#include "ggml.h" #include "gguf-llama.h" #include #include #include #include #include #include #undef MIN #undef MAX #define MIN(a, b) ((a) < (b) ? (a) : (b)) #define MAX(a, b) ((a) > (b) ? (a) : (b)) template static std::string to_string(const T & val) { std::stringstream ss; ss << val; return ss.str(); } bool gguf_ex_write(const std::string & fname) { struct gguf_context * ctx = gguf_init_empty(); gguf_set_val_u8 (ctx, "some.parameter.uint8", 0x12); gguf_set_val_i8 (ctx, "some.parameter.int8", -0x13); gguf_set_val_u16 (ctx, "some.parameter.uint16", 0x1234); gguf_set_val_i16 (ctx, "some.parameter.int16", -0x1235); gguf_set_val_u32 (ctx, "some.parameter.uint32", 0x12345678); gguf_set_val_i32 (ctx, "some.parameter.int32", -0x12345679); gguf_set_val_f32 (ctx, "some.parameter.float32", 0.123456789f); gguf_set_val_bool(ctx, "some.parameter.bool", true); gguf_set_val_str (ctx, "some.parameter.string", "hello world"); gguf_set_arr_data(ctx, "some.parameter.arr.i16", GGUF_TYPE_INT16, std::vector{ 1, 2, 3, 4, }.data(), 4); gguf_set_arr_data(ctx, "some.parameter.arr.f32", GGUF_TYPE_FLOAT32, std::vector{ 3.145f, 2.718f, 1.414f, }.data(), 3); gguf_set_arr_str (ctx, "some.parameter.arr.str", std::vector{ "hello", "world", "!" }.data(), 3); struct ggml_init_params params = { /*.mem_size =*/ 128ull*1024ull*1024ull, /*.mem_buffer =*/ NULL, /*.no_alloc =*/ false, }; struct ggml_context * ctx_data = ggml_init(params); const int n_tensors = 10; // tensor infos for (int i = 0; i < n_tensors; ++i) { const std::string name = "tensor_" + to_string(i); int64_t ne[GGML_MAX_DIMS] = { 1 }; int32_t n_dims = rand() % GGML_MAX_DIMS + 1; for (int j = 0; j < n_dims; ++j) { ne[j] = rand() % 10 + 1; } struct ggml_tensor * cur = ggml_new_tensor(ctx_data, GGML_TYPE_F32, n_dims, ne); ggml_set_name(cur, name.c_str()); { float * data = (float *) cur->data; for (int j = 0; j < ggml_nelements(cur); ++j) { data[j] = 100 + i; } } gguf_add_tensor(ctx, cur); } gguf_write_to_file(ctx, fname.c_str(), false); fprintf(stdout, "%s: wrote file '%s;\n", __func__, fname.c_str()); ggml_free(ctx_data); gguf_free(ctx); return true; } // just read tensor info bool gguf_ex_read_0(const std::string & fname) { struct gguf_init_params params = { /*.no_alloc = */ false, /*.ctx = */ NULL, }; struct gguf_context * ctx = gguf_init_from_file(fname.c_str(), params); fprintf(stdout, "%s: version: %d\n", __func__, gguf_get_version(ctx)); fprintf(stdout, "%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx)); fprintf(stdout, "%s: data offset: %zu\n", __func__, gguf_get_data_offset(ctx)); // kv { const int n_kv = gguf_get_n_kv(ctx); fprintf(stdout, "%s: n_kv: %d\n", __func__, n_kv); for (int i = 0; i < n_kv; ++i) { const char * key = gguf_get_key(ctx, i); fprintf(stdout, "%s: kv[%d]: key = %s\n", __func__, i, key); } } // find kv string { const char * findkey = "some.parameter.string"; const int keyidx = gguf_find_key(ctx, findkey); if (keyidx == -1) { fprintf(stdout, "%s: find key: %s not found.\n", __func__, findkey); } else { const char * key_value = gguf_get_val_str(ctx, keyidx); fprintf(stdout, "%s: find key: %s found, kv[%d] value = %s\n", __func__, findkey, keyidx, key_value); } } // tensor info { const int n_tensors = gguf_get_n_tensors(ctx); fprintf(stdout, "%s: n_tensors: %d\n", __func__, n_tensors); for (int i = 0; i < n_tensors; ++i) { const char * name = gguf_get_tensor_name (ctx, i); const size_t offset = gguf_get_tensor_offset(ctx, i); fprintf(stdout, "%s: tensor[%d]: name = %s, offset = %zu\n", __func__, i, name, offset); } } gguf_free(ctx); return true; } // read and create ggml_context containing the tensors and their data bool gguf_ex_read_1(const std::string & fname) { struct ggml_context * ctx_data = NULL; struct gguf_init_params params = { /*.no_alloc = */ false, /*.ctx = */ &ctx_data, }; struct gguf_context * ctx = gguf_init_from_file(fname.c_str(), params); fprintf(stdout, "%s: version: %d\n", __func__, gguf_get_version(ctx)); fprintf(stdout, "%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx)); fprintf(stdout, "%s: data offset: %zu\n", __func__, gguf_get_data_offset(ctx)); // kv { const int n_kv = gguf_get_n_kv(ctx); fprintf(stdout, "%s: n_kv: %d\n", __func__, n_kv); for (int i = 0; i < n_kv; ++i) { const char * key = gguf_get_key(ctx, i); fprintf(stdout, "%s: kv[%d]: key = %s\n", __func__, i, key); } } // tensor info { const int n_tensors = gguf_get_n_tensors(ctx); fprintf(stdout, "%s: n_tensors: %d\n", __func__, n_tensors); for (int i = 0; i < n_tensors; ++i) { const char * name = gguf_get_tensor_name (ctx, i); const size_t offset = gguf_get_tensor_offset(ctx, i); fprintf(stdout, "%s: tensor[%d]: name = %s, offset = %zu\n", __func__, i, name, offset); } } // data { const int n_tensors = gguf_get_n_tensors(ctx); for (int i = 0; i < n_tensors; ++i) { fprintf(stdout, "%s: reading tensor %d data\n", __func__, i); const char * name = gguf_get_tensor_name(ctx, i); struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name); fprintf(stdout, "%s: tensor[%d]: n_dims = %d, name = %s, data = %p\n", __func__, i, cur->n_dims, cur->name, cur->data); // print first 10 elements const float * data = (const float *) cur->data; printf("%s data[:10] : ", name); for (int j = 0; j < MIN(10, ggml_nelements(cur)); ++j) { printf("%f ", data[j]); } printf("\n\n"); // check data { const float * data = (const float *) cur->data; for (int j = 0; j < ggml_nelements(cur); ++j) { if (data[j] != 100 + i) { fprintf(stderr, "%s: tensor[%d]: data[%d] = %f\n", __func__, i, j, data[j]); return false; } } } } } fprintf(stdout, "%s: ctx_data size: %zu\n", __func__, ggml_get_mem_size(ctx_data)); ggml_free(ctx_data); gguf_free(ctx); return true; } int main(int argc, char ** argv) { if (argc < 3) { fprintf(stdout, "usage: %s data.gguf r|w\n", argv[0]); return -1; } const std::string fname(argv[1]); const std::string mode (argv[2]); GGML_ASSERT((mode == "r" || mode == "w" || mode == "q") && "mode must be r, w or q"); if (mode == "w") { GGML_ASSERT(gguf_ex_write(fname) && "failed to write gguf file"); } else if (mode == "r") { GGML_ASSERT(gguf_ex_read_0(fname) && "failed to read gguf file"); GGML_ASSERT(gguf_ex_read_1(fname) && "failed to read gguf file"); } else if (mode == "q") { llama_model_quantize_params params = llama_model_quantize_default_params(); llama_model_quantize(fname.c_str(), "quant.gguf", ¶ms); } return 0; }