#include "arg.h" #include "common.h" #include "log.h" #include "llama.h" #include #include #include // TODO: remove me static void print_usage(int, char ** argv) { LOG("\nexample usage:\n"); LOG("\n %s --model ./models/bge-base-en-v1.5-f16.gguf --top-k 3 --context-file README.md --context-file License --chunk-size 100 --chunk-separator .\n", argv[0]); LOG("\n"); } struct chunk { // filename std::string filename; // original file position size_t filepos; // original text data std::string textdata; // tokenized text data std::vector tokens; // embedding std::vector embedding; }; // chunk file data to chunks of size >= chunk_size // chunk_separator is the separator between chunks static std::vector chunk_file(const std::string & filename, int chunk_size, const std::string & chunk_separator) { std::vector chunks; std::ifstream f(filename.c_str()); if (!f.is_open()) { LOG_ERR("could not open file %s\n", filename.c_str()); return chunks; } chunk current_chunk; char buffer[1024]; int64_t filepos = 0; std::string current; while (f.read(buffer, 1024)) { current += std::string(buffer, f.gcount()); size_t pos; while ((pos = current.find(chunk_separator)) != std::string::npos) { current_chunk.textdata += current.substr(0, pos + chunk_separator.size()); if ((int) current_chunk.textdata.size() > chunk_size) { // save chunk current_chunk.filepos = filepos; current_chunk.filename = filename; chunks.push_back(current_chunk); // update filepos filepos += (int) current_chunk.textdata.size(); // reset current_chunk current_chunk = chunk(); } current = current.substr(pos + chunk_separator.size()); } } // add leftover data to last chunk if (current_chunk.textdata.size() > 0) { if (chunks.empty()) { current_chunk.filepos = filepos; current_chunk.filename = filename; chunks.push_back(current_chunk); } else { chunks.back().textdata += current_chunk.textdata; } } f.close(); return chunks; } static void batch_add_seq(llama_batch & batch, const std::vector & tokens, llama_seq_id seq_id) { size_t n_tokens = tokens.size(); for (size_t i = 0; i < n_tokens; i++) { common_batch_add(batch, tokens[i], i, { seq_id }, true); } } static void batch_decode(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd) { // clear previous kv_cache values (irrelevant for embeddings) llama_kv_cache_clear(ctx); // run model LOG_INF("%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq); if (llama_decode(ctx, batch) < 0) { LOG_ERR("%s : failed to decode\n", __func__); } for (int i = 0; i < batch.n_tokens; i++) { if (!batch.logits[i]) { continue; } // try to get sequence embeddings - supported only when pooling_type is not NONE const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]); if (embd == NULL) { embd = llama_get_embeddings_ith(ctx, i); if (embd == NULL) { LOG_ERR("%s: failed to get embeddings for token %d\n", __func__, i); continue; } } float * out = output + batch.seq_id[i][0] * n_embd; common_embd_normalize(embd, out, n_embd, 2); } } int main(int argc, char ** argv) { common_params params; if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_RETRIEVAL, print_usage)) { return 1; } common_init(); // For BERT models, batch size must be equal to ubatch size params.n_ubatch = params.n_batch; params.embedding = true; if (params.chunk_size <= 0) { LOG_ERR("chunk_size must be positive\n"); return 1; } if (params.context_files.empty()) { LOG_ERR("context_files must be specified\n"); return 1; } LOG_INF("processing files:\n"); for (auto & context_file : params.context_files) { LOG_INF("%s\n", context_file.c_str()); } std::vector chunks; for (auto & context_file : params.context_files) { std::vector file_chunk = chunk_file(context_file, params.chunk_size, params.chunk_separator); chunks.insert(chunks.end(), file_chunk.begin(), file_chunk.end()); } LOG_INF("Number of chunks: %zu\n", chunks.size()); llama_backend_init(); llama_numa_init(params.numa); // load the model common_init_result llama_init = common_init_from_params(params); llama_model * model = llama_init.model.get(); llama_context * ctx = llama_init.context.get(); if (model == NULL) { LOG_ERR("%s: unable to load model\n", __func__); return 1; } const llama_vocab * vocab = llama_model_get_vocab(model); const int n_ctx_train = llama_model_n_ctx_train(model); const int n_ctx = llama_n_ctx(ctx); const enum llama_pooling_type pooling_type = llama_pooling_type(ctx); if (pooling_type == LLAMA_POOLING_TYPE_NONE) { LOG_ERR("%s: pooling type NONE not supported\n", __func__); return 1; } if (n_ctx > n_ctx_train) { LOG_WRN("%s: warning: model was trained on only %d context tokens (%d specified)\n", __func__, n_ctx_train, n_ctx); } // print system information { LOG_INF("\n"); LOG_INF("%s\n", common_params_get_system_info(params).c_str()); } // max batch size const uint64_t n_batch = params.n_batch; GGML_ASSERT(params.n_batch >= params.n_ctx); // tokenize the prompts and trim for (auto & chunk : chunks) { auto inp = common_tokenize(ctx, chunk.textdata, true, false); if (inp.size() > n_batch) { LOG_ERR("%s: chunk size (%lld) exceeds batch size (%lld), increase batch size and re-run\n", __func__, (long long int) inp.size(), (long long int) n_batch); return 1; } // add eos if not present if (llama_vocab_eos(vocab) >= 0 && (inp.empty() || inp.back() != llama_vocab_eos(vocab))) { inp.push_back(llama_vocab_eos(vocab)); } chunk.tokens = inp; } // tokenization stats if (params.verbose_prompt) { for (int i = 0; i < (int) chunks.size(); i++) { LOG_INF("%s: prompt %d: '%s'\n", __func__, i, chunks[i].textdata.c_str()); LOG_INF("%s: number of tokens in prompt = %zu\n", __func__, chunks[i].tokens.size()); for (int j = 0; j < (int) chunks[i].tokens.size(); j++) { LOG_INF("%6d -> '%s'\n", chunks[i].tokens[j], common_token_to_piece(ctx, chunks[i].tokens[j]).c_str()); } LOG_INF("\n\n"); } } // initialize batch const int n_chunks = chunks.size(); struct llama_batch batch = llama_batch_init(n_batch, 0, 1); // allocate output const int n_embd = llama_model_n_embd(model); std::vector embeddings(n_chunks * n_embd, 0); float * emb = embeddings.data(); // break into batches int p = 0; // number of prompts processed already int s = 0; // number of prompts in current batch for (int k = 0; k < n_chunks; k++) { // clamp to n_batch tokens auto & inp = chunks[k].tokens; const uint64_t n_toks = inp.size(); // encode if at capacity if (batch.n_tokens + n_toks > n_batch) { float * out = emb + p * n_embd; batch_decode(ctx, batch, out, s, n_embd); common_batch_clear(batch); p += s; s = 0; } // add to batch batch_add_seq(batch, inp, s); s += 1; } // final batch float * out = emb + p * n_embd; batch_decode(ctx, batch, out, s, n_embd); // save embeddings to chunks for (int i = 0; i < n_chunks; i++) { chunks[i].embedding = std::vector(emb + i * n_embd, emb + (i + 1) * n_embd); // clear tokens as they are no longer needed chunks[i].tokens.clear(); } struct llama_batch query_batch = llama_batch_init(n_batch, 0, 1); // start loop, receive query and return top k similar chunks based on cosine similarity std::string query; while (true) { LOG("Enter query: "); std::getline(std::cin, query); std::vector query_tokens = common_tokenize(ctx, query, true); batch_add_seq(query_batch, query_tokens, 0); std::vector query_emb(n_embd, 0); batch_decode(ctx, query_batch, query_emb.data(), 1, n_embd); common_batch_clear(query_batch); // compute cosine similarities { std::vector> similarities; for (int i = 0; i < n_chunks; i++) { float sim = common_embd_similarity_cos(chunks[i].embedding.data(), query_emb.data(), n_embd); similarities.push_back(std::make_pair(i, sim)); } // sort similarities std::sort(similarities.begin(), similarities.end(), [](const std::pair & a, const std::pair & b) { return a.second > b.second; }); LOG("Top %d similar chunks:\n", params.sampling.top_k); for (int i = 0; i < std::min(params.sampling.top_k, (int) chunks.size()); i++) { LOG("filename: %s\n", chunks[similarities[i].first].filename.c_str()); LOG("filepos: %lld\n", (long long int) chunks[similarities[i].first].filepos); LOG("similarity: %f\n", similarities[i].second); LOG("textdata:\n%s\n", chunks[similarities[i].first].textdata.c_str()); LOG("--------------------\n"); } } } LOG("\n"); llama_perf_context_print(ctx); // clean up llama_batch_free(query_batch); llama_backend_free(); }