#version 450 #extension GL_EXT_control_flow_attributes : enable #extension GL_EXT_shader_16bit_storage : require #ifdef FLOAT16 #extension GL_EXT_shader_explicit_arithmetic_types_float16 : require #endif #ifdef MUL_MAT_ID #extension GL_EXT_shader_explicit_arithmetic_types_int16 : require #endif #include "types.comp" #ifndef LOAD_VEC_A #define LOAD_VEC_A 1 #endif #ifndef LOAD_VEC_B #define LOAD_VEC_B 1 #endif layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; layout (binding = 0) readonly buffer A {A_TYPE data_a[];}; layout (binding = 1) readonly buffer B {B_TYPE data_b[];}; layout (binding = 2) writeonly buffer D {D_TYPE data_d[];}; #ifdef MUL_MAT_ID layout (binding = 3) readonly buffer IDS {int data_ids[];}; #endif layout (push_constant) uniform parameter { uint M; uint N; uint K; uint stride_a; uint stride_b; uint stride_d; uint batch_stride_a; uint batch_stride_b; uint batch_stride_d; #ifdef MUL_MAT_ID uint nei0; uint nei1; uint nbi1; uint ne11; #else uint k_split; uint ne02; uint ne12; uint broadcast2; uint broadcast3; #endif } p; layout (constant_id = 1) const uint BM = 64; layout (constant_id = 2) const uint BN = 64; layout (constant_id = 3) const uint BK = 16; // Assumed to be 32 if working with a quant layout (constant_id = 4) const uint WM = 32; layout (constant_id = 5) const uint WN = 32; layout (constant_id = 6) const uint WMITER = 2; layout (constant_id = 7) const uint TM = 4; layout (constant_id = 8) const uint TN = 2; layout (constant_id = 9) const uint WARP = 32; shared FLOAT_TYPE buf_a[BM * (BK+1)]; shared FLOAT_TYPE buf_b[BN * (BK+1)]; #ifdef MUL_MAT_ID shared u16vec2 row_ids[2048]; #endif void main() { #ifdef MUL_MAT_ID const uint expert_idx = gl_GlobalInvocationID.z; #else const uint batch_idx = gl_GlobalInvocationID.z; const uint i13 = batch_idx / p.ne12; const uint i12 = batch_idx % p.ne12; const uint i03 = i13 / p.broadcast3; const uint i02 = i12 / p.broadcast2; const uint batch_idx_a = i03 * p.ne02 + i02; #endif const uint blocks_m = (p.M + BM - 1) / BM; const uint ir = gl_WorkGroupID.x % blocks_m; const uint ik = gl_WorkGroupID.x / blocks_m; const uint ic = gl_WorkGroupID.y; const uint warp_i = gl_LocalInvocationID.x / WARP; const uint warp_r = warp_i % (BM / WM); const uint warp_c = warp_i / (BM / WM); const uint WNITER = (WM * WN) / (WARP * TM * TN * WMITER); const uint WSUBM = WM / WMITER; const uint WSUBN = WN / WNITER; const uint tiw = gl_LocalInvocationID.x % WARP; const uint tiwr = tiw % (WSUBM / TM); const uint tiwc = tiw / (WSUBM / TM); const uint loadr_a = gl_LocalInvocationID.x % (BK / LOAD_VEC_A); const uint loadc_a = gl_LocalInvocationID.x / (BK / LOAD_VEC_A); const uint loadr_b = gl_LocalInvocationID.x % (BK / LOAD_VEC_B); const uint loadc_b = gl_LocalInvocationID.x / (BK / LOAD_VEC_B); const uint loadstride_a = gl_WorkGroupSize.x * LOAD_VEC_A / BK; const uint loadstride_b = gl_WorkGroupSize.x * LOAD_VEC_B / BK; #ifdef MUL_MAT_ID uint _ne1 = 0; for (uint ii1 = 0; ii1 < p.nei1; ii1++) { for (uint ii0 = 0; ii0 < p.nei0; ii0++) { if (data_ids[ii1*p.nbi1 + ii0] == expert_idx) { row_ids[_ne1] = u16vec2(ii0, ii1); _ne1++; } } } barrier(); // Workgroup has no work if (ic * BN >= _ne1) return; #endif #ifdef MUL_MAT_ID const uint start_k = 0; const uint end_k = p.K; #else const uint start_k = ik * p.k_split; const uint end_k = min(p.K, (ik + 1) * p.k_split); #endif uint pos_a = ( #ifdef MUL_MAT_ID expert_idx * p.batch_stride_a + #else batch_idx_a * p.batch_stride_a + #endif ir * BM * p.stride_a + start_k) / LOAD_VEC_A; #ifdef MUL_MAT_ID uint pos_b = 0; #else uint pos_b = (batch_idx * p.batch_stride_b + ic * BN * p.stride_b + start_k) / LOAD_VEC_B; #endif float sums[WMITER * TM * WNITER * TN]; FLOAT_TYPE cache_a[WMITER * TM]; FLOAT_TYPE cache_b[WNITER * TN]; [[unroll]] for (uint i = 0; i < WMITER*TM*WNITER*TN; i++) { sums[i] = 0.0f; } [[unroll]] for (uint block = start_k; block < end_k; block += BK) { [[unroll]] for (uint l = 0; l < BM; l += loadstride_a) { #if defined(DATA_A_F32) || defined(DATA_A_F16) #if LOAD_VEC_A == 8 const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a; const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A; buf_a[buf_idx ] = FLOAT_TYPE(data_a[idx][0].x); buf_a[buf_idx + 1] = FLOAT_TYPE(data_a[idx][0].y); buf_a[buf_idx + 2] = FLOAT_TYPE(data_a[idx][0].z); buf_a[buf_idx + 3] = FLOAT_TYPE(data_a[idx][0].w); buf_a[buf_idx + 4] = FLOAT_TYPE(data_a[idx][1].x); buf_a[buf_idx + 5] = FLOAT_TYPE(data_a[idx][1].y); buf_a[buf_idx + 6] = FLOAT_TYPE(data_a[idx][1].z); buf_a[buf_idx + 7] = FLOAT_TYPE(data_a[idx][1].w); #elif LOAD_VEC_A == 4 const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a; const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A; buf_a[buf_idx ] = FLOAT_TYPE(data_a[idx].x); buf_a[buf_idx + 1] = FLOAT_TYPE(data_a[idx].y); buf_a[buf_idx + 2] = FLOAT_TYPE(data_a[idx].z); buf_a[buf_idx + 3] = FLOAT_TYPE(data_a[idx].w); #else if (ir * BM + loadc_a + l < p.M && block + loadr_a < end_k) { buf_a[(loadc_a + l) * (BK+1) + loadr_a] = FLOAT_TYPE(data_a[pos_a + (loadc_a + l) * p.stride_a + loadr_a]); } else { buf_a[(loadc_a + l) * (BK+1) + loadr_a] = FLOAT_TYPE(0.0f); } #endif #elif defined(DATA_A_Q4_0) const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a; const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a; const uint ib = idx / 16; const uint iqs = idx & 0xF; const float d = float(data_a[ib].d); const uint vui = uint(data_a[ib].qs[iqs]); const vec2 v = (vec2(vui & 0xF, vui >> 4) - 8.0f) * d; buf_a[buf_idx ] = FLOAT_TYPE(v.x); buf_a[buf_idx + 16] = FLOAT_TYPE(v.y); #elif defined(DATA_A_Q4_1) const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a; const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a; const uint ib = idx / 16; const uint iqs = idx & 0xF; const float d = float(data_a[ib].d); const float m = float(data_a[ib].m); const uint vui = uint(data_a[ib].qs[iqs]); const vec2 v = vec2(vui & 0xF, vui >> 4) * d + m; buf_a[buf_idx ] = FLOAT_TYPE(v.x); buf_a[buf_idx + 16] = FLOAT_TYPE(v.y); #elif defined(DATA_A_Q5_0) const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a; const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a; const uint ib = idx / 16; const uint iqs = idx & 0xF; const float d = float(data_a[ib].d); const uint uint_qh = uint(data_a[ib].qh[1]) << 16 | data_a[ib].qh[0]; const ivec2 qh = ivec2(((uint_qh >> iqs) << 4) & 0x10, (uint_qh >> (iqs + 12)) & 0x10); const uint vui = uint(data_a[ib].qs[iqs]); const vec2 v = (vec2((vui & 0xF) | qh.x, (vui >> 4) | qh.y) - 16.0f) * d; buf_a[buf_idx ] = FLOAT_TYPE(v.x); buf_a[buf_idx + 16] = FLOAT_TYPE(v.y); #elif defined(DATA_A_Q5_1) const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a; const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a; const uint ib = idx / 16; const uint iqs = idx & 0xF; const float d = float(data_a[ib].d); const float m = float(data_a[ib].m); const uint uint_qh = data_a[ib].qh; const ivec2 qh = ivec2(((uint_qh >> iqs) << 4) & 0x10, (uint_qh >> (iqs + 12)) & 0x10); const uint vui = uint(data_a[ib].qs[iqs]); const vec2 v = vec2((vui & 0xF) | qh.x, (vui >> 4) | qh.y) * d + m; buf_a[buf_idx ] = FLOAT_TYPE(v.x); buf_a[buf_idx + 16] = FLOAT_TYPE(v.y); #elif defined(DATA_A_Q8_0) const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a; const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A; const uint ib = idx / 16; const uint iqs = (idx & 0xF) * 2; const float d = float(data_a[ib].d); const vec2 v = vec2(int(data_a[ib].qs[iqs]), int(data_a[ib].qs[iqs + 1])) * d; buf_a[buf_idx ] = FLOAT_TYPE(v.x); buf_a[buf_idx + 1] = FLOAT_TYPE(v.y); #elif defined(DATA_A_Q2_K) const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a; const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A; const uint ib = idx / 128; // 2 values per idx const uint iqs = idx % 128; // 0..127 const uint qsi = (iqs / 64) * 32 + (iqs % 16) * 2; // 0,2,4..30 const uint scalesi = iqs / 8; // 0..15 const uint qsshift = ((iqs % 64) / 16) * 2; // 0,2,4,6 const uvec2 qs = uvec2(data_a[ib].qs[qsi], data_a[ib].qs[qsi + 1]); const uint scales = data_a[ib].scales[scalesi]; const vec2 d = vec2(data_a[ib].d); const vec2 v = d.x * float(scales & 0xF) * vec2((qs >> qsshift) & 3) - d.y * float(scales >> 4); buf_a[buf_idx ] = FLOAT_TYPE(v.x); buf_a[buf_idx + 1] = FLOAT_TYPE(v.y); #elif defined(DATA_A_Q3_K) const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a; const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A; const uint ib = idx / 128; // 2 values per idx const uint iqs = idx % 128; // 0..127 const uint n = iqs / 64; // 0,1 const uint qsi = n * 32 + (iqs % 16) * 2; // 0,2,4..62 const uint hmi = (iqs % 16) * 2; // 0,2,4..30 const uint j = (iqs % 64) / 4; // 0..3 const uint is = iqs / 8; // 0..15 const uint halfsplit = ((iqs % 64) / 16); // 0,1,2,3 const uint qsshift = halfsplit * 2; // 0,2,4,6 const uint m = 1 << (4 * n + halfsplit); // 1,2,4,8,16,32,64,128 const int8_t us = int8_t(is < 4 ? (data_a[ib].scales[is-0] & 0xF) | (((data_a[ib].scales[is+8] >> 0) & 3) << 4) : is < 8 ? (data_a[ib].scales[is-0] & 0xF) | (((data_a[ib].scales[is+4] >> 2) & 3) << 4) : is < 12 ? (data_a[ib].scales[is-8] >> 4) | (((data_a[ib].scales[is+0] >> 4) & 3) << 4) : (data_a[ib].scales[is-8] >> 4) | (((data_a[ib].scales[is-4] >> 6) & 3) << 4)); const float dl = float(data_a[ib].d) * float(us - 32); buf_a[buf_idx ] = FLOAT_TYPE(dl * float(int8_t((data_a[ib].qs[qsi ] >> qsshift) & 3) - (((data_a[ib].hmask[hmi ] & m) != 0) ? 0 : 4))); buf_a[buf_idx + 1] = FLOAT_TYPE(dl * float(int8_t((data_a[ib].qs[qsi + 1] >> qsshift) & 3) - (((data_a[ib].hmask[hmi + 1] & m) != 0) ? 0 : 4))); #elif defined(DATA_A_Q4_K) const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a; const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A; const uint ib = idx / 128; // 2 values per idx const uint iqs = idx % 128; // 0..127 const uint n = iqs / 32; // 0,1,2,3 const uint b = (iqs % 32) / 16; // 0,1 const uint is = 2 * n + b; // 0..7 const uint qsi = n * 32 + (iqs % 16) * 2; // 0,2,4..126 const vec2 loadd = vec2(data_a[ib].d); uint8_t sc; uint8_t mbyte; if (is < 4) { sc = uint8_t(data_a[ib].scales[is ] & 63); mbyte = uint8_t(data_a[ib].scales[is + 4] & 63); } else { sc = uint8_t((data_a[ib].scales[is + 4] & 0xF) | ((data_a[ib].scales[is - 4] >> 6) << 4)); mbyte = uint8_t((data_a[ib].scales[is + 4] >> 4) | ((data_a[ib].scales[is ] >> 6) << 4)); } const float d = loadd.x * sc; const float m = loadd.y * mbyte; buf_a[buf_idx ] = FLOAT_TYPE(d * float((data_a[ib].qs[qsi ] >> (b * 4)) & 0xF) - m); buf_a[buf_idx + 1] = FLOAT_TYPE(d * float((data_a[ib].qs[qsi + 1] >> (b * 4)) & 0xF) - m); #elif defined(DATA_A_Q5_K) const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a; const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A; const uint ib = idx / 128; // 2 values per idx const uint iqs = idx % 128; // 0..127 const uint n = iqs / 32; // 0,1,2,3 const uint b = (iqs % 32) / 16; // 0,1 const uint is = 2 * n + b; // 0..7 const uint qsi = n * 32 + (iqs % 16) * 2; // 0,2,4..126 const uint qhi = (iqs % 16) * 2; // 0,2,4..30 const uint8_t hm = uint8_t(1 << (iqs / 16)); const vec2 loadd = vec2(data_a[ib].d); uint8_t sc; uint8_t mbyte; if (is < 4) { sc = uint8_t(data_a[ib].scales[is ] & 63); mbyte = uint8_t(data_a[ib].scales[is + 4] & 63); } else { sc = uint8_t((data_a[ib].scales[is + 4] & 0xF) | ((data_a[ib].scales[is - 4] >> 6) << 4)); mbyte = uint8_t((data_a[ib].scales[is + 4] >> 4) | ((data_a[ib].scales[is ] >> 6) << 4)); } const float d = loadd.x * sc; const float m = loadd.y * mbyte; buf_a[buf_idx ] = FLOAT_TYPE(d * (float((data_a[ib].qs[qsi ] >> (b * 4)) & 0xF) + float((data_a[ib].qh[qhi ] & hm) != 0 ? 16 : 0)) - m); buf_a[buf_idx + 1] = FLOAT_TYPE(d * (float((data_a[ib].qs[qsi + 1] >> (b * 4)) & 0xF) + float((data_a[ib].qh[qhi + 1] & hm) != 0 ? 16 : 0)) - m); #elif defined(DATA_A_Q6_K) const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a; const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A; const uint ib = idx / 128; // 2 values per idx const uint iqs = idx % 128; // 0..127 const uint n = iqs / 64; // 0,1 const uint b = (iqs % 64) / 32; // 0,1 const uint is_b = (iqs % 16) / 8; // 0,1 const uint qhshift = ((iqs % 64) / 16) * 2; // 0,2,4,6 const uint is = 8 * n + qhshift + is_b; // 0..15 const uint qsi = n * 64 + (iqs % 32) * 2; // 0,2,4..126 const uint qhi = n * 32 + (iqs % 16) * 2; // 0,2,4..62 const float dscale = float(data_a[ib].d) * float(data_a[ib].scales[is]); buf_a[buf_idx ] = FLOAT_TYPE(dscale * float(int8_t(((data_a[ib].ql[qsi ] >> (b * 4)) & 0xF) | (((data_a[ib].qh[qhi ] >> qhshift) & 3) << 4)) - 32)); buf_a[buf_idx + 1] = FLOAT_TYPE(dscale * float(int8_t(((data_a[ib].ql[qsi + 1] >> (b * 4)) & 0xF) | (((data_a[ib].qh[qhi + 1] >> qhshift) & 3) << 4)) - 32)); #endif } [[unroll]] for (uint l = 0; l < BN; l += loadstride_b) { #if LOAD_VEC_B == 8 #ifdef MUL_MAT_ID const u16vec2 row_idx = row_ids[ic * BN + loadc_b + l]; const uint idx = pos_b + row_idx.y * p.batch_stride_b / LOAD_VEC_B + (row_idx.x % p.ne11) * p.stride_b / LOAD_VEC_B + loadr_b; #else const uint idx = pos_b + (loadc_b + l) * p.stride_b / LOAD_VEC_B + loadr_b; #endif const uint buf_idx = (loadc_b + l) * (BK+1) + loadr_b * LOAD_VEC_B; buf_b[buf_idx + 0] = FLOAT_TYPE(data_b[idx][0].x); buf_b[buf_idx + 1] = FLOAT_TYPE(data_b[idx][0].y); buf_b[buf_idx + 2] = FLOAT_TYPE(data_b[idx][0].z); buf_b[buf_idx + 3] = FLOAT_TYPE(data_b[idx][0].w); buf_b[buf_idx + 4] = FLOAT_TYPE(data_b[idx][1].x); buf_b[buf_idx + 5] = FLOAT_TYPE(data_b[idx][1].y); buf_b[buf_idx + 6] = FLOAT_TYPE(data_b[idx][1].z); buf_b[buf_idx + 7] = FLOAT_TYPE(data_b[idx][1].w); #elif LOAD_VEC_B == 4 #ifdef MUL_MAT_ID const u16vec2 row_idx = row_ids[ic * BN + loadc_b + l]; const uint idx = pos_b + row_idx.y * p.batch_stride_b / LOAD_VEC_B + (row_idx.x % p.ne11) * p.stride_b / LOAD_VEC_B + loadr_b; #else const uint idx = pos_b + (loadc_b + l) * p.stride_b / LOAD_VEC_B + loadr_b; #endif const uint buf_idx = (loadc_b + l) * (BK+1) + loadr_b * LOAD_VEC_B; buf_b[buf_idx + 0] = FLOAT_TYPE(data_b[idx].x); buf_b[buf_idx + 1] = FLOAT_TYPE(data_b[idx].y); buf_b[buf_idx + 2] = FLOAT_TYPE(data_b[idx].z); buf_b[buf_idx + 3] = FLOAT_TYPE(data_b[idx].w); #elif !MUL_MAT_ID if (ic * BN + loadc_b + l < p.N && block + loadr_b < end_k) { buf_b[(loadc_b + l) * (BK+1) + loadr_b] = FLOAT_TYPE(data_b[pos_b + (loadc_b + l) * p.stride_b + loadr_b]); } else { buf_b[(loadc_b + l) * (BK+1) + loadr_b] = FLOAT_TYPE(0.0f); } #else const uint row_i = ic * BN + loadc_b + l; if (row_i < _ne1) { const u16vec2 row_idx = row_ids[row_i]; buf_b[(loadc_b + l) * (BK+1) + loadr_b] = FLOAT_TYPE(data_b[pos_b + row_idx.y * p.batch_stride_b + (row_idx.x % p.ne11) * p.stride_b + loadr_b]); } else { buf_b[(loadc_b + l) * (BK+1) + loadr_b] = FLOAT_TYPE(0.0f); } #endif } barrier(); pos_a += BK / LOAD_VEC_A; pos_b += BK / LOAD_VEC_B; for (uint i = 0; i < BK; i++) { // Load from shared into cache [[unroll]] for (uint wsir = 0; wsir < WMITER; wsir++) { [[unroll]] for (uint j = 0; j < TM; j++) { cache_a[wsir * TM + j] = buf_a[(warp_r * WM + wsir * WSUBM + tiwr * TM + j) * (BK+1) + i]; } } [[unroll]] for (uint wsic = 0; wsic < WNITER; wsic++) { [[unroll]] for (uint j = 0; j < TN; j++) { cache_b[wsic * TN + j] = buf_b[(warp_c * WN + wsic * WSUBN + tiwc * TN + j) * (BK+1) + i]; } } [[unroll]] for (uint wsic = 0; wsic < WNITER; wsic++) { [[unroll]] for (uint wsir = 0; wsir < WMITER; wsir++) { [[unroll]] for (uint cc = 0; cc < TN; cc++) { [[unroll]] for (uint cr = 0; cr < TM; cr++) { sums[(wsic * TN + cc) * (WMITER * TM) + wsir * TM + cr] += float(cache_a[wsir * TM + cr]) * float(cache_b[wsic * TN + cc]); } } } } } barrier(); } const uint dr = ir * BM + warp_r * WM; const uint dc = ic * BN + warp_c * WN; #ifndef MUL_MAT_ID const uint offsets = batch_idx * p.batch_stride_d + ik * p.batch_stride_d * gl_NumWorkGroups.z; #endif [[unroll]] for (uint wsic = 0; wsic < WNITER; wsic++) { [[unroll]] for (uint wsir = 0; wsir < WMITER; wsir++) { const uint dr_warp = dr + wsir * WSUBM + tiwr * TM; const uint dc_warp = dc + wsic * WSUBN + tiwc * TN; [[unroll]] for (uint cc = 0; cc < TN; cc++) { #ifdef MUL_MAT_ID const uint row_i = dc_warp + cc; if (row_i >= _ne1) break; const u16vec2 row_idx = row_ids[row_i]; #endif [[unroll]] for (uint cr = 0; cr < TM; cr++) { #ifdef MUL_MAT_ID data_d[row_idx.y * p.batch_stride_d + row_idx.x * p.stride_d + dr_warp + cr] = D_TYPE(sums[(wsic * TN + cc) * (WMITER * TM) + wsir * TM + cr]); #else if (dr_warp + cr < p.M && dc_warp + cc < p.N) { data_d[offsets + (dc_warp + cc) * p.stride_d + dr_warp + cr] = D_TYPE(sums[(wsic * TN + cc) * (WMITER * TM) + wsir * TM + cr]); } #endif } } } } }