#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) { size_t size = ggml_nelements(tensor); std::vector data(size); std::random_device rd; #if 0 std::default_random_engine generator(rd()); std::uniform_real_distribution distribution(min, max); for (size_t i = 0; i < size; i++) { data[i] = distribution(generator); } #endif auto init_thread = [&](size_t start, size_t end) { std::default_random_engine generator(rd()); std::uniform_real_distribution distribution(min, max); for (size_t i = start; i < end; i++) { data[i] = distribution(generator); } }; size_t n_threads = std::thread::hardware_concurrency(); std::vector threads; threads.reserve(n_threads); for (size_t i = 0; i < n_threads; i++) { size_t start = i*size/n_threads; size_t end = (i+1)*size/n_threads; threads.emplace_back(init_thread, start, end); } for (auto & t : threads) { t.join(); } if (tensor->type == GGML_TYPE_F32) { ggml_backend_tensor_set(tensor, data.data(), 0, size * sizeof(float)); } else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16) { GGML_ASSERT(size % ggml_blck_size(tensor->type) == 0); std::vector dataq(ggml_type_size(tensor->type)*size/ggml_blck_size(tensor->type)); int64_t hist[16]; ggml_quantize_chunk(tensor->type, data.data(), dataq.data(), 0, size, hist); ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size()); } else { GGML_ASSERT(false); } } static std::vector tensor_to_float(const ggml_tensor * t) { std::vector tv; tv.reserve(ggml_nelements(t)); std::vector buf(ggml_nbytes(t)); ggml_backend_tensor_get(t, buf.data(), 0, ggml_nbytes(t)); // access elements by index to avoid gaps in views for (int64_t i3 = 0; i3 < t->ne[3]; i3++) { for (int64_t i2 = 0; i2 < t->ne[2]; i2++) { for (int64_t i1 = 0; i1 < t->ne[1]; i1++) { for (int64_t i0 = 0; i0 < t->ne[0]; i0++) { size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0*t->nb[0]; float v; if (t->type == GGML_TYPE_F16) { v = (float) ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i]); } else if (t->type == GGML_TYPE_F32) { v = *(float *) &buf[i]; } else if (t->type == GGML_TYPE_I32) { v = *(int32_t *) &buf[i]; } else { GGML_ASSERT(false); } tv.push_back(v); } } } } return tv; } /* static double cosine_similarity(const float * v1, const float * v2, size_t n) { double dot = 0.0; double mag1 = 0.0; double mag2 = 0.0; for (size_t i = 0; i < n; i++) { if (std::isnan(v1[i]) || std::isnan(v2[i])) { return -1.0f; } if (std::isinf(v1[i]) && std::isinf(v2[i])) { continue; } dot += v1[i]*v2[i]; mag1 += v1[i]*v1[i]; mag2 += v2[i]*v2[i]; } return dot/sqrt(mag1*mag2); } static float distance(const float * v1, const float * v2, size_t n) { double d = 0.0; for (size_t i = 0; i < n; i++) { if (std::isnan(v1[i]) || std::isnan(v2[i])) { return INFINITY; } if (std::isinf(v1[i]) && std::isinf(v2[i])) { continue; } d += (v1[i] - v2[i])*(v1[i] - v2[i]); } return sqrt(d); } static float vec_len(const float * v, size_t n) { double d = 0.0; for (size_t i = 0; i < n; i++) { if (std::isnan(v[i])) { return INFINITY; } if (std::isinf(v[i])) { continue; } d += v[i]*v[i]; } return sqrt(d); } */ // normalized mean squared error = mse(a, b) / mse(a, 0) static double nmse(const float * a, const float * b, size_t n) { double mse_a_b = 0.0; double mse_a_0 = 0.0; for (size_t i = 0; i < n; i++) { float a_i = a[i]; float b_i = b[i]; mse_a_b += (a_i - b_i) * (a_i - b_i); mse_a_0 += a_i * a_i; } return mse_a_b / mse_a_0; } // utils for printing the variables of the test cases #define VAR_TO_STR(x) (#x "=" + var_to_str(x)) template static std::string var_to_str(const T & x) { return std::to_string(x); } template static std::string var_to_str(const T (&x)[N]) { std::string s = "["; for (size_t i = 0; i < N; i++) { if (i > 0) { s += ","; } s += var_to_str(x[i]); } s += "]"; return s; } template static std::string var_to_str(const std::array & x) { std::string s = "["; for (size_t i = 0; i < N; i++) { if (i > 0) { s += ","; } s += var_to_str(x[i]); } s += "]"; return s; } //static std::string var_to_str(ggml_unary_op unary_op) { // return ggml_unary_op_name(unary_op); //} static std::string var_to_str(ggml_type type) { return ggml_type_name(type); } #define VARS_TO_STR1(a) VAR_TO_STR(a) #define VARS_TO_STR2(a, b) VAR_TO_STR(a) + "," + VAR_TO_STR(b) #define VARS_TO_STR3(a, b, c) VAR_TO_STR(a) + "," + VARS_TO_STR2(b, c) #define VARS_TO_STR4(a, b, c, d) VAR_TO_STR(a) + "," + VARS_TO_STR3(b, c, d) #define VARS_TO_STR5(a, b, c, d, e) VAR_TO_STR(a) + "," + VARS_TO_STR4(b, c, d, e) #define VARS_TO_STR6(a, b, c, d, e, f) VAR_TO_STR(a) + "," + VARS_TO_STR5(b, c, d, e, f) #define VARS_TO_STR7(a, b, c, d, e, f, g) VAR_TO_STR(a) + "," + VARS_TO_STR6(b, c, d, e, f, g) #define VARS_TO_STR8(a, b, c, d, e, f, g, h) VAR_TO_STR(a) + "," + VARS_TO_STR7(b, c, d, e, f, g, h) #define VARS_TO_STR9(a, b, c, d, e, f, g, h, i) VAR_TO_STR(a) + "," + VARS_TO_STR8(b, c, d, e, f, g, h, i) #define VARS_TO_STR10(a, b, c, d, e, f, g, h, i, j) VAR_TO_STR(a) + "," + VARS_TO_STR9(b, c, d, e, f, g, h, i, j) #define VARS_TO_STR11(a, b, c, d, e, f, g, h, i, j, k) VAR_TO_STR(a) + "," + VARS_TO_STR10(b, c, d, e, f, g, h, i, j, k) // accept FLT_MAX as infinity static bool isinf_or_max(float f) { return std::isinf(f) || f == FLT_MAX || f == -FLT_MAX; } static bool ggml_is_view_op(enum ggml_op op) { return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE; } struct test_case { virtual ~test_case() {} virtual std::string vars() { return ""; } virtual ggml_tensor * build_graph(ggml_context * ctx) = 0; virtual double max_nmse_err() { return 1e-6; } virtual void initialize_tensors(ggml_context * ctx) { for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) { init_tensor_uniform(t); } } virtual size_t op_size(ggml_tensor * t) { size_t size = ggml_nbytes(t); // add source tensors for (int i = 0; i < GGML_MAX_SRC; i++) { if (t->src[i] != NULL) { size += ggml_nbytes(t->src[i]); } } return size; } bool eval(ggml_backend_t backend1, ggml_backend_t backend2, const char * op_name) { ggml_init_params params = { /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(), /* .mem_base = */ NULL, /* .no_alloc = */ true, }; ggml_context * ctx = ggml_init(params); ggml_tensor * out = build_graph(ctx); if (op_name != nullptr && strcmp(ggml_op_desc(out), op_name) != 0) { //printf(" %s: skipping\n", ggml_op_desc(out)); ggml_free(ctx); return true; } printf(" %s(%s): ", ggml_op_desc(out), vars().c_str()); fflush(stdout); // check if backends support op for (ggml_backend_t backend : {backend1, backend2}) { if (!ggml_backend_supports_op(backend, out)) { printf("not supported\n"); ggml_free(ctx); return true; } } // allocate ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1); // build graph ggml_cgraph * gf = ggml_new_graph(ctx); ggml_build_forward_expand(gf, out); // randomize tensors initialize_tensors(ctx); // compare struct callback_userdata { bool ok; double max_err; }; callback_userdata ud { true, max_nmse_err(), }; auto callback = [](int index, ggml_tensor * t1, ggml_tensor * t2, void * user_data) -> bool { std::vector f1 = tensor_to_float(t1); std::vector f2 = tensor_to_float(t2); callback_userdata * ud = (callback_userdata *) user_data; for (size_t i = 0; i < f1.size(); i++) { // check for nans if (std::isnan(f1[i]) || std::isnan(f2[i])) { printf("NaN at index %zu ", i); ud->ok = false; return true; } // check for infs: both must be inf of the same sign, or both must be finite if (isinf_or_max(f1[i]) || isinf_or_max(f2[i])) { if (isinf_or_max(f1[i]) && isinf_or_max(f2[i])) { if (std::signbit(f1[i]) != std::signbit(f2[i])) { printf("inf sign mismatch: %f %f ", f1[i], f2[i]); ud->ok = false; return true; } } else { printf("inf mismatch: %f %f ", f1[i], f2[i]); ud->ok = false; return true; } } } double err = nmse(f1.data(), f2.data(), f1.size()); if (err > ud->max_err) { printf("NMSE = %f ", err); ud->ok = false; } return true; }; ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud); if (ud.ok) { printf("\033[1;32mOK\033[0m\n"); } else { printf("\033[1;31mFAIL\033[0m\n"); } ggml_backend_buffer_free(buf); ggml_free(ctx); return ud.ok; } bool eval_perf(ggml_backend_t backend, const char * op_name) { static const size_t graph_nodes = 8192; ggml_init_params params = { /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false), /* .mem_base = */ NULL, /* .no_alloc = */ true, }; ggml_context * ctx = ggml_init(params); ggml_tensor * out = build_graph(ctx); if (op_name != nullptr && strcmp(ggml_op_desc(out), op_name) != 0) { //printf(" %s: skipping\n", ggml_op_desc(out)); ggml_free(ctx); return true; } int len = printf(" %s(%s): ", ggml_op_desc(out), vars().c_str()); fflush(stdout); // check if backends support op if (!ggml_backend_supports_op(backend, out)) { printf("not supported\n"); ggml_free(ctx); return true; } // align while also leaving some margin for variations in parameters int align = 20; int last = (len + align - 1) / align * align; if (last - len < 5) { last += align; } last = std::max(last, 60); printf("%*s", last - len, ""); // allocate ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend); // randomize tensors initialize_tensors(ctx); // build graph ggml_cgraph * gf = ggml_new_graph_custom(ctx, graph_nodes, false); ggml_build_forward_expand(gf, out); // warmup run ggml_backend_graph_compute(backend, gf); // duplicate the op size_t target_size = ggml_backend_is_cpu(backend) ? 1ULL << 33 : 1ULL << 35; // 8 GB CPU, 32 GB GPU int n_runs = std::min((size_t)gf->size - gf->n_nodes, target_size / op_size(out)) + 1; for (int i = 1; i < n_runs; i++) { gf->nodes[gf->n_nodes++] = out; } // calculate memory size_t mem = n_runs * op_size(out); auto tensor_op_size = [](ggml_tensor * t) { size_t size = ggml_nbytes(t); // add source tensors for (int i = 0; i < GGML_MAX_SRC; i++) { if (t->src[i] != NULL) { size += ggml_nbytes(t->src[i]); } } return size; }; for (int i = 0; i < gf->n_nodes; i++) { if (ggml_is_view_op(gf->nodes[i]->op) || gf->nodes[i] == out) continue; mem += tensor_op_size(gf->nodes[i]); } // run ggml_backend_synchronize(backend); int64_t start_time = ggml_time_us(); ggml_backend_graph_compute(backend, gf); ggml_backend_synchronize(backend); int64_t end_time = ggml_time_us(); double time_us = end_time - start_time; printf(" %5d runs - %8.2f us/run - %8zu kB/run - \033[1;34m%7.2f GB/s\033[0m\n", n_runs, time_us / n_runs, op_size(out) / 1024, mem / (time_us/1e6) / 1024.0 / 1024.0 / 1024.0); ggml_backend_buffer_free(buf); ggml_free(ctx); return true; } }; // GGML_OP_UNARY struct test_unary : public test_case { const ggml_unary_op op; const ggml_type type; const std::array ne; std::string vars() override { return VARS_TO_STR2(type, ne); } test_unary(ggml_unary_op op, ggml_type type = GGML_TYPE_F32, std::array ne = {128, 10, 10, 10}) : op(op), type(type), ne(ne) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * in = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_tensor * out = ggml_unary(ctx, in, op); return out; } }; // GGML_OP_GET_ROWS struct test_get_rows : public test_case { const ggml_type type; const int n; // cols const int m; // rows const int r; // rows to get std::string vars() override { return VARS_TO_STR4(type, n, m, r); } test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3) : type(type), n(n), m(m), r(r) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * in = ggml_new_tensor_2d(ctx, type, n, m); ggml_tensor * rows = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, r); ggml_tensor * out = ggml_get_rows(ctx, in, rows); return out; } void initialize_tensors(ggml_context * ctx) override { for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { if (t->type == GGML_TYPE_I32) { // rows std::vector data(r); for (int i = 0; i < r; i++) { data[i] = rand() % m; } ggml_backend_tensor_set(t, data.data(), 0, r * sizeof(int)); } else { init_tensor_uniform(t); } } } }; // GGML_OP_REPEAT struct test_repeat : public test_case { const ggml_type type; const std::array ne; const std::array nr; std::string vars() override { return VARS_TO_STR3(type, ne, nr); } size_t op_size(ggml_tensor * t) override { return ggml_nbytes(t) * 2; } test_repeat(ggml_type type = GGML_TYPE_F32, std::array ne = {10, 10, 10, 10}, std::array nr = {2, 2, 2, 2}) : type(type), ne(ne), nr(nr) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * target = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]); ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_tensor * out = ggml_repeat(ctx, src, target); return out; } }; // GGML_OP_DUP struct test_dup : public test_case { const ggml_type type; const std::array ne; std::string vars() override { return VARS_TO_STR2(type, ne); } test_dup(ggml_type type = GGML_TYPE_F32, std::array ne = {10, 10, 10, 1}) : type(type), ne(ne) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_tensor * out = ggml_dup(ctx, src); return out; } }; // GGML_OP_CPY struct test_cpy : public test_case { const ggml_type type_src; const ggml_type type_dst; const std::array ne; std::string vars() override { return VARS_TO_STR3(type_src, type_dst, ne); } size_t op_size(ggml_tensor * t) override { return ggml_nbytes(t) + ggml_nbytes(t->src[0]); } test_cpy(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32, std::array ne = {10, 10, 10, 1}) : type_src(type_src), type_dst(type_dst), ne(ne) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data()); ggml_tensor * dst = ggml_new_tensor(ctx, type_dst, 4, ne.data()); ggml_tensor * out = ggml_cpy(ctx, src, dst); return out; } }; // GGML_OP_CONT struct test_cont : public test_case { const ggml_type type; const std::array ne; std::string vars() override { return VARS_TO_STR2(type, ne); } test_cont(ggml_type type = GGML_TYPE_F32, std::array ne = {10, 10, 10, 1}) : type(type), ne(ne) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data()); src = ggml_transpose(ctx, src); ggml_tensor * out = ggml_cont(ctx, src); return out; } }; // GGML_OP_ADD // GGML_OP_MUL // GGML_OP_DIV struct test_bin_bcast : public test_case { using op_t = ggml_tensor * (*) (ggml_context *, ggml_tensor *, ggml_tensor *); op_t op; const ggml_type type; const std::array ne; const std::array nr; std::string vars() override { return VARS_TO_STR3(type, ne, nr); } size_t op_size(ggml_tensor * t) override { return ggml_nbytes(t) * 3; } test_bin_bcast(op_t op, ggml_type type = GGML_TYPE_F32, std::array ne = {10, 10, 1, 1}, std::array nr = {1, 2, 1, 1}) : op(op), type(type), ne(ne), nr(nr) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]); ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_tensor * out = op(ctx, a, b); return out; } void initialize_tensors(ggml_context * ctx) override { for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { if (op == ggml_div) { // avoid division by zero init_tensor_uniform(t, 1.0f, 2.0f); } else { init_tensor_uniform(t); } } } }; // GGML_OP_SCALE struct test_scale : public test_case { const ggml_type type; const std::array ne; std::string vars() override { return VARS_TO_STR2(type, ne); } test_scale(ggml_type type = GGML_TYPE_F32, std::array ne = {10, 10, 10, 10}) : type(type), ne(ne) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_tensor * scale = ggml_new_tensor_1d(ctx, type, 1); ggml_tensor * out = ggml_scale(ctx, a, scale); return out; } }; // GGML_OP_NORM struct test_norm : public test_case { const ggml_type type; const std::array ne; float eps; std::string vars() override { return VARS_TO_STR3(type, ne, eps); } test_norm(ggml_type type = GGML_TYPE_F32, std::array ne = {64, 10, 10, 10}, float eps = 1e-6f) : type(type), ne(ne), eps(eps) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_tensor * out = ggml_norm(ctx, a, eps); return out; } }; // GGML_OP_RMS_NORM struct test_rms_norm : public test_case { const ggml_type type; const std::array ne; float eps; std::string vars() override { return VARS_TO_STR3(type, ne, eps); } test_rms_norm(ggml_type type = GGML_TYPE_F32, std::array ne = {64, 10, 10, 10}, float eps = 1e-6f) : type(type), ne(ne), eps(eps) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_tensor * out = ggml_rms_norm(ctx, a, eps); return out; } }; // GGML_OP_MUL_MAT struct test_mul_mat : public test_case { const ggml_type type_a; const ggml_type type_b; const int64_t m; const int64_t n; const int64_t k; const std::array bs; // dims 3 and 4 const std::array nr; // repeat in dims 3 and 4 std::string vars() override { return VARS_TO_STR7(type_a, type_b, m, n, k, bs, nr); } double max_nmse_err() override { return 5e-4; } size_t op_size(ggml_tensor * t) override { size_t a = ggml_nbytes(t->src[0]) * n * nr[0] * nr[1]; size_t b = ggml_nbytes(t->src[1]) * m; size_t c = ggml_nbytes(t); return a + b + c; GGML_UNUSED(t); } test_mul_mat(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32, int64_t m = 32, int64_t n = 32, int64_t k = 32, std::array bs = {10, 10}, std::array nr = {2, 2}) : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr) {} ggml_tensor * build_graph(ggml_context * ctx) override { // C^T = A * B^T: (k, m) * (k, n) => (m, n) ggml_tensor * a = ggml_new_tensor_4d(ctx, type_a, k, m, bs[0] , bs[1]); ggml_tensor * b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]); ggml_tensor * out = ggml_mul_mat(ctx, a, b); return out; } }; // GGML_OP_MUL_MAT_ID struct test_mul_mat_id : public test_case { const ggml_type type_a; const ggml_type type_b; const int n_mats; const int id; const int64_t m; const int64_t n; const int64_t k; std::string vars() override { return VARS_TO_STR7(type_a, type_b, n_mats, id, m, n, k); } double max_nmse_err() override { return 5e-4; } size_t op_size(ggml_tensor * t) override { size_t a = ggml_nbytes(t->src[2]) * n; size_t b = ggml_nbytes(t->src[1]) * m; size_t c = ggml_nbytes(t); return a + b + c; GGML_UNUSED(t); } test_mul_mat_id(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32, int n_mats = 2, int id = 0, int64_t m = 32, int64_t n = 32, int64_t k = 32) : type_a(type_a), type_b(type_b), n_mats(n_mats), id(id), m(m), n(n), k(k) {} ggml_tensor * build_graph(ggml_context * ctx) override { // C^T = A * B^T: (k, m) * (k, n) => (m, n) std::vector mats; for (int i = 0; i < n_mats; i++) { ggml_tensor * a = ggml_new_tensor_2d(ctx, type_a, k, m); mats.push_back(a); } ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n); ggml_tensor * b = ggml_new_tensor_2d(ctx, type_b, k, n); ggml_tensor * out = ggml_mul_mat_id(ctx, mats.data(), ids, id, b); return out; } void initialize_tensors(ggml_context * ctx) override { std::random_device rd; std::default_random_engine rng(rd()); for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { if (t->type == GGML_TYPE_I32) { // ids for (int64_t r = 0; r < ggml_nrows(t); r++) { std::vector data(t->ne[0]); for (int i = 0; i < t->ne[0]; i++) { data[i] = i; } std::shuffle(data.begin(), data.end(), rng); ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t)); } } else { init_tensor_uniform(t); } } } }; // GGML_OP_SQR struct test_sqr : public test_case { const ggml_type type; const std::array ne; std::string vars() override { return VARS_TO_STR2(type, ne); } test_sqr(ggml_type type = GGML_TYPE_F32, std::array ne = {10, 10, 10, 10}) : type(type), ne(ne) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_tensor * out = ggml_sqr(ctx, a); return out; } }; // GGML_OP_CLAMP struct test_clamp : public test_case { const ggml_type type; const std::array ne; float min; float max; std::string vars() override { return VARS_TO_STR4(type, ne, min, max); } test_clamp(ggml_type type = GGML_TYPE_F32, std::array ne = {10, 10, 10, 10}, float min = -0.5f, float max = 0.5f) : type(type), ne(ne), min(min), max(max) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_tensor * out = ggml_clamp(ctx, a, min, max); return out; } }; // GGML_OP_DIAG_MASK_INF struct test_diag_mask_inf : public test_case { const ggml_type type; const std::array ne; const int n_past; std::string vars() override { return VARS_TO_STR3(type, ne, n_past); } test_diag_mask_inf(ggml_type type = GGML_TYPE_F32, std::array ne = {10, 10, 10, 10}, int n_past = 5) : type(type), ne(ne), n_past(n_past) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_tensor * out = ggml_diag_mask_inf(ctx, a, n_past); return out; } }; // GGML_OP_SOFT_MAX struct test_soft_max : public test_case { const ggml_type type; const std::array ne; std::string vars() override { return VARS_TO_STR2(type, ne); } test_soft_max(ggml_type type = GGML_TYPE_F32, std::array ne = {10, 10, 10, 10}) : type(type), ne(ne) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_tensor * out = ggml_soft_max(ctx, a); return out; } }; // GGML_OP_ROPE struct test_rope : public test_case { const ggml_type type; const std::array ne; int n_dims; int mode; int n_ctx; std::string vars() override { return VARS_TO_STR5(type, ne, n_dims, mode, n_ctx); } test_rope(ggml_type type = GGML_TYPE_F32, std::array ne = {10, 10, 10, 1}, int n_dims = 10, int mode = 0, int n_ctx = 512) : type(type), ne(ne), n_dims(n_dims), mode(mode), n_ctx(n_ctx) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_tensor * pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne[2]); ggml_tensor * out = ggml_rope(ctx, a, pos, n_dims, mode, n_ctx); return out; } void initialize_tensors(ggml_context * ctx) override { for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { if (t->type == GGML_TYPE_I32) { // pos std::vector data(ne[2]); for (int i = 0; i < ne[2]; i++) { data[i] = rand() % n_ctx; } ggml_backend_tensor_set(t, data.data(), 0, ne[2] * sizeof(int)); } else { init_tensor_uniform(t); } } } }; // GGML_OP_ALIBI struct test_alibi : public test_case { const ggml_type type; const std::array ne; int n_past; int n_head; float bias_max; std::string vars() override { return VARS_TO_STR5(type, ne, n_past, n_head, bias_max); } test_alibi(ggml_type type = GGML_TYPE_F32, std::array ne = {10, 10, 10, 10}, int n_past = 512, int n_head = 10, float bias_max = 0.5f) : type(type), ne(ne), n_past(n_past), n_head(n_head), bias_max(bias_max) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_tensor * out = ggml_alibi(ctx, a, n_past, n_head, bias_max); return out; } }; // GGML_OP_IM2COL struct test_im2col : public test_case { const ggml_type type_input; const ggml_type type_kernel; const std::array ne_input; const std::array ne_kernel; // stride const int s0; const int s1; // padding const int p0; const int p1; // dilatation const int d0; const int d1; // mode const bool is_2D; std::string vars() override { return VARS_TO_STR11(type_input, type_kernel, ne_input, ne_kernel, s0, s1, p0, p1, d0, d1, is_2D); } test_im2col(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, std::array ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1] std::array ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1] int s0 = 1, int s1 = 1, int p0 = 1, int p1 = 1, int d0 = 1, int d1 = 1, bool is_2D = true) : type_input(type_input), type_kernel(type_kernel), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), p0(p0), p1(p1), d0(d0), d1(d1), is_2D(is_2D) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data()); ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data()); ggml_tensor * out = ggml_im2col(ctx, kernel, input, s0, s1, p0, p1, d0, d1, is_2D); return out; } }; // GGML_OP_CONCAT struct test_concat : public test_case { const ggml_type type; const std::array ne; const int64_t b_ne2; std::string vars() override { return VARS_TO_STR3(type, ne, b_ne2); } test_concat(ggml_type type = GGML_TYPE_F32, std::array ne = {10, 10, 10, 10}, int64_t b_ne2 = 10) : type(type), ne(ne), b_ne2(b_ne2) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_tensor * b = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], b_ne2, ne[3]); ggml_tensor * out = ggml_concat(ctx, a, b); return out; } }; // GGML_OP_ARGSORT struct test_argsort : public test_case { const ggml_type type; const std::array ne; ggml_sort_order order; std::string vars() override { return VARS_TO_STR3(type, ne, order); } test_argsort(ggml_type type = GGML_TYPE_F32, std::array ne = {16, 10, 10, 10}, ggml_sort_order order = GGML_SORT_ASC) : type(type), ne(ne), order(order) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_tensor * out = ggml_argsort(ctx, a, order); return out; } void initialize_tensors(ggml_context * ctx) override { std::random_device rd; std::default_random_engine rng(rd()); for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { if (t->type == GGML_TYPE_I32) { // indices std::vector data(ggml_nelements(t)); for (int i = 0; i < ggml_nelements(t); i++) { data[i] = rand(); } std::shuffle(data.begin(), data.end(), rng); ggml_backend_tensor_set(t, data.data(), 0, ne[0]*ne[1]*ne[2]*ne[3] * sizeof(int)); } else if (t->type == GGML_TYPE_F32) { // initialize with unique values to avoid ties for (int64_t r = 0; r < ggml_nrows(t); r++) { std::vector data(t->ne[0]); for (int i = 0; i < t->ne[0]; i++) { data[i] = i; } std::shuffle(data.begin(), data.end(), rng); ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float)); } } else { GGML_ASSERT(false); } } } }; // GGML_OP_SUM_ROWS struct test_sum_rows : public test_case { const ggml_type type; const std::array ne; std::string vars() override { return VARS_TO_STR2(type, ne); } test_sum_rows(ggml_type type = GGML_TYPE_F32, std::array ne = {10, 10, 10, 10}) : type(type), ne(ne) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_tensor * out = ggml_sum_rows(ctx, a); return out; } }; enum test_mode { MODE_TEST, MODE_PERF, }; static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_name) { std::vector> test_cases; // unary ops for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) { test_cases.emplace_back(new test_unary((ggml_unary_op) op)); } for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) { test_cases.emplace_back(new test_get_rows(type, 10, 5, 3)); test_cases.emplace_back(new test_get_rows(type, 16, 5, 3)); } test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 1, 1, 1})); test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {2, 1, 1, 1})); test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 2, 1, 1})); test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 1, 2, 1})); test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 1, 1, 2})); test_cases.emplace_back(new test_dup()); test_cases.emplace_back(new test_cpy()); test_cases.emplace_back(new test_cont()); auto add_test_bin_bcast = [&](ggml_type type, std::array ne, std::array nr) { for (auto op : {ggml_add, ggml_mul, ggml_div}) { test_cases.emplace_back(new test_bin_bcast(op, type, ne, nr)); } }; add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 8, 1}, {1, 1, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 320, 320}, {1, 1, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 1, 1}, {1, 1, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 1}, {1, 1, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 1, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {2, 1, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 2, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 1, 2, 1}); add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 1, 1, 2}); add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 1, 2, 2}); add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 2, 2, 2}); add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {2, 2, 2, 2}); // stable diffusion add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 1, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 16, 16, 1}); add_test_bin_bcast(GGML_TYPE_F32, {1280, 16, 16, 1}, {1, 1, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 256, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1280, 1}, {16, 16, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {16, 16, 1280, 1}, {1, 1, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1920, 1}, {16, 16, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 2560, 1}, {16, 16, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1280, 1}, {32, 32, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1920, 1}, {32, 32, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 640, 1}, {32, 32, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {5120, 1, 1, 1}, {1, 256, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {640, 1, 1, 1}, {1, 1, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {3, 3, 2560, 1280}, {1, 1, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {3, 3, 2560, 1280}, {2, 1, 1, 1}); test_cases.emplace_back(new test_scale()); for (float eps : {1e-6f, 1e-5f, 1e-3f, 1e-1f}) { test_cases.emplace_back(new test_norm(GGML_TYPE_F32, {64, 10, 10, 10}, eps)); test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 10, 10, 10}, eps)); } const ggml_type all_types[] = { GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_Q4_0, GGML_TYPE_Q4_1, GGML_TYPE_Q5_0, GGML_TYPE_Q5_1, GGML_TYPE_Q8_0, GGML_TYPE_Q2_K, GGML_TYPE_Q3_K, GGML_TYPE_Q4_K, GGML_TYPE_Q5_K, GGML_TYPE_Q6_K }; for (ggml_type type_a : all_types) { for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) { // FIXME: CPU crashes on f16xf16 test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, { 1, 1}, {1, 1})); test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 1}, {1, 1})); test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 1}, {2, 1})); test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {1, 1})); test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {2, 1})); test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {1, 2})); test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {2, 2})); test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, { 1, 1}, {1, 1})); test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 1}, {1, 1})); test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 1}, {2, 1})); test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {1, 1})); test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {2, 1})); test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {1, 2})); test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {2, 2})); } } for (ggml_type type_a : all_types) { for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) { for (int n_mats : {1, 2, 4}) { for (int id = 0; id < n_mats; id++) { test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, id, 16, 16, 256)); } } } } test_cases.emplace_back(new test_sqr()); test_cases.emplace_back(new test_clamp()); test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 1, 1}, 5)); test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 10, 1}, 5)); test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 10, 10}, 5)); test_cases.emplace_back(new test_soft_max()); for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) { test_cases.emplace_back(new test_rope(type, {128, 32, 10, 1}, 128, 0, 512)); // llama 7B test_cases.emplace_back(new test_rope(type, {128, 40, 10, 1}, 128, 0, 512)); // llama 13B test_cases.emplace_back(new test_rope(type, {128, 52, 10, 1}, 128, 0, 512)); // llama 30B test_cases.emplace_back(new test_rope(type, {128, 64, 10, 1}, 128, 0, 512)); // llama 65B test_cases.emplace_back(new test_rope(type, { 64, 1, 10, 1}, 64, 2, 512)); // neox (falcon 7B) test_cases.emplace_back(new test_rope(type, { 64, 71, 10, 1}, 64, 2, 512)); // neox (falcon 7B) test_cases.emplace_back(new test_rope(type, { 64, 8, 10, 1}, 64, 2, 512)); // neox (falcon 40B) test_cases.emplace_back(new test_rope(type, { 64, 128, 10, 1}, 64, 2, 512)); // neox (falcon 40B) test_cases.emplace_back(new test_rope(type, { 80, 32, 10, 1}, 20, 2, 512)); // neox (stablelm) } test_cases.emplace_back(new test_alibi()); test_cases.emplace_back(new test_im2col()); test_cases.emplace_back(new test_concat()); for (ggml_sort_order order : {GGML_SORT_ASC, GGML_SORT_DESC}) { test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order)); } test_cases.emplace_back(new test_sum_rows()); // run tests if (mode == MODE_TEST) { ggml_backend_t backend_cpu = ggml_backend_cpu_init(); size_t n_ok = 0; for (auto & test : test_cases) { if (test->eval(backend, backend_cpu, op_name)) { n_ok++; } } printf(" %zu/%zu tests passed\n", n_ok, test_cases.size()); ggml_backend_free(backend_cpu); return n_ok == test_cases.size(); } else if (mode == MODE_PERF) { for (auto & test : test_cases) { test->eval_perf(backend, op_name); } return true; } else { GGML_ASSERT(false); } } static void usage(char ** argv) { printf("Usage: %s [mode] [-o op] [-b backend]\n", argv[0]); printf(" valid modes are: test (compare with CPU backend for correctness) or perf (performance evaluation)\n"); printf(" op names are as given by ggml_op_desc()\n"); } int main(int argc, char ** argv) { test_mode mode = MODE_TEST; const char * op_name = NULL; const char * backend = NULL; for (int i = 1; i < argc; i++) { if (strcmp(argv[i], "test") == 0) { mode = MODE_TEST; } else if (strcmp(argv[i], "perf") == 0) { mode = MODE_PERF; } else if (strcmp(argv[i], "-o") == 0) { if (i + 1 < argc) { op_name = argv[++i]; } else { usage(argv); return 1; } } else if (strcmp(argv[i], "-b") == 0) { if (i + 1 < argc) { backend = argv[++i]; } else { usage(argv); return 1; } } else { usage(argv); return 1; } } // enumerate backends printf("Testing %zu backends\n\n", ggml_backend_reg_get_count()); size_t n_ok = 0; for (size_t i = 0; i < ggml_backend_reg_get_count(); i++) { printf("Backend %zu/%zu (%s)\n", i + 1, ggml_backend_reg_get_count(), ggml_backend_reg_get_name(i)); if (backend != NULL && strcmp(backend, ggml_backend_reg_get_name(i)) != 0) { printf(" Skipping\n"); n_ok++; continue; } ggml_backend_t backend = ggml_backend_reg_init_backend(i, NULL); GGML_ASSERT(backend != NULL); printf(" Backend name: %s\n", ggml_backend_name(backend)); bool ok = test_backend(backend, mode, op_name); printf(" Backend %s: ", ggml_backend_name(backend)); if (ok) { printf("\033[1;32mOK\033[0m\n"); n_ok++; } else { printf("\033[1;31mFAIL\033[0m\n"); } printf("\n"); ggml_backend_free(backend); } printf("%zu/%zu backends passed\n", n_ok, ggml_backend_reg_get_count()); if (n_ok != ggml_backend_reg_get_count()) { printf("\033[1;31mFAIL\033[0m\n"); return 1; } else { printf("\033[1;32mOK\033[0m\n"); return 0; } }