#include "common.h" #include "llama.h" #include #include #include #include struct seq_ngram { bool active = false; std::vector tokens; }; int main(int argc, char ** argv) { gpt_params params; if (gpt_params_parse(argc, argv, params) == false) { return 1; } const int W = 5; // lookahead window const int N = 4; // n-gram size const int G = 5; // max verification n-grams const bool dump_kv_cache = params.dump_kv_cache; #ifndef LOG_DISABLE_LOGS log_set_target(log_filename_generator("lookahead", "log")); LOG_TEE("Log start\n"); log_dump_cmdline(argc, argv); #endif // LOG_DISABLE_LOGS // init llama.cpp llama_backend_init(params.numa); llama_model * model = NULL; llama_context * ctx = NULL; // load the target model std::tie(model, ctx) = llama_init_from_gpt_params(params); // Tokenize the prompt const bool add_bos = llama_should_add_bos_token(model); LOG("add_bos tgt: %d\n", add_bos); std::vector inp; std::vector all; inp = ::llama_tokenize(ctx, params.prompt, add_bos, true); all = inp; const int max_context_size = llama_n_ctx(ctx); const int max_tokens_list_size = max_context_size - 4; if ((int) inp.size() > max_tokens_list_size) { fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size); return 1; } fprintf(stderr, "\n\n"); for (auto id : inp) { fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str()); } fflush(stderr); const int n_input = inp.size(); const auto t_enc_start = ggml_time_us(); // eval the prompt llama_decode(ctx, llama_batch_get_one( inp.data(), n_input - 1, 0, 0)); llama_decode(ctx, llama_batch_get_one(&inp.back(), 1, n_input - 1, 0)); for (int s = 0; s < W + G + 1; ++s) { llama_kv_cache_seq_cp(ctx, 0, s, -1, -1); } const auto t_enc_end = ggml_time_us(); int n_predict = 0; int n_accept = 0; int n_past = inp.size(); llama_token id = 0; // used to determine end of generation bool has_eos = false; // seq_id == 0 : the current input token // seq_id [1, W] : tokens from the past N - 1 Jacobi iterations // seq_id [W + 1, W + G] : verification n-grams llama_batch batch = llama_batch_init(params.n_ctx, 0, W + G + 1); // target model sampling context struct llama_sampling_context * ctx_sampling = llama_sampling_init(params.sparams); // verification n-grams std::vector drafts(G); // tokens for the past N - 1 Jacobi iterations // TODO: how to initialize? std::vector> tokens_j(N - 1); for (int j = 0; j < N - 1; j++) { tokens_j[j].resize(W); for (int i = 0; i < W; i++) { tokens_j[j][i] = all[1 + rand() % (all.size() - 1)]; } } std::vector seq_id_look(W + 1); for (int i = 0; i < W + 1; i++) { seq_id_look[i] = i; } std::vector seq_id_all(W + G + 1); for (int i = 0; i < W + G + 1; i++) { seq_id_all[i] = i; } // debug struct llama_kv_cache_view kvc_view = llama_kv_cache_view_init(ctx, W + G + 1); const auto t_dec_start = ggml_time_us(); // sample first token { id = llama_sampling_sample(ctx_sampling, ctx, NULL, 0); llama_sampling_accept(ctx_sampling, ctx, id, true); { const std::string token_str = llama_token_to_piece(ctx, id); printf("%s", token_str.c_str()); fflush(stdout); } } while (true) { // debug if (dump_kv_cache) { llama_kv_cache_view_update(ctx, &kvc_view); dump_kv_cache_view_seqs(kvc_view, 40); } // build the mask from https://lmsys.org/blog/2023-11-21-lookahead-decoding/ { llama_batch_clear(batch); llama_batch_add(batch, id, n_past, seq_id_all, true); for (int i = 1; i < W; i++) { llama_batch_add(batch, tokens_j[0][i], n_past + i, seq_id_look, false); } for (int j = 1; j < N - 1; j++) { for (int i = 0; i < W; i++) { llama_batch_add(batch, tokens_j[j][i], n_past + j + i, { i + 1 }, j == N - 2); } } // TODO: add verification n-grams } llama_decode(ctx, batch); id = llama_sampling_sample(ctx_sampling, ctx, NULL, 0); llama_sampling_accept(ctx_sampling, ctx, id, true); { const std::string token_str = llama_token_to_piece(ctx, id); printf("%s", token_str.c_str()); fflush(stdout); if (id == llama_token_eos(model)) { has_eos = true; } } ++n_predict; ++n_past; if (n_predict > params.n_predict || has_eos) { break; } // update Jacobi tokens (or whatever these are called) { for (int j = 0; j < N - 2; j++) { tokens_j[j] = tokens_j[j + 1]; } for (int i = 0; i < W; i++) { tokens_j[N - 2][i] = llama_sampling_sample(ctx_sampling, ctx, NULL, W*(N - 2) + i); } } // verification // TODO { } llama_kv_cache_seq_rm(ctx, -1, n_past, -1); } auto t_dec_end = ggml_time_us(); LOG_TEE("\n\n"); LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f)); LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f)); LOG_TEE("\n"); LOG_TEE("n_predict = %d\n", n_predict); LOG_TEE("n_accept = %d\n", n_accept); llama_print_timings(ctx); llama_kv_cache_view_free(&kvc_view); llama_sampling_free(ctx_sampling); llama_batch_free(batch); llama_free(ctx); llama_free_model(model); llama_backend_free(); fprintf(stderr, "\n\n"); return 0; }