#!/usr/bin/env python3 from __future__ import annotations import logging import argparse import os import re import sys from pathlib import Path from typing import Any import numpy as np # Necessary to load the local gguf package if "NO_LOCAL_GGUF" not in os.environ and (Path(__file__).parent.parent.parent / 'gguf-py').exists(): sys.path.insert(0, str(Path(__file__).parent.parent)) from gguf import GGUFReader, GGUFValueType, ReaderTensor # noqa: E402 logger = logging.getLogger("gguf-dump") def get_file_host_endian(reader: GGUFReader) -> tuple[str, str]: host_endian = 'LITTLE' if np.uint32(1) == np.uint32(1).newbyteorder("<") else 'BIG' if reader.byte_order == 'S': file_endian = 'BIG' if host_endian == 'LITTLE' else 'LITTLE' else: file_endian = host_endian return (host_endian, file_endian) # For more information about what field.parts and field.data represent, # please see the comments in the modify_gguf.py example. def dump_metadata(reader: GGUFReader, args: argparse.Namespace) -> None: host_endian, file_endian = get_file_host_endian(reader) print(f'* File is {file_endian} endian, script is running on a {host_endian} endian host.') # noqa: NP100 print(f'* Dumping {len(reader.fields)} key/value pair(s)') # noqa: NP100 for n, field in enumerate(reader.fields.values(), 1): if not field.types: pretty_type = 'N/A' elif field.types[0] == GGUFValueType.ARRAY: nest_count = len(field.types) - 1 pretty_type = '[' * nest_count + str(field.types[-1].name) + ']' * nest_count else: pretty_type = str(field.types[-1].name) log_message = f' {n:5}: {pretty_type:10} | {len(field.data):8} | {field.name}' if len(field.types) == 1: curr_type = field.types[0] if curr_type == GGUFValueType.STRING: log_message += ' = {0}'.format(repr(str(bytes(field.parts[-1]), encoding='utf-8')[:60])) elif field.types[0] in reader.gguf_scalar_to_np: log_message += ' = {0}'.format(field.parts[-1][0]) print(log_message) # noqa: NP100 if args.no_tensors: return print(f'* Dumping {len(reader.tensors)} tensor(s)') # noqa: NP100 for n, tensor in enumerate(reader.tensors, 1): prettydims = ', '.join('{0:5}'.format(d) for d in list(tensor.shape) + [1] * (4 - len(tensor.shape))) print(f' {n:5}: {tensor.n_elements:10} | {prettydims} | {tensor.tensor_type.name:7} | {tensor.name}') # noqa: NP100 def dump_metadata_json(reader: GGUFReader, args: argparse.Namespace) -> None: import json host_endian, file_endian = get_file_host_endian(reader) metadata: dict[str, Any] = {} tensors: dict[str, Any] = {} result = { "filename": args.model, "endian": file_endian, "metadata": metadata, "tensors": tensors, } for idx, field in enumerate(reader.fields.values()): curr: dict[str, Any] = { "index": idx, "type": field.types[0].name if field.types else 'UNKNOWN', "offset": field.offset, } metadata[field.name] = curr if field.types[:1] == [GGUFValueType.ARRAY]: curr["array_types"] = [t.name for t in field.types][1:] if not args.json_array: continue itype = field.types[-1] if itype == GGUFValueType.STRING: curr["value"] = [str(bytes(field.parts[idx]), encoding="utf-8") for idx in field.data] else: curr["value"] = [pv for idx in field.data for pv in field.parts[idx].tolist()] elif field.types[0] == GGUFValueType.STRING: curr["value"] = str(bytes(field.parts[-1]), encoding="utf-8") else: curr["value"] = field.parts[-1].tolist()[0] if not args.no_tensors: for idx, tensor in enumerate(reader.tensors): tensors[tensor.name] = { "index": idx, "shape": tensor.shape.tolist(), "type": tensor.tensor_type.name, "offset": tensor.field.offset, } json.dump(result, sys.stdout) def markdown_table_with_alignment_support(header_map: list[dict[str, str]], data: list[dict[str, Any]]): # JSON to Markdown table formatting: https://stackoverflow.com/a/72983854/2850957 # Alignment Utility Function def strAlign(padding: int, alignMode: str | None, strVal: str): if alignMode == 'center': return strVal.center(padding) elif alignMode == 'right': return strVal.rjust(padding - 1) + ' ' elif alignMode == 'left': return ' ' + strVal.ljust(padding - 1) else: # default left return ' ' + strVal.ljust(padding - 1) def dashAlign(padding: int, alignMode: str | None): if alignMode == 'center': return ':' + '-' * (padding - 2) + ':' elif alignMode == 'right': return '-' * (padding - 1) + ':' elif alignMode == 'left': return ':' + '-' * (padding - 1) else: # default left return '-' * (padding) # Calculate Padding For Each Column Based On Header and Data Length rowsPadding = {} for index, columnEntry in enumerate(header_map): padCount = max([len(str(v)) for d in data for k, v in d.items() if k == columnEntry['key_name']], default=0) + 2 headerPadCount = len(columnEntry['header_name']) + 2 rowsPadding[index] = headerPadCount if padCount <= headerPadCount else padCount # Render Markdown Header rows = [] rows.append('|'.join(strAlign(rowsPadding[index], columnEntry.get('align'), str(columnEntry['header_name'])) for index, columnEntry in enumerate(header_map))) rows.append('|'.join(dashAlign(rowsPadding[index], columnEntry.get('align')) for index, columnEntry in enumerate(header_map))) # Render Tabular Data for item in data: rows.append('|'.join(strAlign(rowsPadding[index], columnEntry.get('align'), str(item[columnEntry['key_name']])) for index, columnEntry in enumerate(header_map))) # Convert Tabular String Rows Into String tableString = "" for row in rows: tableString += f'|{row}|\n' return tableString def element_count_rounded_notation(count: int) -> str: if count > 1e15 : # Quadrillion scaled_amount = count * 1e-15 scale_suffix = "Q" elif count > 1e12 : # Trillions scaled_amount = count * 1e-12 scale_suffix = "T" elif count > 1e9 : # Billions scaled_amount = count * 1e-9 scale_suffix = "B" elif count > 1e6 : # Millions scaled_amount = count * 1e-6 scale_suffix = "M" elif count > 1e3 : # Thousands scaled_amount = count * 1e-3 scale_suffix = "K" else: # Under Thousands scaled_amount = count scale_suffix = "" return f"{'~' if count > 1e3 else ''}{round(scaled_amount)}{scale_suffix}" def translate_tensor_name(name): words = name.split(".") # Source: https://github.com/ggerganov/ggml/blob/master/docs/gguf.md#standardized-tensor-names abbreviation_dictionary = { 'token_embd': 'Token embedding', 'pos_embd': 'Position embedding', 'output_norm': 'Output normalization', 'output': 'Output', 'attn_norm': 'Attention normalization', 'attn_norm_2': 'Attention normalization', 'attn_qkv': 'Attention query-key-value', 'attn_q': 'Attention query', 'attn_k': 'Attention key', 'attn_v': 'Attention value', 'attn_output': 'Attention output', 'ffn_norm': 'Feed-forward network normalization', 'ffn_up': 'Feed-forward network "up"', 'ffn_gate': 'Feed-forward network "gate"', 'ffn_down': 'Feed-forward network "down"', 'ffn_gate_inp': 'Expert-routing layer for the Feed-forward network in Mixture of Expert models', 'ffn_gate_exp': 'Feed-forward network "gate" layer per expert in Mixture of Expert models', 'ffn_down_exp': 'Feed-forward network "down" layer per expert in Mixture of Expert models', 'ffn_up_exp': 'Feed-forward network "up" layer per expert in Mixture of Expert models', 'ssm_in': 'State space model input projections', 'ssm_conv1d': 'State space model rolling/shift', 'ssm_x': 'State space model selective parametrization', 'ssm_a': 'State space model state compression', 'ssm_d': 'State space model skip connection', 'ssm_dt': 'State space model time step', 'ssm_out': 'State space model output projection', 'blk': 'Block', 'enc': 'Encoder', 'dec': 'Decoder', } expanded_words = [] for word in words: word_norm = word.strip().lower() if word_norm in abbreviation_dictionary: expanded_words.append(abbreviation_dictionary[word_norm].title()) else: expanded_words.append(word.title()) return ' '.join(expanded_words) def dump_markdown_metadata(reader: GGUFReader, args: argparse.Namespace) -> None: host_endian, file_endian = get_file_host_endian(reader) markdown_content = "" markdown_content += f'# {args.model} - GGUF Internal File Dump\n\n' markdown_content += f'- Endian: {file_endian} endian\n' markdown_content += '\n' markdown_content += '## Key Value Metadata Store\n\n' markdown_content += f'There are {len(reader.fields)} key-value pairs in this file\n' markdown_content += '\n' kv_dump_table: list[dict[str, str | int]] = [] for n, field in enumerate(reader.fields.values(), 1): if not field.types: pretty_type = 'N/A' elif field.types[0] == GGUFValueType.ARRAY: nest_count = len(field.types) - 1 pretty_type = '[' * nest_count + str(field.types[-1].name) + ']' * nest_count else: pretty_type = str(field.types[-1].name) def escape_markdown_inline_code(value_string): # Find the longest contiguous sequence of backticks in the string then # wrap string with appropriate number of backticks required to escape it max_backticks = max((len(match.group(0)) for match in re.finditer(r'`+', value_string)), default=0) inline_code_marker = '`' * (max_backticks + 1) # If the string starts or ends with a backtick, add a space at the beginning and end if value_string.startswith('`') or value_string.endswith('`'): value_string = f" {value_string} " return f"{inline_code_marker}{value_string}{inline_code_marker}" total_elements = len(field.data) value = "" if len(field.types) == 1: curr_type = field.types[0] if curr_type == GGUFValueType.STRING: truncate_length = 60 value_string = str(bytes(field.parts[-1]), encoding='utf-8') if len(value_string) > truncate_length: head = escape_markdown_inline_code(value_string[:truncate_length // 2]) tail = escape_markdown_inline_code(value_string[-truncate_length // 2:]) value = "{head}...{tail}".format(head=head, tail=tail) else: value = escape_markdown_inline_code(value_string) elif curr_type in reader.gguf_scalar_to_np: value = str(field.parts[-1][0]) else: if field.types[0] == GGUFValueType.ARRAY: curr_type = field.types[1] array_elements = [] if curr_type == GGUFValueType.STRING: render_element = min(5, total_elements) for element_pos in range(render_element): truncate_length = 30 value_string = str(bytes(field.parts[-1 - (total_elements - element_pos - 1) * 2]), encoding='utf-8') if len(value_string) > truncate_length: head = escape_markdown_inline_code(value_string[:truncate_length // 2]) tail = escape_markdown_inline_code(value_string[-truncate_length // 2:]) value = "{head}...{tail}".format(head=head, tail=tail) else: value = escape_markdown_inline_code(value_string) array_elements.append(value) elif curr_type in reader.gguf_scalar_to_np: render_element = min(7, total_elements) for element_pos in range(render_element): array_elements.append(str(field.parts[-1 - (total_elements - element_pos - 1)][0])) value = f'[ {", ".join(array_elements).strip()}{", ..." if total_elements > len(array_elements) else ""} ]' kv_dump_table.append({"n":n, "pretty_type":pretty_type, "total_elements":total_elements, "field_name":field.name, "value":value}) kv_dump_table_header_map = [ {'key_name':'n', 'header_name':'POS', 'align':'right'}, {'key_name':'pretty_type', 'header_name':'TYPE', 'align':'left'}, {'key_name':'total_elements', 'header_name':'Count', 'align':'right'}, {'key_name':'field_name', 'header_name':'Key', 'align':'left'}, {'key_name':'value', 'header_name':'Value', 'align':'left'}, ] markdown_content += markdown_table_with_alignment_support(kv_dump_table_header_map, kv_dump_table) markdown_content += "\n" if not args.no_tensors: # Group tensors by their prefix and maintain order tensor_prefix_order: list[str] = [] tensor_name_to_key: dict[str, int] = {} tensor_groups: dict[str, list[ReaderTensor]] = {} total_elements = sum(tensor.n_elements for tensor in reader.tensors) # Parsing Tensors Record for key, tensor in enumerate(reader.tensors): tensor_components = tensor.name.split('.') # Classify Tensor Group tensor_group_name = "base" if tensor_components[0] == 'blk': tensor_group_name = f"{tensor_components[0]}.{tensor_components[1]}" elif tensor_components[0] in ['enc', 'dec'] and tensor_components[1] == 'blk': tensor_group_name = f"{tensor_components[0]}.{tensor_components[1]}.{tensor_components[2]}" elif tensor_components[0] in ['enc', 'dec']: tensor_group_name = f"{tensor_components[0]}" # Check if new Tensor Group if tensor_group_name not in tensor_groups: tensor_groups[tensor_group_name] = [] tensor_prefix_order.append(tensor_group_name) # Record Tensor and Tensor Position tensor_groups[tensor_group_name].append(tensor) tensor_name_to_key[tensor.name] = key # Tensors Mapping Dump markdown_content += f'## Tensors Overview {element_count_rounded_notation(total_elements)} Elements\n\n' markdown_content += f'Total number of elements in all tensors: {total_elements} Elements\n' markdown_content += '\n' for group in tensor_prefix_order: tensors = tensor_groups[group] group_elements = sum(tensor.n_elements for tensor in tensors) markdown_content += f"- [{translate_tensor_name(group)} Tensor Group - {element_count_rounded_notation(group_elements)} Elements](#{group.replace('.', '_')})\n" markdown_content += "\n" markdown_content += "### Tensor Data Offset\n" markdown_content += '\n' markdown_content += 'This table contains the offset and data segment relative to start of file\n' markdown_content += '\n' tensor_mapping_table: list[dict[str, str | int]] = [] for key, tensor in enumerate(reader.tensors): data_offset_pretty = '{0:#16x}'.format(tensor.data_offset) data_size_pretty = '{0:#16x}'.format(tensor.n_bytes) tensor_mapping_table.append({"t_id":key, "layer_name":tensor.name, "data_offset":data_offset_pretty, "data_size":data_size_pretty}) tensors_mapping_table_header_map = [ {'key_name':'t_id', 'header_name':'T_ID', 'align':'right'}, {'key_name':'layer_name', 'header_name':'Tensor Layer Name', 'align':'left'}, {'key_name':'data_offset', 'header_name':'Data Offset (B)', 'align':'right'}, {'key_name':'data_size', 'header_name':'Data Size (B)', 'align':'right'}, ] markdown_content += markdown_table_with_alignment_support(tensors_mapping_table_header_map, tensor_mapping_table) markdown_content += "\n" for group in tensor_prefix_order: tensors = tensor_groups[group] group_elements = sum(tensor.n_elements for tensor in tensors) group_percentage = group_elements / total_elements * 100 markdown_content += f"### <a name=\"{group.replace('.', '_')}\">{translate_tensor_name(group)} Tensor Group : {element_count_rounded_notation(group_elements)} Elements</a>\n\n" # Precalculate column sizing for visual consistency prettify_element_est_count_size: int = 1 prettify_element_count_size: int = 1 prettify_dimension_max_widths: dict[int, int] = {} for tensor in tensors: prettify_element_est_count_size = max(prettify_element_est_count_size, len(str(element_count_rounded_notation(tensor.n_elements)))) prettify_element_count_size = max(prettify_element_count_size, len(str(tensor.n_elements))) for i, dimension_size in enumerate(list(tensor.shape) + [1] * (4 - len(tensor.shape))): prettify_dimension_max_widths[i] = max(prettify_dimension_max_widths.get(i,1), len(str(dimension_size))) # Generate Tensor Layer Table Content tensor_dump_table: list[dict[str, str | int]] = [] for tensor in tensors: human_friendly_name = translate_tensor_name(tensor.name.replace(".weight", ".(W)").replace(".bias", ".(B)")) pretty_dimension = ' x '.join(f'{str(d):>{prettify_dimension_max_widths[i]}}' for i, d in enumerate(list(tensor.shape) + [1] * (4 - len(tensor.shape)))) element_count_est = f"({element_count_rounded_notation(tensor.n_elements):>{prettify_element_est_count_size}})" element_count_string = f"{element_count_est} {tensor.n_elements:>{prettify_element_count_size}}" type_name_string = f"{tensor.tensor_type.name}" tensor_dump_table.append({"t_id":tensor_name_to_key[tensor.name], "layer_name":tensor.name, "human_layer_name":human_friendly_name, "element_count":element_count_string, "pretty_dimension":pretty_dimension, "tensor_type":type_name_string}) tensor_dump_table_header_map = [ {'key_name':'t_id', 'header_name':'T_ID', 'align':'right'}, {'key_name':'layer_name', 'header_name':'Tensor Layer Name', 'align':'left'}, {'key_name':'human_layer_name', 'header_name':'Human Friendly Tensor Layer Name', 'align':'left'}, {'key_name':'element_count', 'header_name':'Elements', 'align':'left'}, {'key_name':'pretty_dimension', 'header_name':'Shape', 'align':'left'}, {'key_name':'tensor_type', 'header_name':'Type', 'align':'left'}, ] markdown_content += markdown_table_with_alignment_support(tensor_dump_table_header_map, tensor_dump_table) markdown_content += "\n" markdown_content += f"- Total elements in {group}: ({element_count_rounded_notation(group_elements):>4}) {group_elements}\n" markdown_content += f"- Percentage of total elements: {group_percentage:.2f}%\n" markdown_content += "\n\n" print(markdown_content) # noqa: NP100 def main() -> None: parser = argparse.ArgumentParser(description="Dump GGUF file metadata") parser.add_argument("model", type=str, help="GGUF format model filename") parser.add_argument("--no-tensors", action="store_true", help="Don't dump tensor metadata") parser.add_argument("--json", action="store_true", help="Produce JSON output") parser.add_argument("--json-array", action="store_true", help="Include full array values in JSON output (long)") parser.add_argument("--data-offset", action="store_true", help="Start of data offset") parser.add_argument("--data-alignment", action="store_true", help="Data alignment applied globally to data field") parser.add_argument("--markdown", action="store_true", help="Produce markdown output") parser.add_argument("--verbose", action="store_true", help="increase output verbosity") args = parser.parse_args(None if len(sys.argv) > 1 else ["--help"]) logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO) if not args.json and not args.markdown and not args.data_offset and not args.data_alignment: logger.info(f'* Loading: {args.model}') reader = GGUFReader(args.model, 'r') if args.json: dump_metadata_json(reader, args) elif args.markdown: dump_markdown_metadata(reader, args) elif args.data_offset: print(reader.data_offset) # noqa: NP100 elif args.data_alignment: print(reader.alignment) # noqa: NP100 else: dump_metadata(reader, args) if __name__ == '__main__': main()