#include "llama-grammar.h" #include "llama-vocab.h" #include "llama-sampling.h" #include // Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as // pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`. std::pair, llama_partial_utf8> decode_utf8( const std::string & src, llama_partial_utf8 partial_start) { static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 }; const char * pos = src.c_str(); std::vector code_points; // common english strings have the same number of codepoints and bytes. `+ 1` for the terminating 0. code_points.reserve(src.size() + 1); uint32_t value = partial_start.value; int n_remain = partial_start.n_remain; // continue previous decode, if applicable while (*pos != 0 && n_remain > 0) { uint8_t next_byte = static_cast(*pos); if ((next_byte >> 6) != 2) { // invalid sequence, abort code_points.push_back(0); return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, -1 }); } value = (value << 6) + (next_byte & 0x3F); ++pos; --n_remain; } if (partial_start.n_remain > 0 && n_remain == 0) { code_points.push_back(value); } // decode any subsequent utf-8 sequences, which may end in an incomplete one while (*pos != 0) { uint8_t first_byte = static_cast(*pos); uint8_t highbits = first_byte >> 4; n_remain = lookup[highbits] - 1; if (n_remain < 0) { // invalid sequence, abort code_points.clear(); code_points.push_back(0); return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, n_remain }); } uint8_t mask = (1 << (7 - n_remain)) - 1; value = first_byte & mask; ++pos; while (*pos != 0 && n_remain > 0) { value = (value << 6) + (static_cast(*pos) & 0x3F); ++pos; --n_remain; } if (n_remain == 0) { code_points.push_back(value); } } code_points.push_back(0); return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain }); } const llama_grammar_rules & llama_grammar_get_rules(const struct llama_grammar * grammar) { return grammar->rules; } llama_grammar_stacks & llama_grammar_get_stacks(struct llama_grammar * grammar) { return grammar->stacks; } // returns true iff pos points to the end of one of the definitions of a rule static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) { switch (pos->type) { case LLAMA_GRETYPE_END: return true; // NOLINT case LLAMA_GRETYPE_ALT: return true; // NOLINT default: return false; } } // returns true iff chr satisfies the char range at pos (regular or inverse range) // asserts that pos is pointing to a char range element static std::pair llama_grammar_match_char( const llama_grammar_element * pos, const uint32_t chr) { bool found = false; bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR || pos->type == LLAMA_GRETYPE_CHAR_ANY; GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); // NOLINT do { if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) { // inclusive range, e.g. [a-z] found = found || (pos->value <= chr && chr <= pos[1].value); pos += 2; } else if (pos->type == LLAMA_GRETYPE_CHAR_ANY) { // Any character matches "." found = true; pos += 1; } else { // exact char match, e.g. [a] or "a" found = found || pos->value == chr; pos += 1; } } while (pos->type == LLAMA_GRETYPE_CHAR_ALT); return std::make_pair(found == is_positive_char, pos); } // returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char // range at pos (regular or inverse range) // asserts that pos is pointing to a char range element static bool llama_grammar_match_partial_char( const llama_grammar_element * pos, const llama_partial_utf8 partial_utf8) { bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR || pos->type == LLAMA_GRETYPE_CHAR_ANY; GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); uint32_t partial_value = partial_utf8.value; int n_remain = partial_utf8.n_remain; // invalid sequence or 7-bit char split across 2 bytes (overlong) if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) { return false; } // range of possible code points this partial UTF-8 sequence could complete to uint32_t low = partial_value << (n_remain * 6); uint32_t high = low | ((1 << (n_remain * 6)) - 1); if (low == 0) { if (n_remain == 2) { low = 1 << 11; } else if (n_remain == 3) { low = 1 << 16; } } do { if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) { // inclusive range, e.g. [a-z] if (pos->value <= high && low <= pos[1].value) { return is_positive_char; } pos += 2; } else if (pos->type == LLAMA_GRETYPE_CHAR_ANY) { // Any character matches "." return true; } else { // exact char match, e.g. [a] or "a" if (low <= pos->value && pos->value <= high) { return is_positive_char; } pos += 1; } } while (pos->type == LLAMA_GRETYPE_CHAR_ALT); return !is_positive_char; } // transforms a grammar pushdown stack into N possible stacks, all ending // at a character range (terminal element) static void llama_grammar_advance_stack( const llama_grammar_rules & rules, const llama_grammar_stack & stack, llama_grammar_stacks & new_stacks) { if (stack.empty()) { if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) { new_stacks.emplace_back(stack); } return; } const llama_grammar_element * pos = stack.back(); switch (pos->type) { case LLAMA_GRETYPE_RULE_REF: { const size_t rule_id = static_cast(pos->value); const llama_grammar_element * subpos = rules[rule_id].data(); do { // init new stack without the top (pos) llama_grammar_stack new_stack(stack.begin(), stack.end() - 1); if (!llama_grammar_is_end_of_sequence(pos + 1)) { // if this rule ref is followed by another element, add that to stack new_stack.push_back(pos + 1); } if (!llama_grammar_is_end_of_sequence(subpos)) { // if alternate is nonempty, add to stack new_stack.push_back(subpos); } llama_grammar_advance_stack(rules, new_stack, new_stacks); while (!llama_grammar_is_end_of_sequence(subpos)) { // scan to end of alternate def subpos++; } if (subpos->type == LLAMA_GRETYPE_ALT) { // there's another alternate def of this rule to process subpos++; } else { break; } } while (true); break; } case LLAMA_GRETYPE_CHAR: case LLAMA_GRETYPE_CHAR_NOT: case LLAMA_GRETYPE_CHAR_ANY: if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) { // only add the stack if it's not a duplicate of one we already have new_stacks.emplace_back(stack); } break; default: // end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range // (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on // those GGML_ABORT("fatal error"); } } // takes a set of possible pushdown stacks on a grammar, which are required to // be positioned at a character range (see `llama_grammar_advance_stack`), and // produces the N possible stacks if the given char is accepted at those // positions void llama_grammar_accept( const llama_grammar_rules & rules, const llama_grammar_stacks & stacks, const uint32_t chr, llama_grammar_stacks & new_stacks) { new_stacks.clear(); for (const auto & stack : stacks) { if (stack.empty()) { continue; } auto match = llama_grammar_match_char(stack.back(), chr); if (match.first) { const llama_grammar_element * pos = match.second; // update top of stack to next element, if any llama_grammar_stack new_stack(stack.begin(), stack.end() - 1); if (!llama_grammar_is_end_of_sequence(pos)) { new_stack.push_back(pos); } llama_grammar_advance_stack(rules, new_stack, new_stacks); } } } static llama_grammar_candidates llama_grammar_reject_candidates( const llama_grammar_rules & rules, const llama_grammar_stacks & stacks, const llama_grammar_candidates & candidates) { GGML_ASSERT(!stacks.empty()); // REVIEW if (candidates.empty()) { return {}; } auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates); for (size_t i = 1, size = stacks.size(); i < size; ++i) { rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects); } return rejects; } llama_grammar_candidates llama_grammar_reject_candidates_for_stack( const llama_grammar_rules & rules, const llama_grammar_stack & stack, const llama_grammar_candidates & candidates) { llama_grammar_candidates rejects; rejects.reserve(candidates.size()); if (stack.empty()) { for (const auto & tok : candidates) { if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) { rejects.push_back(tok); } } return rejects; } const llama_grammar_element * stack_pos = stack.back(); llama_grammar_candidates next_candidates; next_candidates.reserve(candidates.size()); for (const auto & tok : candidates) { if (*tok.code_points == 0) { // reached end of full codepoints in token, reject iff it ended in a partial sequence // that cannot satisfy this position in grammar if (tok.partial_utf8.n_remain != 0 && !llama_grammar_match_partial_char(stack_pos, tok.partial_utf8)) { rejects.push_back(tok); } } else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) { next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 }); } else { rejects.push_back(tok); } } const auto * stack_pos_after = llama_grammar_match_char(stack_pos, 0).second; // update top of stack to next element, if any llama_grammar_stack stack_after(stack.begin(), stack.end() - 1); if (!llama_grammar_is_end_of_sequence(stack_pos_after)) { stack_after.push_back(stack_pos_after); } llama_grammar_stacks next_stacks; llama_grammar_advance_stack(rules, stack_after, next_stacks); auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates); for (const auto & tok : next_rejects) { rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 }); } return rejects; } static bool llama_grammar_detect_left_recursion( const llama_grammar_rules & rules, size_t rule_index, std::vector * rules_visited, std::vector * rules_in_progress, std::vector * rules_may_be_empty) { if ((*rules_in_progress)[rule_index]) { return true; } (*rules_in_progress)[rule_index] = true; const llama_grammar_rule & rule = rules[rule_index]; // First check if the rule might produce the empty string. This could be done combined with the second // step but it's more readable as two steps. bool at_rule_start = true; for (size_t i = 0; i < rule.size(); i++) { if (llama_grammar_is_end_of_sequence(&rule[i])) { if (at_rule_start) { (*rules_may_be_empty)[rule_index] = true; break; } at_rule_start = true; } else { at_rule_start = false; } } // Second, recurse into leftmost nonterminals (or next-leftmost as long as the previous nonterminal may // be empty) bool recurse_into_nonterminal = true; for (size_t i = 0; i < rule.size(); i++) { if (rule[i].type == LLAMA_GRETYPE_RULE_REF && recurse_into_nonterminal) { if (llama_grammar_detect_left_recursion(rules, (size_t)rule[i].value, rules_visited, rules_in_progress, rules_may_be_empty)) { return true; } if (!((*rules_may_be_empty)[(size_t)rule[i].value])) { recurse_into_nonterminal = false; } } else if (llama_grammar_is_end_of_sequence(&rule[i])) { recurse_into_nonterminal = true; } else { recurse_into_nonterminal = false; } } (*rules_in_progress)[rule_index] = false; (*rules_visited)[rule_index] = true; return false; } // // grammar - external // struct llama_grammar * llama_grammar_init_impl( const llama_grammar_element ** rules, size_t n_rules, size_t start_rule_index) { const llama_grammar_element * pos; // copy rule definitions into vectors llama_grammar_rules vec_rules(n_rules); for (size_t i = 0; i < n_rules; i++) { for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) { vec_rules[i].push_back(*pos); } vec_rules[i].push_back({LLAMA_GRETYPE_END, 0}); } // Check for left recursion std::vector rules_visited(n_rules); std::vector rules_in_progress(n_rules); std::vector rules_may_be_empty(n_rules); for (size_t i = 0; i < n_rules; i++) { if (rules_visited[i]) { continue; } if (llama_grammar_detect_left_recursion(vec_rules, i, &rules_visited, &rules_in_progress, &rules_may_be_empty)) { LLAMA_LOG_ERROR("unsupported grammar, left recursion detected for nonterminal at index %zu", i); return nullptr; } } // loop over alternates of start rule to build initial stacks llama_grammar_stacks stacks; pos = vec_rules[start_rule_index].data(); do { llama_grammar_stack stack; if (!llama_grammar_is_end_of_sequence(pos)) { // if alternate is nonempty, add to stack stack.push_back(pos); } llama_grammar_advance_stack(vec_rules, stack, stacks); while (!llama_grammar_is_end_of_sequence(pos)) { // scan to end of alternate def pos++; } if (pos->type == LLAMA_GRETYPE_ALT) { // there's another alternate def of this rule to process pos++; } else { break; } } while (true); // Important: vec_rules has to be moved here, not copied, because stacks contains // pointers to elements of vec_rules. If vec_rules were copied into llama_grammar // then the pointers would be invalidated when the local vec_rules goes out of scope. return new llama_grammar{ std::move(vec_rules), std::move(stacks), {} }; } void llama_grammar_free_impl(struct llama_grammar * grammar) { delete grammar; } struct llama_grammar * llama_grammar_copy_impl(const struct llama_grammar * grammar) { llama_grammar * result = new llama_grammar{ grammar->rules, grammar->stacks, grammar->partial_utf8 }; // redirect elements in stacks to point to new rules for (size_t is = 0; is < result->stacks.size(); is++) { for (size_t ie = 0; ie < result->stacks[is].size(); ie++) { for (size_t ir0 = 0; ir0 < grammar->rules.size(); ir0++) { for (size_t ir1 = 0; ir1 < grammar->rules[ir0].size(); ir1++) { if (grammar->stacks[is][ie] == &grammar->rules[ir0][ir1]) { result->stacks[is][ie] = &result->rules[ir0][ir1]; } } } } } return result; } void llama_grammar_sample_impl(const struct llama_grammar * grammar, const struct llama_vocab * vocab, const struct llama_sampling * smpl, llama_token_data_array * candidates) { GGML_ASSERT(grammar); GGML_ASSERT(vocab); int64_t t_start_sample_us = ggml_time_us(); bool allow_eog = false; for (const auto & stack : grammar->stacks) { if (stack.empty()) { allow_eog = true; break; } } std::vector, llama_partial_utf8>> candidates_decoded; candidates_decoded.reserve(candidates->size); llama_grammar_candidates candidates_grammar; candidates_grammar.reserve(candidates->size); for (size_t i = 0; i < candidates->size; ++i) { const llama_token id = candidates->data[i].id; const std::string & piece = vocab->cache_token_to_piece.at(id); if (llama_token_is_eog_impl(*vocab, id)) { if (!allow_eog) { candidates->data[i].logit = -INFINITY; } } else if (piece.empty() || piece[0] == 0) { candidates->data[i].logit = -INFINITY; } else { candidates_decoded.push_back(decode_utf8(piece, grammar->partial_utf8)); candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second }); } } const auto rejects = llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar); for (const auto & reject : rejects) { candidates->data[reject.index].logit = -INFINITY; } smpl->t_sample_us += ggml_time_us() - t_start_sample_us; } void llama_grammar_accept_token_impl(struct llama_grammar * grammar, const struct llama_vocab * vocab, const struct llama_sampling * smpl, llama_token token) { const int64_t t_start_sample_us = ggml_time_us(); if (llama_token_is_eog_impl(*vocab, token)) { for (const auto & stack : grammar->stacks) { if (stack.empty()) { return; } } GGML_ABORT("fatal error"); } const std::string & piece = vocab->cache_token_to_piece.at(token); // Note terminating 0 in decoded string const auto decoded = decode_utf8(piece, grammar->partial_utf8); const auto & code_points = decoded.first; llama_grammar_stacks tmp_new_stacks; for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) { llama_grammar_accept(grammar->rules, grammar->stacks, *it, tmp_new_stacks); grammar->stacks = tmp_new_stacks; } grammar->partial_utf8 = decoded.second; GGML_ASSERT(!grammar->stacks.empty()); smpl->t_sample_us += ggml_time_us() - t_start_sample_us; }