#include "ggml.h" #include "log.h" #include "common.h" #include "clip.h" #include "llava.h" #include "llama.h" #include #include #include struct uhd_image_embed { std::vector> image_embeds; }; struct llava_context { struct clip_ctx * ctx_clip = NULL; struct llama_context * ctx_llama = NULL; struct llama_model * model = NULL; }; static void show_additional_info(int /*argc*/, char ** argv) { LOG_TEE("\n example usage: %s -m --mmproj --image --image [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]); LOG_TEE(" note: a lower temperature value like 0.1 is recommended for better quality.\n"); } static void llama_log_callback_logTee(ggml_log_level level, const char * text, void * user_data) { (void) level; (void) user_data; LOG_TEE("%s", text); } struct llama_model * llava_init(gpt_params * params) { llama_backend_init(); llama_numa_init(params->numa); llama_model_params model_params = llama_model_params_from_gpt_params(*params); llama_model * model = llama_load_model_from_file(params->model.c_str(), model_params); if (model == NULL) { LOG_TEE("%s: error: unable to load model\n" , __func__); return NULL; } return model; } struct llava_context * llava_init_context(gpt_params * params, llama_model * model) { auto prompt = params->prompt; if (prompt.empty()) { prompt = "describe the image in detail."; } llama_context_params ctx_params = llama_context_params_from_gpt_params(*params); if (params->n_ctx < 2048) { // warn user here, "Image processing requires at least 2048 context, setting context to 2048" LOG_TEE("%s: warn: Image processing requires at least 2048 context, setting context to 2048\n" , __func__); ctx_params.n_ctx = 2048; } else { ctx_params.n_ctx = params->n_ctx; } llama_context * ctx_llama = llama_new_context_with_model(model, ctx_params); if (ctx_llama == NULL) { LOG_TEE("%s: error: failed to create the llama_context\n" , __func__); return NULL; } auto ctx_llava = (struct llava_context *)malloc(sizeof(llava_context)); ctx_llava->ctx_llama = ctx_llama; ctx_llava->model = model; return ctx_llava; } void llava_free(struct llava_context * ctx_llava) { llama_free(ctx_llava->ctx_llama); llama_free_model(ctx_llava->model); llama_backend_free(); } struct clip_ctx * clip_init_context(gpt_params * params) { const char * clip_path = params->mmproj.c_str(); auto prompt = params->prompt; if (prompt.empty()) { prompt = "describe the image in detail."; } auto ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1); return ctx_clip; } struct uhd_image_embed * minicpmv_image_embed(gpt_params * params, const std::string & fname){ auto ctx_clip = clip_init_context(params); auto image_embed_and_slices = llava_image_embed_make_with_filename_uhd(ctx_clip, params->n_threads, fname.c_str()); if (ctx_clip) { clip_free(ctx_clip); ctx_clip = NULL; } return image_embed_and_slices; } bool eval_tokens(struct llama_context * ctx_llama, std::vector tokens, int n_batch, int * n_past) { int N = (int) tokens.size(); for (int i = 0; i < N; i += n_batch) { int n_eval = (int) tokens.size() - i; if (n_eval > n_batch) { n_eval = n_batch; } if (llama_decode(ctx_llama, llama_batch_get_one(&tokens[i], n_eval, *n_past, 0))) { LOG_TEE("%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, N, n_batch, *n_past); return false; } *n_past += n_eval; } return true; } bool eval_id(struct llama_context * ctx_llama, int id, int * n_past) { std::vector tokens; tokens.push_back(id); return eval_tokens(ctx_llama, tokens, 1, n_past); } bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, bool add_bos){ std::string str2 = str; std::vector embd_inp = ::llama_tokenize(ctx_llama, str2, add_bos, true); return eval_tokens(ctx_llama, embd_inp, n_batch, n_past); } void process_image(struct llava_context * ctx_llava, struct uhd_image_embed * image_embed_slices, gpt_params * params, int &n_past) { std::string system_prompt; system_prompt = "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n"; LOG_TEE("%s: image token past: %d\n", __func__, n_past); eval_string(ctx_llava->ctx_llama, (system_prompt+"").c_str(), params->n_batch, &n_past, false); llava_eval_image_embed(ctx_llava->ctx_llama, image_embed_slices->image_embeds[0][0], params->n_batch, &n_past); eval_string(ctx_llava->ctx_llama, std::string("").c_str(), params->n_batch, &n_past, false); if (image_embed_slices->image_embeds.size() > 1) { eval_string(ctx_llava->ctx_llama, std::string("").c_str(), params->n_batch, &n_past, false); for (size_t i = 1; i < image_embed_slices->image_embeds.size(); ++i) { for (size_t j = 0; j < image_embed_slices->image_embeds[i].size(); ++j) { eval_string(ctx_llava->ctx_llama, std::string("").c_str(), params->n_batch, &n_past, false); llava_eval_image_embed(ctx_llava->ctx_llama, image_embed_slices->image_embeds[i][j], params->n_batch, &n_past); eval_string(ctx_llava->ctx_llama, std::string("").c_str(), params->n_batch, &n_past, false); if (j == image_embed_slices->image_embeds[i].size() - 1) { eval_string(ctx_llava->ctx_llama, std::string("\n").c_str(), params->n_batch, &n_past, false); } } } eval_string(ctx_llava->ctx_llama, std::string("").c_str(), params->n_batch, &n_past, false); } LOG_TEE("%s: image token past: %d\n", __func__, n_past); } const char * sample(struct llama_sampling_context * ctx_sampling, struct llama_context * ctx_llama, int * n_past) { const llama_token id = llama_sampling_sample(ctx_sampling, ctx_llama, NULL); llama_sampling_accept(ctx_sampling, ctx_llama, id, true); static std::string ret; if (llama_token_is_eog(llama_get_model(ctx_llama), id)) { ret = ""; } else { ret = llama_token_to_piece(ctx_llama, id); } eval_id(ctx_llama, id, n_past); return ret.c_str(); } static struct llava_context * minicpmv_init(gpt_params * params, const std::string & fname, int &n_past){ auto embeds = minicpmv_image_embed(params, fname); auto image_embed_slices = embeds->image_embeds; if (!image_embed_slices[0][0]) { std::cerr << "error: failed to load image " << fname << ". Terminating\n\n"; return NULL; } // process the prompt if (params->prompt.empty() && params->interactive == false) { LOG_TEE("prompt should be given or interactive mode should be on"); return NULL; } auto model = llava_init(params); if (model == NULL) { fprintf(stderr, "%s: error: failed to init minicpmv model\n", __func__); return NULL; } const int64_t t_llava_init_start_us = ggml_time_us(); auto ctx_llava = llava_init_context(params, model); const int64_t t_llava_init_end_us = ggml_time_us(); float t_llava_init_ms = (t_llava_init_end_us - t_llava_init_start_us) / 1000.0; LOG_TEE("\n%s: llava init in %8.2f ms.\n", __func__, t_llava_init_ms); const int64_t t_process_image_start_us = ggml_time_us(); process_image(ctx_llava, embeds, params, n_past); const int64_t t_process_image_end_us = ggml_time_us(); float t_process_image_ms = (t_process_image_end_us - t_process_image_start_us) / 1000.0; LOG_TEE("\n%s: llama process image in %8.2f ms.\n", __func__, t_process_image_ms); llava_image_embed_free_uhd(embeds); return ctx_llava; } static struct llama_sampling_context * llama_init(struct llava_context * ctx_llava, gpt_params * params, std::string prompt, int &n_past, bool is_first = false){ std::string user_prompt = prompt; if (!is_first) user_prompt = "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n" + prompt; eval_string(ctx_llava->ctx_llama, user_prompt.c_str(), params->n_batch, &n_past, false); eval_string(ctx_llava->ctx_llama, "<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n", params->n_batch, &n_past, false); // generate the response LOG_TEE("\n"); struct llama_sampling_context * ctx_sampling = llama_sampling_init(params->sparams); return ctx_sampling; } static const char * llama_loop(struct minicpmv_context * ctx_llava,struct llama_sampling_context * ctx_sampling, int &n_past){ const char * tmp = sample(ctx_sampling, ctx_llava->ctx_llama, &n_past); return tmp; } int main(int argc, char ** argv) { ggml_time_init(); gpt_params params; if (!gpt_params_parse(argc, argv, params)) { show_additional_info(argc, argv); return 1; } #ifndef LOG_DISABLE_LOGS log_set_target(log_filename_generator("llava", "log")); LOG_TEE("Log start\n"); log_dump_cmdline(argc, argv); llama_log_set(llama_log_callback_logTee, nullptr); #endif // LOG_DISABLE_LOGS if (params.mmproj.empty() || (params.image.empty())) { gpt_params_print_usage(argc, argv, params); show_additional_info(argc, argv); return 1; } for (auto & image : params.image) { int n_past = 0; auto ctx_llava = minicpmv_init(¶ms, image, n_past); if (!params.prompt.empty()) { LOG_TEE("%s\n", params.prompt.c_str()); LOG_TEE(""); auto ctx_sampling = llama_init(ctx_llava, ¶ms, params.prompt.c_str(), n_past, true); const int max_tgt_len = params.n_predict < 0 ? 256 : params.n_predict; std::string response = ""; bool have_tmp = false; for (int i = 0; i < max_tgt_len; i++) { auto tmp = llama_loop(ctx_llava, ctx_sampling, n_past); response += tmp; if (strcmp(tmp, "") == 0){ if(!have_tmp)continue; else break; } if (strstr(tmp, "###")) break; // Yi-VL behavior have_tmp = true; printf("%s", tmp); if (strstr(response.c_str(), "")) break; // minicpm-v fflush(stdout); } llama_sampling_free(ctx_sampling); }else { while (true) { LOG_TEE(""); std::string prompt; std::getline(std::cin, prompt); LOG_TEE(""); auto ctx_sampling = llama_init(ctx_llava, ¶ms, prompt, n_past, true); const int max_tgt_len = params.n_predict < 0 ? 256 : params.n_predict; std::string response = ""; for (int i = 0; i < max_tgt_len; i++) { auto tmp = llama_loop(ctx_llava, ctx_sampling, n_past); response += tmp; if (strcmp(tmp, "") == 0) break; if (strstr(tmp, "###")) break; // Yi-VL behavior printf("%s", tmp);// mistral llava-1.6 if (strstr(response.c_str(), "")) break; // minicpm-v fflush(stdout); } llama_sampling_free(ctx_sampling); } } printf("\n"); llama_print_timings(ctx_llava->ctx_llama); ctx_llava->model = NULL; llava_free(ctx_llava); } return 0; }