import sse from 'k6/x/sse' import {check, sleep} from 'k6' import {SharedArray} from 'k6/data' import {Counter, Rate, Trend} from 'k6/metrics' import exec from 'k6/execution'; // Server chat completions prefix const server_url = __ENV.SERVER_BENCH_URL ? __ENV.SERVER_BENCH_URL : 'http://localhost:8080/v1' // Number of total prompts in the dataset - default 10m / 10 seconds/request * number of users const n_prompt = __ENV.SERVER_BENCH_N_PROMPTS ? parseInt(__ENV.SERVER_BENCH_N_PROMPTS) : 600 / 10 * 8 // Model name to request const model = __ENV.SERVER_BENCH_MODEL_ALIAS ? __ENV.SERVER_BENCH_MODEL_ALIAS : 'my-model' // Dataset path const dataset_path = __ENV.SERVER_BENCH_DATASET ? __ENV.SERVER_BENCH_DATASET : './ShareGPT_V3_unfiltered_cleaned_split.json' // Max tokens to predict const max_tokens = __ENV.SERVER_BENCH_MAX_TOKENS ? parseInt(__ENV.SERVER_BENCH_MAX_TOKENS) : 512 // Max prompt tokens const n_prompt_tokens = __ENV.SERVER_BENCH_MAX_PROMPT_TOKENS ? parseInt(__ENV.SERVER_BENCH_MAX_PROMPT_TOKENS) : 1024 // Max slot context const n_ctx_slot = __ENV.SERVER_BENCH_MAX_CONTEXT ? parseInt(__ENV.SERVER_BENCH_MAX_CONTEXT) : 2048 export function setup() { console.info(`Benchmark config: server_url=${server_url} n_prompt=${n_prompt} model=${model} dataset_path=${dataset_path} max_tokens=${max_tokens}`) } const data = new SharedArray('conversations', function () { const tokenizer = (message) => message.split(/[\s,'".?]/) return JSON.parse(open(dataset_path)) // Filter out the conversations with less than 2 turns. .filter(data => data["conversations"].length >= 2) .filter(data => data["conversations"][0]["from"] === "human") .map(data => { return { prompt: data["conversations"][0]["value"], n_prompt_tokens: tokenizer(data["conversations"][0]["value"]).length, n_completion_tokens: tokenizer(data["conversations"][1]["value"]).length, } }) // Filter out too short sequences .filter(conv => conv.n_prompt_tokens >= 4 && conv.n_completion_tokens >= 4) // Filter out too long sequences. .filter(conv => conv.n_prompt_tokens <= n_prompt_tokens && conv.n_prompt_tokens + conv.n_completion_tokens <= n_ctx_slot) // Keep only first n prompts .slice(0, n_prompt) }) const llamacpp_prompt_tokens = new Trend('llamacpp_prompt_tokens') const llamacpp_completion_tokens = new Trend('llamacpp_completion_tokens') const llamacpp_tokens_second = new Trend('llamacpp_tokens_second') const llamacpp_prompt_processing_second = new Trend('llamacpp_prompt_processing_second') const llamacpp_prompt_tokens_total_counter = new Counter('llamacpp_prompt_tokens_total_counter') const llamacpp_completion_tokens_total_counter = new Counter('llamacpp_completion_tokens_total_counter') const llamacpp_completions_truncated_rate = new Rate('llamacpp_completions_truncated_rate') const llamacpp_completions_stop_rate = new Rate('llamacpp_completions_stop_rate') export const options = { thresholds: { llamacpp_completions_truncated_rate: [ // more than 80% of truncated input will abort the test {threshold: 'rate < 0.8', abortOnFail: true, delayAbortEval: '1m'}, ], }, duration: '10m', vus: 8, } export default function () { const conversation = data[exec.scenario.iterationInInstance % data.length] const payload = { "messages": [ { "role": "system", "content": "You are ChatGPT, an AI assistant.", }, { "role": "user", "content": conversation.prompt, } ], "model": model, "stream": true, "seed": 42, "max_tokens": max_tokens, "stop": ["<|im_end|>"] // This is temporary for phi-2 base (i.e. not instructed) since the server expects that the model always to emit BOS } const params = {method: 'POST', body: JSON.stringify(payload)}; const startTime = new Date() let promptEvalEndTime = null let prompt_tokens = 0 let completions_tokens = 0 let finish_reason = null const res = sse.open(`${server_url}/chat/completions`, params, function (client) { client.on('event', function (event) { if (promptEvalEndTime == null) { promptEvalEndTime = new Date() } let chunk = JSON.parse(event.data) let choice = chunk.choices[0] if (choice.finish_reason) { finish_reason = choice.finish_reason } if (chunk.usage) { prompt_tokens = chunk.usage.prompt_tokens llamacpp_prompt_tokens.add(prompt_tokens) llamacpp_prompt_tokens_total_counter.add(prompt_tokens) completions_tokens = chunk.usage.completion_tokens llamacpp_completion_tokens.add(completions_tokens) llamacpp_completion_tokens_total_counter.add(completions_tokens) } }) client.on('error', function (e) { console.log('An unexpected error occurred: ', e.error()); throw e; }) }) check(res, {'success completion': (r) => r.status === 200}) const endTime = new Date() const promptEvalTime = promptEvalEndTime - startTime if (promptEvalTime > 0) { llamacpp_prompt_processing_second.add(prompt_tokens / (promptEvalEndTime - startTime) * 1.e3) } const completion_time = endTime - promptEvalEndTime if (completions_tokens > 0 && completion_time > 0) { llamacpp_tokens_second.add(completions_tokens / completion_time * 1.e3) } llamacpp_completions_truncated_rate.add(finish_reason === 'length') llamacpp_completions_stop_rate.add(finish_reason === 'stop') sleep(0.3) }