#include "ggml-alloc.h" #include "ggml.h" #include <assert.h> #include <stdarg.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #ifdef __has_include #if __has_include(<unistd.h>) #include <unistd.h> #if defined(_POSIX_MAPPED_FILES) #include <sys/types.h> #include <sys/mman.h> #endif #endif #endif #if defined(_WIN32) #define WIN32_LEAN_AND_MEAN #ifndef NOMINMAX #define NOMINMAX #endif #include <windows.h> #include <memoryapi.h> #endif #define UNUSED(x) (void)(x) #define MAX(a, b) ((a) > (b) ? (a) : (b)) #define GGML_MAX_CONCUR (2*GGML_MAX_NODES) //#define GGML_ALLOCATOR_DEBUG //#define AT_PRINTF printf #define AT_PRINTF(...) ((void)0) struct hash_node { struct ggml_tensor * t; int n_children; int n_views; }; static size_t hash(void * p) { return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE; } static struct hash_node * hash_get(struct hash_node hash_table[], struct ggml_tensor * t) { size_t h = hash(t); // linear probing size_t i = h; while (hash_table[i].t != NULL) { if (hash_table[i].t == t) { return &hash_table[i]; } i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE; if (i == h) { // hash table is full GGML_ASSERT(false); } } hash_table[i].t = t; return &hash_table[i]; } // TODO: GGML_PAD ? static size_t aligned_offset(const void * buffer, size_t offset, size_t alignment) { assert(alignment && !(alignment & (alignment - 1))); // power of 2 size_t align = (alignment - (((uintptr_t)buffer + offset) % alignment)) % alignment; return offset + align; } struct free_block { void * addr; size_t size; }; #define MAX_FREE_BLOCKS 128 struct ggml_allocr { void * data; size_t size; size_t alignment; int n_free_blocks; struct free_block free_blocks[MAX_FREE_BLOCKS]; struct hash_node hash_table[GGML_GRAPH_HASHTABLE_SIZE]; size_t max_size; bool measure; int parse_seq[GGML_MAX_CONCUR]; int parse_seq_len; #ifdef GGML_ALLOCATOR_DEBUG struct ggml_tensor * allocated_tensors[1024]; #endif }; #ifdef GGML_ALLOCATOR_DEBUG static void add_allocated_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) { for (int i = 0; i < 1024; i++) { if (alloc->allocated_tensors[i] == NULL) { alloc->allocated_tensors[i] = tensor; return; } } GGML_ASSERT(!"out of allocated_tensors"); } static void remove_allocated_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) { for (int i = 0; i < 1024; i++) { if (alloc->allocated_tensors[i] == tensor || (alloc->allocated_tensors[i] != NULL && alloc->allocated_tensors[i]->data == tensor->data)) { alloc->allocated_tensors[i] = NULL; return; } } printf("tried to free tensor %s not found\n", tensor->name); GGML_ASSERT(!"tensor not found"); } #endif static size_t ggml_allocr_get_alloc_size(struct ggml_allocr * alloc, struct ggml_tensor * tensor) { return ggml_nbytes(tensor); UNUSED(alloc); } // check if a tensor is allocated by this buffer static bool ggml_allocr_is_own(struct ggml_allocr * alloc, const struct ggml_tensor * tensor) { void * ptr = tensor->data; return ptr >= alloc->data && (char *)ptr < (char *)alloc->data + alloc->max_size; } static bool ggml_is_view(struct ggml_tensor * t) { return t->view_src != NULL; } void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor) { #ifdef GGML_ALLOCATOR_DEBUG GGML_ASSERT(!ggml_is_view(tensor)); // views generally get data pointer from one of their sources GGML_ASSERT(tensor->data == NULL); // avoid allocating tensor which already has memory allocated #endif size_t size = ggml_allocr_get_alloc_size(alloc, tensor); size = aligned_offset(NULL, size, alloc->alignment); AT_PRINTF("%s: allocating %s (%zu bytes) - ", __func__, tensor->name, size); size_t max_avail = 0; // find the best fitting free block besides the last block int best_fit_block = -1; size_t best_fit_size = SIZE_MAX; for (int i = 0; i < alloc->n_free_blocks - 1; i++) { struct free_block * block = &alloc->free_blocks[i]; max_avail = MAX(max_avail, block->size); if (block->size >= size && block->size <= best_fit_size) { best_fit_block = i; best_fit_size = block->size; } } AT_PRINTF("block %d\n", best_fit_block); if (best_fit_block == -1) { // the last block is our last resort struct free_block * block = &alloc->free_blocks[alloc->n_free_blocks - 1]; max_avail = MAX(max_avail, block->size); if (block->size >= size) { best_fit_block = alloc->n_free_blocks - 1; } else { fprintf(stderr, "%s: not enough space in the buffer (needed %zu, largest block available %zu)\n", __func__, size, max_avail); GGML_ASSERT(!"not enough space in the buffer"); return; } } struct free_block * block = &alloc->free_blocks[best_fit_block]; void * addr = block->addr; block->addr = (char*)block->addr + size; block->size -= size; if (block->size == 0) { // remove block if empty alloc->n_free_blocks--; for (int j = best_fit_block; j < alloc->n_free_blocks; j++) { alloc->free_blocks[j] = alloc->free_blocks[j+1]; } } tensor->data = addr; #ifdef GGML_ALLOCATOR_DEBUG add_allocated_tensor(alloc, tensor); size_t cur_max = (char*)addr - (char*)alloc->data + size; if (cur_max > alloc->max_size) { printf("max_size = %.2f MB: tensors: ", cur_max / 1024.0 / 1024.0); for (int i = 0; i < 1024; i++) { if (alloc->allocated_tensors[i]) { printf("%s (%.2f MB) ", alloc->allocated_tensors[i]->name, ggml_nbytes(alloc->allocated_tensors[i]) / 1024.0 / 1024.0); } } printf("\n"); } #endif alloc->max_size = MAX(alloc->max_size, (char*)addr - (char*)alloc->data + size); } // this is a very naive implementation, but for our case the number of free blocks should be very small static void ggml_allocr_free_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) { void * ptr = tensor->data; if (ggml_allocr_is_own(alloc, tensor) == false) { // the tensor was not allocated in this buffer // this can happen because the graph allocator will try to free weights and other tensors from different buffers // the easiest way to deal with this is just to ignore it return; } size_t size = ggml_allocr_get_alloc_size(alloc, tensor); size = aligned_offset(NULL, size, alloc->alignment); AT_PRINTF("%s: freeing %s (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, size, alloc->n_free_blocks); #ifdef GGML_ALLOCATOR_DEBUG remove_allocated_tensor(alloc, tensor); #endif // see if we can merge with an existing block for (int i = 0; i < alloc->n_free_blocks; i++) { struct free_block * block = &alloc->free_blocks[i]; // check if ptr is at the end of the block if ((char*)block->addr + block->size == ptr) { block->size += size; // check if we can merge with the next block if (i < alloc->n_free_blocks - 1 && (char*)block->addr + block->size == alloc->free_blocks[i+1].addr) { block->size += alloc->free_blocks[i+1].size; alloc->n_free_blocks--; for (int j = i+1; j < alloc->n_free_blocks; j++) { alloc->free_blocks[j] = alloc->free_blocks[j+1]; } } return; } // check if ptr is at the beginning of the block if ((char*)ptr + size == block->addr) { block->addr = ptr; block->size += size; // check if we can merge with the previous block if (i > 0 && (char*)alloc->free_blocks[i-1].addr + alloc->free_blocks[i-1].size == block->addr) { alloc->free_blocks[i-1].size += block->size; alloc->n_free_blocks--; for (int j = i; j < alloc->n_free_blocks; j++) { alloc->free_blocks[j] = alloc->free_blocks[j+1]; } } return; } } // otherwise, add a new block GGML_ASSERT(alloc->n_free_blocks < MAX_FREE_BLOCKS && "out of free blocks"); // insert the new block in the correct position to keep the array sorted by address (to make merging blocks faster) int insert_pos = 0; while (insert_pos < alloc->n_free_blocks && alloc->free_blocks[insert_pos].addr < ptr) { insert_pos++; } // shift all blocks from insert_pos onward to make room for the new block for (int i = alloc->n_free_blocks; i > insert_pos; i--) { alloc->free_blocks[i] = alloc->free_blocks[i-1]; } // insert the new block alloc->free_blocks[insert_pos].addr = ptr; alloc->free_blocks[insert_pos].size = size; alloc->n_free_blocks++; } void ggml_allocr_set_parse_seq(struct ggml_allocr * alloc, const int * list, int n) { for (int i = 0; i < n; i++) { alloc->parse_seq[i] = list[i]; } alloc->parse_seq_len = n; } void ggml_allocr_reset(struct ggml_allocr * alloc) { alloc->n_free_blocks = 1; size_t align_offset = aligned_offset(alloc->data, 0, alloc->alignment); alloc->free_blocks[0].addr = (char *)alloc->data + align_offset; alloc->free_blocks[0].size = alloc->size - align_offset; } struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment) { struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr) /* + n_free_blocks * sizeof(struct free_block) */); *alloc = (struct ggml_allocr){ /*.data = */ data, /*.size = */ size, /*.alignment = */ alignment, /*.n_free_blocks = */ 0, /*.free_blocks = */ {{0}}, /*.hash_table = */ {{0}}, /*.max_size = */ 0, /*.measure = */ false, /*.parse_seq = */ {0}, /*.parse_seq_len = */ 0, #ifdef GGML_ALLOCATOR_DEBUG /*.allocated_tensors = */ {0}, #endif }; ggml_allocr_reset(alloc); return alloc; } // OS specific functions to allocate and free uncommitted virtual memory static void * alloc_vmem(size_t size) { #if defined(_WIN32) return VirtualAlloc(NULL, size, MEM_RESERVE, PAGE_NOACCESS); #elif defined(_POSIX_MAPPED_FILES) void * ptr = mmap(NULL, size, PROT_NONE, MAP_PRIVATE | MAP_ANON, -1, 0); if (ptr == MAP_FAILED) { return NULL; } return ptr; #else // use a fixed address for other platforms uintptr_t base_addr = (uintptr_t)-size - 0x100; return (void *)base_addr; #endif } static void free_vmem(void * base_addr, size_t size) { #if defined(_WIN32) VirtualFree(base_addr, 0, MEM_RELEASE); UNUSED(size); #elif defined(_POSIX_MAPPED_FILES) munmap(base_addr, size); #else // nothing to do UNUSED(base_addr); UNUSED(size); #endif } // allocate uncommitted virtual memory to measure the size of the graph static void alloc_measure_vmem(void ** base_addr, size_t * size) { // 128GB for 64-bit, 1GB for 32-bit *size = sizeof(void *) == 4 ? 1ULL<<30 : 1ULL<<37; do { *base_addr = alloc_vmem(*size); if (*base_addr != NULL) { AT_PRINTF("allocated %.2f GB of virtual memory for measure buffer at %p\n", *size / 1024.0 / 1024.0 / 1024.0, *base_addr); return; } // try again with half the size *size /= 2; } while (*size > 0); GGML_ASSERT(!"failed to allocate virtual memory for measure buffer"); } static void free_measure_vmem(void * base_addr, size_t size) { free_vmem(base_addr, size); } struct ggml_allocr * ggml_allocr_new_measure(size_t alignment) { struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr) /* + n_free_blocks * sizeof(struct free_block) */); void * base_addr; size_t size; alloc_measure_vmem(&base_addr, &size); *alloc = (struct ggml_allocr){ /*.data = */ base_addr, /*.size = */ size, /*.alignment = */ alignment, /*.n_free_blocks = */ 0, /*.free_blocks = */ {{0}}, /*.hash_table = */ {{0}}, /*.max_size = */ 0, /*.measure = */ true, /*.parse_seq = */ {0}, /*.parse_seq_len = */ 0, #ifdef GGML_ALLOCATOR_DEBUG /*.allocated_tensors = */ {0}, #endif }; ggml_allocr_reset(alloc); return alloc; } void ggml_allocr_free(struct ggml_allocr * alloc) { if (alloc->measure) { free_measure_vmem(alloc->data, alloc->size); } free(alloc); } bool ggml_allocr_is_measure(struct ggml_allocr * alloc) { return alloc->measure; } //////////// compute graph allocator static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) { if (a->type != b->type) { return false; } for (int i = 0; i < GGML_MAX_DIMS; i++) { if (a->ne[i] != b->ne[i]) { return false; } if (a->nb[i] != b->nb[i]) { return false; } } return true; } static bool ggml_op_can_inplace(enum ggml_op op) { switch (op) { case GGML_OP_SCALE: case GGML_OP_DIAG_MASK_ZERO: case GGML_OP_DIAG_MASK_INF: case GGML_OP_ADD: case GGML_OP_ADD1: case GGML_OP_SUB: case GGML_OP_MUL: case GGML_OP_DIV: case GGML_OP_SQR: case GGML_OP_SQRT: case GGML_OP_LOG: case GGML_OP_UNARY: case GGML_OP_ROPE: case GGML_OP_RMS_NORM: case GGML_OP_SOFT_MAX: case GGML_OP_CONT: return true; default: return false; } } static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node) { struct hash_node * ht = alloc->hash_table; if (node->data == NULL) { if (ggml_is_view(node)) { assert(node->view_src->data != NULL); node->data = (char *)node->view_src->data + node->view_offs; } else { // see if we can reuse a parent's buffer (inplace) if (ggml_op_can_inplace(node->op)) { for (int i = 0; i < GGML_MAX_SRC; i++) { struct ggml_tensor * parent = node->src[i]; if (parent == NULL) { break; } // if the node's data is external, then we cannot re-use it if (ggml_allocr_is_own(alloc, parent) == false) { AT_PRINTF("not reusing parent %s for %s as %p is external\n", parent->name, node->name, parent->data); continue; } struct hash_node * p_hn = hash_get(ht, parent); if (parent->data != NULL && p_hn->n_children == 1 && p_hn->n_views == 0 && ggml_are_same_layout(node, parent)) { if (ggml_is_view(parent)) { struct ggml_tensor * view_src = parent->view_src; struct hash_node * view_src_hn = hash_get(ht, view_src); if (view_src_hn->n_views == 1 && view_src_hn->n_children == 0 && view_src->data == parent->data) { // TODO: the offset of the view parent must be kept to ensure that the op doesn't overwrite // the parent's data that it will need later (same layout requirement). the problem is that then // we cannot free the tensor because the original address of the allocation is lost. // adding a view_src pointer to the tensor would solve this and simplify the code dealing with views // for now, we only reuse the parent's data if the offset is zero (view_src->data == parent->data) AT_PRINTF("reusing view parent %s (%s) for %s\n", parent->name, view_src->name, node->name); node->data = parent->data; return; } } else { AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name); node->data = parent->data; return; } } } } ggml_allocr_alloc(alloc, node); } } } static size_t ggml_allocr_alloc_graph_tensors_n( struct ggml_allocr * alloc, struct ggml_cgraph ** graphs, int n_graphs, struct ggml_tensor *** inputs, struct ggml_tensor *** outputs) { // reset hash table struct hash_node * ht = alloc->hash_table; memset(ht, 0, sizeof(struct hash_node) * GGML_GRAPH_HASHTABLE_SIZE); // count number of children and views for (int g = 0; g < n_graphs; g++) { struct ggml_cgraph * gf = graphs[g]; for (int i = 0; i < gf->n_nodes; i++) { struct ggml_tensor * node = gf->nodes[i]; if (ggml_is_view(node)) { struct ggml_tensor * view_src = node->view_src; hash_get(ht, view_src)->n_views += 1; } for (int j = 0; j < GGML_MAX_SRC; j++) { struct ggml_tensor * parent = node->src[j]; if (parent == NULL) { break; } hash_get(ht, parent)->n_children += 1; } } } // allocate tensors for (int g = 0; g < n_graphs; g++) { struct ggml_cgraph * gf = graphs[g]; AT_PRINTF("####### graph %d/%d\n", g, n_graphs); // graph inputs are allocated first to ensure that they are not overwritten by each other if (inputs != NULL && inputs[g] != NULL) { for (int i = 0; inputs[g][i] != NULL; i++) { struct ggml_tensor * input = inputs[g][i]; AT_PRINTF("input: %s\n", input->name); allocate_node(alloc, input); } } // if we have parse_seq then we allocate nodes following the list, and we only free nodes at barriers int last_barrier_pos = 0; int n_nodes = alloc->parse_seq_len ? alloc->parse_seq_len : gf->n_nodes; for (int ind = 0; ind < n_nodes; ind++) { // allocate a node if there is no parse_seq or this is not a barrier if ((alloc->parse_seq_len==0) || alloc->parse_seq[ind] != -1) { int i = alloc->parse_seq_len ? alloc->parse_seq[ind] : ind; struct ggml_tensor * node = gf->nodes[i]; // allocate parents (leafs) for (int j = 0; j < GGML_MAX_SRC; j++) { struct ggml_tensor * parent = node->src[j]; if (parent == NULL) { break; } allocate_node(alloc, parent); } // allocate node allocate_node(alloc, node); AT_PRINTF("exec: %s (%s) <= ", ggml_op_name(node->op), node->name); for (int j = 0; j < GGML_MAX_SRC; j++) { struct ggml_tensor * parent = node->src[j]; if (parent == NULL) { break; } AT_PRINTF("%s", parent->name); if (j < GGML_MAX_SRC - 1 && node->src[j + 1] != NULL) { AT_PRINTF(", "); } } AT_PRINTF("\n"); } // update parents // update immediately if there is no parse_seq // update only at barriers if there is parse_seq if ((alloc->parse_seq_len == 0) || alloc->parse_seq[ind] == -1) { int update_start = alloc->parse_seq_len ? last_barrier_pos : ind; int update_end = alloc->parse_seq_len ? ind : ind + 1; for (int i = update_start; i < update_end; i++) { int node_i = alloc->parse_seq_len ? alloc->parse_seq[i] : i; struct ggml_tensor * node = gf->nodes[node_i]; for (int j = 0; j < GGML_MAX_SRC; j++) { struct ggml_tensor * parent = node->src[j]; if (parent == NULL) { break; } struct hash_node * p_hn = hash_get(ht, parent); p_hn->n_children -= 1; //AT_PRINTF("parent %s: %d children, %d views\n", parent->name, parent->n_children, parent->n_views); if (p_hn->n_children == 0 && p_hn->n_views == 0) { if (ggml_is_view(parent)) { struct ggml_tensor * view_src = parent->view_src; struct hash_node * view_src_hn = hash_get(ht, view_src); view_src_hn->n_views -= 1; AT_PRINTF("view_src %s: %d children, %d views\n", view_src->name, view_src_hn->n_children, view_src_hn->n_views); if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0 && view_src->data != node->data) { ggml_allocr_free_tensor(alloc, view_src); } } else { if (parent->data != node->data) { ggml_allocr_free_tensor(alloc, parent); } } } } } AT_PRINTF("\n"); if (alloc->parse_seq_len) { last_barrier_pos = ind + 1; } } } // free graph outputs here that wouldn't be freed otherwise because they have no children if (outputs != NULL && outputs[g] != NULL) { for (int i = 0; outputs[g][i] != NULL; i++) { struct ggml_tensor * output = outputs[g][i]; AT_PRINTF("output: %s\n", output->name); ggml_allocr_free_tensor(alloc, output); } } } return alloc->max_size; } size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph) { return ggml_allocr_alloc_graph_tensors_n(alloc, &graph, 1, NULL, NULL); }