## MiniCPM-Llama3-V 2.5 ### Usage Download [MiniCPM-Llama3-V-2_5](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5) PyTorch model from huggingface to "MiniCPM-Llama3-V-2_5" folder. Clone llama.cpp and checkout to branch `minicpm-v2.5`: ```bash git clone -b minicpm-v2.5 https://github.com/OpenBMB/llama.cpp.git cd llama.cpp ``` Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf) by us) ```bash python ./examples/minicpmv/minicpmv-surgery.py -m ../MiniCPM-Llama3-V-2_5 python ./examples/minicpmv/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-Llama3-V-2_5 --minicpmv-projector ../MiniCPM-Llama3-V-2_5/minicpmv.projector --output-dir ../MiniCPM-Llama3-V-2_5/ --image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5 python ./convert.py ../MiniCPM-Llama3-V-2_5/model --outtype f16 --vocab-type bpe # quantize int4 version ./quantize ../MiniCPM-Llama3-V-2_5/model/model-8B-F16.gguf ../MiniCPM-Llama3-V-2_5/model/ggml-model-Q4_K_M.gguf Q4_K_M ``` Build for Linux or Mac ```bash make make minicpmv-cli ``` Inference on Linux or Mac ``` # run f16 version ./minicpmv-cli -m ../MiniCPM-Llama3-V-2_5/model/model-8B-F16.gguf --mmproj ../MiniCPM-Llama3-V-2_5/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?" # run quantized int4 version ./minicpmv-cli -m ../MiniCPM-Llama3-V-2_5/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-Llama3-V-2_5/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?" # or run in interactive mode ./minicpmv-cli -m ../MiniCPM-Llama3-V-2_5/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-Llama3-V-2_5/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -i ``` ### Android #### Build on Android device using Termux We found that build on Android device would bring better runtime performance, so we recommend to build on device. [Termux](https://github.com/termux/termux-app#installation) is a terminal app on Android device (no root required). Install tools in Termux: ``` apt update && apt upgrade -y apt install git make cmake ``` It's recommended to move your model inside the `~/` directory for best performance: ``` cd storage/downloads mv model.gguf ~/ ``` #### Building the Project using Android NDK Obtain the [Android NDK](https://developer.android.com/ndk) and then build with CMake. Execute the following commands on your computer to avoid downloading the NDK to your mobile. Alternatively, you can also do this in Termux: ```bash mkdir build-android cd build-android export NDK=/your_ndk_path cmake -DCMAKE_TOOLCHAIN_FILE=$NDK/build/cmake/android.toolchain.cmake -DANDROID_ABI=arm64-v8a -DANDROID_PLATFORM=android-23 -DCMAKE_C_FLAGS=-march=armv8.4a+dotprod .. make ``` Install [termux](https://github.com/termux/termux-app#installation) on your device and run `termux-setup-storage` to get access to your SD card (if Android 11+ then run the command twice). Finally, copy these built `llama` binaries and the model file to your device storage. Because the file permissions in the Android sdcard cannot be changed, you can copy the executable files to the `/data/data/com.termux/files/home/bin` path, and then execute the following commands in Termux to add executable permission: (Assumed that you have pushed the built executable files to the /sdcard/llama.cpp/bin path using `adb push`) ``` $cp -r /sdcard/llama.cpp/bin /data/data/com.termux/files/home/ $cd /data/data/com.termux/files/home/bin $chmod +x ./* ``` Download models and push them to `/sdcard/llama.cpp/`, then move it to `/data/data/com.termux/files/home/model/` ``` $mv /sdcard/llama.cpp/ggml-model-Q4_K_M.gguf /data/data/com.termux/files/home/model/ $mv /sdcard/llama.cpp/mmproj-model-f16.gguf /data/data/com.termux/files/home/model/ ``` Now, you can start chatting: ``` $cd /data/data/com.termux/files/home/bin $./minicpmv-cli -m ../model/ggml-model-Q4_K_M.gguf --mmproj ../model/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?" ``` ### result We use this command on Xiaomi 14 Pro, and the measured results. ``` $./minicpmv-cli -m ../model/ggml-model-Q4_K_M.gguf --mmproj ../model/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 -t 6 --image xx.jpg -p "What is in the image?" ``` ![alt text](assets/xiaomi14pro_test.jpeg)