#version 450 #ifdef FLOAT16 #extension GL_EXT_shader_explicit_arithmetic_types_float16 : require #endif #extension GL_EXT_shader_explicit_arithmetic_types_int32 : require #extension GL_EXT_null_initializer : enable #include "mul_mat_vec_base.comp" layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; layout (constant_id = 0) const uint BLOCK_SIZE = 32; layout (constant_id = 1) const uint NUM_ROWS = 1; uint a_offset, b_offset, d_offset, y_offset; shared FLOAT_TYPE tmpsh[NUM_ROWS][BLOCK_SIZE]; void iter(inout FLOAT_TYPE temp[NUM_ROWS], const uint first_row, const uint num_rows, const uint tid, const uint i, bool lastiter) { const uint col = i*BLOCK_SIZE + 2*tid; const uint iqs = (col%QUANT_K)/QUANT_R; // quant index const uint iybs = col - col%QUANT_K; // y block start index // Check if the second of the pair of elements is OOB, and don't fetch B or // accumulate it. We still fetch a pair of elements for A, which is fine for // quantized formats since they'll be within the same block. We should // probably skip fetching the second element for F16/F32, but as of now we // still do. const bool OOB = lastiter && (iybs + iqs + y_offset >= p.ncols); FLOAT_TYPE b0 = 0, b1 = 0; b0 = FLOAT_TYPE(data_b[b_offset + iybs + iqs]); if (!OOB) { b1 = FLOAT_TYPE(data_b[b_offset + iybs + iqs + y_offset]); } [[unroll]] for (uint n = 0; n < num_rows; ++n) { const uint ib = ((first_row + n)*p.ncols + col)/QUANT_K; // block index const vec2 v = dequantize(ib, iqs, a_offset); // matrix multiplication temp[n] = fma(FLOAT_TYPE(v.x), b0, temp[n]); if (!OOB) { temp[n] = fma(FLOAT_TYPE(v.y), b1, temp[n]); } } } void compute_outputs(const uint32_t first_row, const uint32_t num_rows) { const uint tid = gl_LocalInvocationID.x; get_offsets(a_offset, b_offset, d_offset); a_offset /= QUANT_K; y_offset = QUANT_R == 1 ? 1 : QUANT_K/2; FLOAT_TYPE temp[NUM_ROWS] = {}; const int unroll_count = 8; const uint num_iters = (p.ncols >= 2*tid) ? ((p.ncols - 2*tid + BLOCK_SIZE - 1) / BLOCK_SIZE) : 0; const uint unrolled_iters = num_iters & ~(2*unroll_count - 1); uint i = 0; while (i < unrolled_iters) { // Manually partially unroll the loop [[unroll]] for (uint k = 0; k < unroll_count; ++k) { iter(temp, first_row, num_rows, tid, i, false); i += 2; } } while (i < num_iters) { iter(temp, first_row, num_rows, tid, i, true); i += 2; } // sum up partial sums and write back result [[unroll]] for (uint n = 0; n < num_rows; ++n) { tmpsh[n][tid] = temp[n]; } barrier(); [[unroll]] for (uint s = BLOCK_SIZE/2; s > 0; s >>= 1) { if (tid < s) { [[unroll]] for (uint n = 0; n < num_rows; ++n) { tmpsh[n][tid] += tmpsh[n][tid + s]; } } barrier(); } if (tid == 0) { [[unroll]] for (uint n = 0; n < num_rows; ++n) { data_d[d_offset + first_row + n] = D_TYPE(tmpsh[n][0]); } } } void main() { const uint first_row = NUM_ROWS * (gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z); // do NUM_ROWS at a time, unless there aren't enough remaining rows if (first_row + NUM_ROWS <= p.stride_d) { compute_outputs(first_row, NUM_ROWS); } else { compute_outputs(first_row, p.stride_d - first_row); } }