor, &workspaceSize, &executor)); if (workspaceSize > 0 && workspaceAddr == nullptr) { ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); workspaceAddr = workspace_allocator.get(); } ACL_CHECK(aclnnWeightQuantBatchMatmulV2( workspaceAddr, workspaceSize, executor, ctx.stream())); ACL_CHECK(aclDestroyTensor(acl_input_tensor)); ACL_CHECK(aclDestroyTensor(acl_weight_tensor)); ACL_CHECK(aclDestroyTensor(acl_scale_tensor)); ACL_CHECK(aclDestroyTensor(acl_output_tensor)); } } // cast out int64_t* output_cast_ne = dst->ne; size_t output_cast_nb[GGML_MAX_DIMS]; output_cast_nb[0] = sizeof(uint16_t); for (int i = 1; i < GGML_MAX_DIMS; i++) { output_cast_nb[i] = output_cast_nb[i - 1] * output_cast_ne[i - 1]; } aclTensor* acl_output_tensor = ggml_cann_create_tensor(output_buffer, ACL_FLOAT16, output_elem_size, output_cast_ne, output_cast_nb, GGML_MAX_DIMS); aclTensor* acl_dst_tensor = ggml_cann_create_tensor(dst); aclnn_cast(ctx, acl_output_tensor, acl_dst_tensor, ACL_FLOAT); ACL_CHECK(aclDestroyTensor(acl_output_tensor)); ACL_CHECK(aclDestroyTensor(acl_dst_tensor)); } void ggml_cann_mul_mat(ggml_backend_cann_context& ctx, ggml_tensor* dst) { const enum ggml_type type = dst->src[0]->type; switch (type) { case GGML_TYPE_F32: case GGML_TYPE_F16: ggml_cann_mat_mul_fp(ctx, dst); break; case GGML_TYPE_Q4_0: case GGML_TYPE_Q8_0: ggml_cann_mul_mat_quant(ctx, dst, type); break; default: GGML_ABORT("fatal error"); break; } } /** * @brief Rolls the elements of a tensor along a specified dimension. * * This function rolls the elements of the source tensor `acl_src` by the * specified shifts `shifts` along the specified dimensions `dims`, and stores * the result in the destination tensor `acl_dst`. * * @param ctx The context for the CANN backend operations. * @param acl_src The source tensor whose elements will be rolled. * @param acl_dst The destination tensor where the rolled elements will be * stored. * @param shifts An array specifying the number of positions by which elements * are shifted. * @param dims An array specifying the dimensions along which elements are * shifted. */ static void aclnn_roll(ggml_backend_cann_context& ctx, aclTensor* acl_src, aclTensor* acl_dst, int64_t* shifts, int64_t* dims) { aclIntArray* acl_shifts = aclCreateIntArray(shifts, 1); aclIntArray* acl_dims = aclCreateIntArray(dims, 1); uint64_t workspaceSize = 0; aclOpExecutor* executor; void* workspaceAddr = nullptr; ACL_CHECK(aclnnRollGetWorkspaceSize(acl_src, acl_shifts, acl_dims, acl_dst, &workspaceSize, &executor)); if (workspaceSize > 0) { ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); workspaceAddr = workspace_allocator.get(); } ACL_CHECK(aclnnRoll(workspaceAddr, workspaceSize, executor, ctx.stream())); ACL_CHECK(aclDestroyIntArray(acl_shifts)); ACL_CHECK(aclDestroyIntArray(acl_dims)); } /** * @brief Fills specified positions of a tensor with a scalar value. * * This function fills the positions in the source tensor `acl_src` specified by * `index` along the dimension `dim` with the scalar value `value`. * * @param ctx The context for the CANN backend operations. * @param acl_src The source tensor where the positions will be filled. * @param dim The dimension along which the positions are specified. * @param index An array specifying the positions to be filled. * @param index_num The number of positions specified in the index array. * @param value The scalar value used to fill the specified positions. */ static void aclnn_index_fill_tensor(ggml_backend_cann_context& ctx, aclTensor* acl_src, int64_t dim, int64_t* index, int64_t index_num, float value) { aclIntArray* acl_index = aclCreateIntArray(index, index_num); aclScalar* acl_value = aclCreateScalar(&value, aclDataType::ACL_FLOAT); uint64_t workspaceSize = 0; aclOpExecutor* executor; void* workspaceAddr = nullptr; ACL_CHECK(aclnnInplaceIndexFillTensorGetWorkspaceSize( acl_src, dim, acl_index, acl_value, &workspaceSize, &executor)); if (workspaceSize > 0) { ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); workspaceAddr = workspace_allocator.get(); } ACL_CHECK(aclnnInplaceIndexFillTensor(workspaceAddr, workspaceSize, executor, ctx.stream())); ACL_CHECK(aclDestroyIntArray(acl_index)); ACL_CHECK(aclDestroyScalar(acl_value)); } static void aclnn_cache_init(ggml_backend_cann_context& ctx, ggml_tensor* dst, aclTensor* acl_cos_repeat_tensor, aclTensor* acl_sin_repeat_tensor, float theta_scale, bool is_neox) { // int sin/cos cache, cache has different repeat method depond on // @param.is_neox ggml_tensor* src0 = dst->src[0]; // input ggml_tensor* src1 = dst->src[1]; // position // arange, [0,1,...,ne0/2] int64_t arange_length = src0->ne[0] / 2; ggml_cann_pool_alloc arange_allocator(ctx.pool(), arange_length * sizeof(float_t)); void* arange_buffer = arange_allocator.get(); int64_t arange_ne[] = {arange_length, 1, 1, 1}; size_t arange_nb[] = {sizeof(float_t), sizeof(float_t), sizeof(float_t), arange_length * sizeof(float_t)}; aclTensor* acl_arange_tensor = ggml_cann_create_tensor(arange_buffer, ACL_FLOAT, sizeof(float_t), arange_ne, arange_nb, GGML_MAX_DIMS); float start = 0; float step = 1; float stop = src0->ne[0] / 2; float n_elements = src0->ne[0] / 2; aclnn_arange(ctx, acl_arange_tensor, start, stop, step, n_elements); // power // aclnnPowScalarTensor(): @param self is tensor which should be scalar, so // use aclnn_pow_tensor_tensor() until fixed. aclScalar* acl_theta_scale = // aclCreateScalar(&theta_scale, aclDataType::ACL_FLOAT); // aclnn_power_scalar_tensor(ctx, acl_theta_scale, acl_arange_tensor, // acl_power_tensor); ggml_cann_pool_alloc theta_scale_allocator(ctx.pool(), arange_length * sizeof(float_t)); void* theta_scale_buffer = theta_scale_allocator.get(); aclTensor* acl_theta_scale_tensor = aclnn_ones( ctx, theta_scale_buffer, arange_length * sizeof(float_t), arange_ne, GGML_MAX_DIMS, ACL_FLOAT, sizeof(float_t), theta_scale); aclnn_pow_tensor_tensor(ctx, acl_theta_scale_tensor, acl_arange_tensor); // position GGML_ASSERT(src1->type == GGML_TYPE_I32); int64_t position_length = src1->ne[0]; int64_t position_ne[] = {1, position_length, 1, 1}; size_t position_nb[] = {sizeof(int32_t), sizeof(int32_t), sizeof(int32_t) * position_length, sizeof(int32_t) * position_length}; aclTensor* acl_position_tensor = ggml_cann_create_tensor( src1->data, ggml_cann_type_mapping(src1->type), ggml_type_size(src1->type), position_ne, position_nb, GGML_MAX_DIMS); // power * position int64_t theta_length = arange_length * position_length; ggml_cann_pool_alloc theta_allocator(ctx.pool(), theta_length * sizeof(float_t)); void* theta_buffer = theta_allocator.get(); int64_t theta_ne[] = {arange_length, position_length, 1, 1}; size_t theta_nb[GGML_MAX_DIMS]; theta_nb[0] = sizeof(float_t); for (int i = 1; i < GGML_MAX_DIMS; i++) { theta_nb[i] = theta_nb[i - 1] * theta_ne[i - 1]; } aclTensor* acl_theta_tensor = ggml_cann_create_tensor(theta_buffer, ACL_FLOAT, sizeof(float_t), theta_ne, theta_nb, GGML_MAX_DIMS); aclnn_mul(ctx, acl_position_tensor, acl_theta_scale_tensor, acl_theta_tensor); // permute: [0,1,2,3]->[0,2,1,3] int64_t permute_ne[] = {arange_length, 1, position_length, 1}; size_t permute_nb[GGML_MAX_DIMS]; permute_nb[0] = sizeof(float_t); for (int i = 1; i < GGML_MAX_DIMS; i++) { permute_nb[i] = permute_nb[i - 1] * permute_ne[i - 1]; } ggml_cann_pool_alloc permute_allocator(ctx.pool(), theta_length * sizeof(float_t)); void* permute_buffer = permute_allocator.get(); aclTensor* acl_permute_tensor = ggml_cann_create_tensor( permute_buffer, ACL_FLOAT, sizeof(float_t), permute_ne, permute_nb, GGML_MAX_DIMS, ACL_FORMAT_ND); int64_t permute_dim[] = {0, 2, 1, 3}; int64_t num_dims = 4; aclnn_permute(ctx, acl_theta_tensor, acl_permute_tensor, permute_dim, num_dims); // sin/cos ggml_cann_pool_alloc sin_allocator(ctx.pool(), theta_length * sizeof(float_t)); void* sin_buffer = sin_allocator.get(); aclTensor* acl_sin_tensor = ggml_cann_create_tensor( sin_buffer, ACL_FLOAT, sizeof(float_t), permute_ne, permute_nb, GGML_MAX_DIMS, ACL_FORMAT_ND); aclnn_sin(ctx, acl_permute_tensor, acl_sin_tensor); ggml_cann_pool_alloc cos_allocator(ctx.pool(), theta_length * sizeof(float_t)); void* cos_buffer = cos_allocator.get(); aclTensor* acl_cos_tensor = ggml_cann_create_tensor( cos_buffer, ACL_FLOAT, sizeof(float_t), permute_ne, permute_nb, GGML_MAX_DIMS, ACL_FORMAT_ND); aclnn_cos(ctx, acl_permute_tensor, acl_cos_tensor); // repeat if (is_neox) { int64_t repeatsArray[] = {1, 1, 1, 2}; aclnn_repeat(ctx, acl_sin_tensor, acl_sin_repeat_tensor, repeatsArray); aclnn_repeat(ctx, acl_cos_tensor, acl_cos_repeat_tensor, repeatsArray); } else { int64_t num_repeats = 2; int64_t dim = 3; int64_t output_size = arange_length * num_repeats; aclnn_repeat_interleave(ctx, acl_sin_tensor, acl_sin_repeat_tensor, dim, num_repeats, output_size); aclnn_repeat_interleave(ctx, acl_cos_tensor, acl_cos_repeat_tensor, dim, num_repeats, output_size); } // release ACL_CHECK(aclDestroyTensor(acl_arange_tensor)); ACL_CHECK(aclDestroyTensor(acl_theta_scale_tensor)); ACL_CHECK(aclDestroyTensor(acl_position_tensor)); ACL_CHECK(aclDestroyTensor(acl_theta_tensor)); ACL_CHECK(aclDestroyTensor(acl_permute_tensor)); ACL_CHECK(aclDestroyTensor(acl_sin_tensor)); ACL_CHECK(aclDestroyTensor(acl_cos_tensor)); } void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) { // TODO: use ascendc // Only test with LLAMA model. ggml_tensor* src0 = dst->src[0]; // input ggml_tensor* src2 = dst->src[2]; // freq_factors // TODO: with freq_factors GGML_ASSERT(src2 == NULL); // param float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow; // const int n_past = ((int32_t *) dst->op_params)[0]; const int n_dims = ((int32_t*)dst->op_params)[1]; const int mode = ((int32_t*)dst->op_params)[2]; // const int n_ctx = ((int32_t *) dst->op_params)[3]; const int n_ctx_orig = ((int32_t*)dst->op_params)[4]; GGML_TENSOR_UNARY_OP_LOCALS memcpy(&freq_base, (int32_t*)dst->op_params + 5, sizeof(float)); memcpy(&freq_scale, (int32_t*)dst->op_params + 6, sizeof(float)); memcpy(&ext_factor, (int32_t*)dst->op_params + 7, sizeof(float)); memcpy(&attn_factor, (int32_t*)dst->op_params + 8, sizeof(float)); memcpy(&beta_fast, (int32_t*)dst->op_params + 9, sizeof(float)); memcpy(&beta_slow, (int32_t*)dst->op_params + 10, sizeof(float)); GGML_ASSERT(n_dims <= ne0); GGML_ASSERT(n_dims % 2 == 0); // TODO: ext_factor != 0 GGML_ASSERT(ext_factor == 0); // TODO: freq_scale != 1 GGML_ASSERT(freq_scale == 1); const float theta_scale = powf(freq_base, -2.0f / n_dims); float corr_dims[2]; ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims); const bool is_neox = mode & GGML_ROPE_TYPE_NEOX; // init cos/sin cache ggml_cann_pool_alloc sin_allocator( ctx.pool(), src0->ne[0] * src0->ne[2] * sizeof(float_t)); ggml_cann_pool_alloc cos_allocator( ctx.pool(), src0->ne[0] * src0->ne[2] * sizeof(float_t)); void* sin_buffer = sin_allocator.get(); void* cos_buffer = cos_allocator.get(); int64_t sin_reshape_ne[4] = {src0->ne[0], 1, src0->ne[2], 1}; size_t sin_reshape_nb[GGML_MAX_DIMS]; sin_reshape_nb[0] = sizeof(float_t); for (int i = 1; i < GGML_MAX_DIMS; i++) { sin_reshape_nb[i] = sin_reshape_nb[i - 1] * sin_reshape_ne[i - 1]; } aclTensor* acl_sin_reshape_tensor = ggml_cann_create_tensor(sin_buffer, ACL_FLOAT, sizeof(float_t), sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS); aclTensor* acl_cos_reshape_tensor = ggml_cann_create_tensor(cos_buffer, ACL_FLOAT, sizeof(float_t), sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS); aclnn_cache_init(ctx, dst, acl_cos_reshape_tensor, acl_sin_reshape_tensor, theta_scale, is_neox); // roll input void* input_roll_buffer; aclTensor* acl_minus_one_tensor; void* minus_one_scale_buffer = nullptr; ggml_cann_pool_alloc roll_allocator(ctx.pool(), ggml_nbytes(src0)); ggml_cann_pool_alloc minus_one_scale_allocator( ctx.pool(), sizeof(float_t) * src0->ne[0]); if (!is_neox) { // roll input: [q0,q1,q2,q3,...] -> [q1,q0,q3,q2,...] input_roll_buffer = roll_allocator.get(); int64_t input_roll_ne[4] = {2, src0->ne[1] * (src0->ne[0] / 2), src0->ne[2], src0->ne[3]}; size_t input_roll_nb[GGML_MAX_DIMS]; input_roll_nb[0] = ggml_type_size(src0->type); for (int i = 1; i < GGML_MAX_DIMS; i++) { input_roll_nb[i] = input_roll_nb[i - 1] * input_roll_ne[i - 1]; } aclTensor* acl_input_roll_tensor = ggml_cann_create_tensor( input_roll_buffer, ggml_cann_type_mapping(src0->type), ggml_type_size(src0->type), input_roll_ne, input_roll_nb, GGML_MAX_DIMS); aclTensor* acl_input_tensor = ggml_cann_create_tensor( src0->data, ggml_cann_type_mapping(src0->type), ggml_type_size(src0->type), input_roll_ne, input_roll_nb, GGML_MAX_DIMS); int64_t shifts[] = {1}; int64_t dims[] = {3}; aclnn_roll(ctx, acl_input_tensor, acl_input_roll_tensor, shifts, dims); ACL_CHECK(aclDestroyTensor(acl_input_roll_tensor)); ACL_CHECK(aclDestroyTensor(acl_input_tensor)); // init [-1, 1, -1, 1, ...] minus_one_scale_buffer = minus_one_scale_allocator.get(); int64_t minus_one_ne[4] = {src0->ne[0], 1, 1, 1}; size_t minus_one_nb[GGML_MAX_DIMS]; minus_one_nb[0] = sizeof(float_t); for (int i = 1; i < GGML_MAX_DIMS; i++) { minus_one_nb[i] = minus_one_nb[i - 1] * minus_one_ne[i - 1]; } acl_minus_one_tensor = aclnn_ones( ctx, minus_one_scale_buffer, sizeof(float_t) * src0->ne[0], minus_one_ne, GGML_MAX_DIMS, ACL_FLOAT, sizeof(float_t), 1); int64_t dim = 3; int64_t* index = new int64_t[src0->ne[0]]; for (int i = 0; i < src0->ne[0]; i++) { index[i] = i / 2 * 2; } int64_t index_num = src0->ne[0]; float value = -1; aclnn_index_fill_tensor(ctx, acl_minus_one_tensor, dim, index, index_num, value); } else { // roll input: [q0,q1,q2,...] -> // [q_half,q_half+1,...,q_end,q0,q1,...q_half-1] input_roll_buffer = roll_allocator.get(); aclTensor* acl_input_roll_tensor = ggml_cann_create_tensor( input_roll_buffer, ggml_cann_type_mapping(src0->type), ggml_type_size(src0->type), src0->ne, src0->nb, GGML_MAX_DIMS); aclTensor* acl_input_tensor = ggml_cann_create_tensor(src0); int64_t shifts[] = {src0->ne[0] / 2}; int64_t dims[] = {3}; aclnn_roll(ctx, acl_input_tensor, acl_input_roll_tensor, shifts, dims); ACL_CHECK(aclDestroyTensor(acl_input_roll_tensor)); ACL_CHECK(aclDestroyTensor(acl_input_tensor)); // init [-1, -1, -1, 1, 1,1,...] minus_one_scale_buffer = minus_one_scale_allocator.get(); int64_t minus_one_ne[4] = {src0->ne[0], 1, 1, 1}; size_t minus_one_nb[GGML_MAX_DIMS]; minus_one_nb[0] = sizeof(float_t); for (int i = 1; i < GGML_MAX_DIMS; i++) { minus_one_nb[i] = minus_one_nb[i - 1] * minus_one_ne[i - 1]; } acl_minus_one_tensor = aclnn_ones( ctx, minus_one_scale_buffer, sizeof(float_t) * src0->ne[0], minus_one_ne, GGML_MAX_DIMS, ACL_FLOAT, sizeof(float_t), 1); // -1 * first half int64_t first_half_ne[4] = {src0->ne[0] / 2, 1, 1, 1}; size_t first_half_nb[GGML_MAX_DIMS]; first_half_nb[0] = sizeof(float_t); for (int i = 1; i < GGML_MAX_DIMS; i++) { first_half_nb[i] = first_half_nb[i - 1] * first_half_ne[i - 1]; } aclTensor* acl_first_half_tensor = ggml_cann_create_tensor( minus_one_scale_buffer, ACL_FLOAT, sizeof(float_t), first_half_ne, first_half_nb, GGML_MAX_DIMS); bool inplace = true; float scale = -1; aclnn_muls(ctx, acl_first_half_tensor, scale, nullptr, inplace); ACL_CHECK(aclDestroyTensor(acl_first_half_tensor)); } // TODO: n_dims < ne0 GGML_ASSERT(n_dims == src0->ne[0]); // input * scale ggml_cann_pool_alloc roll_mul_scale_allocator(ctx.pool(), ggml_nbytes(src0)); void* input_roll_mul_scale_buffer = roll_mul_scale_allocator.get(); size_t input_nb[GGML_MAX_DIMS]; input_nb[0] = ggml_type_size(src0->type); for (int i = 1; i < GGML_MAX_DIMS; i++) { input_nb[i] = input_nb[i - 1] * src0->ne[i - 1]; } aclTensor* acl_input_roll_mul_scale_tensor = ggml_cann_create_tensor( input_roll_mul_scale_buffer, ggml_cann_type_mapping(src0->type), ggml_type_size(src0->type), src0->ne, input_nb, GGML_MAX_DIMS); aclTensor* acl_input_roll_reshape_tensor = ggml_cann_create_tensor( input_roll_buffer, ggml_cann_type_mapping(src0->type), ggml_type_size(src0->type), src0->ne, input_nb, GGML_MAX_DIMS); aclnn_mul(ctx, acl_input_roll_reshape_tensor, acl_minus_one_tensor, acl_input_roll_mul_scale_tensor); // output aclTensor* acl_src0 = ggml_cann_create_tensor(src0); aclTensor* acl_dst = ggml_cann_create_tensor(dst); void* output_fp32_buffer; if (src0->type == GGML_TYPE_F32) { aclnn_inplace_mul(ctx, acl_src0, acl_cos_reshape_tensor); aclnn_inplace_mul(ctx, acl_input_roll_mul_scale_tensor, acl_sin_reshape_tensor); aclnn_add(ctx, acl_src0, acl_input_roll_mul_scale_tensor, acl_dst); // TODO: ne0 != n_dims in mode2 } else if (src0->type == GGML_TYPE_F16) { size_t input_fp32_nb[GGML_MAX_DIMS]; input_fp32_nb[0] = sizeof(float_t); for (int i = 1; i < GGML_MAX_DIMS; i++) { input_fp32_nb[i] = input_fp32_nb[i - 1] * dst->ne[i - 1]; } ggml_cann_pool_alloc fp32_allocator1( ctx.pool(), ggml_nelements(dst) * sizeof(float_t)); void* input_fp32_buffer1 = fp32_allocator1.get(); aclTensor* input_fp32_tensor1 = ggml_cann_create_tensor( input_fp32_buffer1, ACL_FLOAT, sizeof(float_t), dst->ne, input_fp32_nb, GGML_MAX_DIMS); ggml_cann_pool_alloc fp32_allocator2( ctx.pool(), ggml_nelements(dst) * sizeof(float_t)); void* input_fp32_buffer2 = fp32_allocator2.get(); aclTensor* input_fp32_tensor2 = ggml_cann_create_tensor( input_fp32_buffer2, ACL_FLOAT, sizeof(float_t), dst->ne, input_fp32_nb, GGML_MAX_DIMS); ggml_cann_pool_alloc fp32_allocator( ctx.pool(), ggml_nelements(dst) * sizeof(float_t)); output_fp32_buffer = fp32_allocator.get(); aclTensor* output_fp32_tensor = ggml_cann_create_tensor( output_fp32_buffer, ACL_FLOAT, sizeof(float_t), dst->ne, input_fp32_nb, GGML_MAX_DIMS); aclnn_mul(ctx, acl_src0, acl_cos_reshape_tensor, input_fp32_tensor1); aclnn_mul(ctx, acl_input_roll_mul_scale_tensor, acl_sin_reshape_tensor, input_fp32_tensor2); aclnn_add(ctx, input_fp32_tensor1, input_fp32_tensor2, output_fp32_tensor); aclnn_cast(ctx, output_fp32_tensor, acl_dst, ACL_FLOAT16); ACL_CHECK(aclDestroyTensor(input_fp32_tensor1)); ACL_CHECK(aclDestroyTensor(input_fp32_tensor2)); ACL_CHECK(aclDestroyTensor(output_fp32_tensor)); } ACL_CHECK(aclDestroyTensor(acl_sin_reshape_tensor)); ACL_CHECK(aclDestroyTensor(acl_cos_reshape_tensor)); ACL_CHECK(aclDestroyTensor(acl_minus_one_tensor)); ACL_CHECK(aclDestroyTensor(acl_input_roll_mul_scale_tensor)); ACL_CHECK(aclDestroyTensor(acl_input_roll_reshape_tensor)); ACL_CHECK(aclDestroyTensor(acl_src0)); ACL_CHECK(aclDestroyTensor(acl_dst)); }