#include "convert.cuh"
#include "dequantize.cuh"

#define CUDA_Q8_0_NE_ALIGN 2048

template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
static __global__ void dequantize_block(const void * __restrict__ vx, dst_t * __restrict__ y, const int64_t k) {
    const int64_t i = (int64_t)2*(blockDim.x*blockIdx.x + threadIdx.x);

    if (i >= k) {
        return;
    }

    const int64_t ib = i/qk; // block index
    const int64_t iqs = (i%qk)/qr; // quant index
    const int64_t iybs = i - i%qk; // y block start index
    const int64_t y_offset = qr == 1 ? 1 : qk/2;

    // dequantize
    dfloat2 v;
    dequantize_kernel(vx, ib, iqs, v);

    y[iybs + iqs + 0]        = v.x;
    y[iybs + iqs + y_offset] = v.y;
}

template <bool need_check>
static __global__ void dequantize_block_q8_0_f16(const void * __restrict__ vx, half * __restrict__ y, const int64_t k) {
#if __CUDA_ARCH__ >= CC_PASCAL
    constexpr int nint = CUDA_Q8_0_NE_ALIGN/sizeof(int) + WARP_SIZE;

    const int64_t   i0 = CUDA_Q8_0_NE_ALIGN*blockIdx.x;
    const int * x0 = ((int *) vx) + blockIdx.x * nint;
    half2 * y2 = (half2 *) (y + i0);

    __shared__ int vals[nint];

#pragma unroll
    for (int ix0 = 0; ix0 < nint; ix0 += WARP_SIZE) {
        if (need_check && i0*sizeof(block_q8_0)/QK8_0 + sizeof(int)*(ix0 + threadIdx.x) >= k*sizeof(block_q8_0)/QK8_0) {
            break;
        }

        const int ix = ix0 + threadIdx.x;
        vals[ix] = x0[ix];
    }

    __syncthreads();

#pragma unroll
    for (int iy = 0; iy < CUDA_Q8_0_NE_ALIGN; iy += 2*WARP_SIZE) {
        if (need_check && i0 + iy + 2*threadIdx.x >= k) {
            return;
        }

        const half * b0 = ((const half  *) vals) + (sizeof(block_q8_0)/sizeof(half)) * ((iy + 2*threadIdx.x)/QK8_0);
        const half    d = *b0;
        const char2  qs = ((const char2 *) (b0 + 1))[threadIdx.x % (QK8_0/2)];

        y2[iy/2 + threadIdx.x] = __hmul2(make_half2(qs.x, qs.y), __half2half2(d));
    }
#else
    GGML_UNUSED(vx);
    GGML_UNUSED(y);
    GGML_UNUSED(k);
    NO_DEVICE_CODE;
#endif // __CUDA_ARCH__ >= CC_PASCAL
}

template<typename dst_t>
static __global__ void dequantize_block_q4_0(const void * __restrict__ vx, dst_t * __restrict__ yy, int nb32) {

    const int64_t i = blockIdx.x;

    // assume 32 threads
    const int64_t tid = threadIdx.x;
    const int64_t il  = tid/8;
    const int64_t ir  = tid%8;
    const int64_t ib = 8*i + ir;
    if (ib >= nb32) {
        return;
    }

    dst_t * y = yy + 256*i + 32*ir + 4*il;

    const block_q4_0 * x = (const block_q4_0 *)vx + ib;
    const float d = __half2float(x->d);
    const float dm = -8*d;

    const uint8_t * q = x->qs + 4*il;

    for (int l = 0; l < 4; ++l) {
        y[l+ 0] = d * (q[l] & 0xF) + dm;
        y[l+16] = d * (q[l] >>  4) + dm;
    }
}

template<typename dst_t>
static __global__ void dequantize_block_q4_1(const void * __restrict__ vx, dst_t * __restrict__ yy, int nb32) {

    const int64_t i = blockIdx.x;

    // assume 32 threads
    const int64_t tid = threadIdx.x;
    const int64_t il  = tid/8;
    const int64_t ir  = tid%8;
    const int64_t ib = 8*i + ir;
    if (ib >= nb32) {
        return;
    }

    dst_t * y = yy + 256*i + 32*ir + 4*il;

    const block_q4_1 * x = (const block_q4_1 *)vx + ib;
    const float2 d = __half22float2(x->dm);

    const uint8_t * q = x->qs + 4*il;

    for (int l = 0; l < 4; ++l) {
        y[l+ 0] = d.x * (q[l] & 0xF) + d.y;
        y[l+16] = d.x * (q[l] >>  4) + d.y;
    }
}

//================================== k-quants

template<typename dst_t>
static __global__ void dequantize_block_q2_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {

    const int64_t i   = blockIdx.x;
    const block_q2_K * x = (const block_q2_K *) vx;

    const int64_t tid = threadIdx.x;
    const int64_t n   = tid/32;
    const int64_t l   = tid - 32*n;
    const int64_t is  = 8*n + l/16;

    const uint8_t q = x[i].qs[32*n + l];
    dst_t * y = yy + i*QK_K + 128*n;

    float dall = __low2half(x[i].dm);
    float dmin = __high2half(x[i].dm);
    y[l+ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
    y[l+32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is+2] >> 4);
    y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4);
    y[l+96] = dall * (x[i].scales[is+6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is+6] >> 4);
}

template<typename dst_t>
static __global__ void dequantize_block_q3_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {

    const int64_t i = blockIdx.x;
    const block_q3_K * x = (const block_q3_K *) vx;

    const int64_t r = threadIdx.x/4;
    const int64_t tid = r/2;
    const int64_t is0 = r%2;
    const int64_t l0 = 16*is0 + 4*(threadIdx.x%4);
    const int64_t n = tid / 4;
    const int64_t j = tid - 4*n;

    uint8_t m = 1 << (4*n + j);
    int64_t is = 8*n + 2*j + is0;
    int shift = 2*j;

    int8_t us = is <  4 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+8] >> 0) & 3) << 4) :
                is <  8 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+4] >> 2) & 3) << 4) :
                is < 12 ? (x[i].scales[is-8] >>  4) | (((x[i].scales[is+0] >> 4) & 3) << 4) :
                          (x[i].scales[is-8] >>  4) | (((x[i].scales[is-4] >> 6) & 3) << 4);
    float d_all = x[i].d;
    float dl = d_all * (us - 32);

    dst_t * y = yy + i*QK_K + 128*n + 32*j;
    const uint8_t * q = x[i].qs + 32*n;
    const uint8_t * hm = x[i].hmask;

    for (int l = l0; l < l0+4; ++l) y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4));
}

static inline __device__ void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8_t & m) {
    if (j < 4) {
        d = q[j] & 63; m = q[j + 4] & 63;
    } else {
        d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
        m = (q[j+4] >>  4) | ((q[j-0] >> 6) << 4);
    }
}

template<typename dst_t>
static __global__ void dequantize_block_q4_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
    const block_q4_K * x = (const block_q4_K *) vx;

    const int64_t i = blockIdx.x;

    // assume 32 threads
    const int64_t tid = threadIdx.x;
    const int64_t il  = tid/8;
    const int64_t ir  = tid%8;
    const int64_t is  = 2*il;
    const int64_t n   = 4;

    dst_t * y = yy + i*QK_K + 64*il + n*ir;

    const float dall = __low2half(x[i].dm);
    const float dmin = __high2half(x[i].dm);

    const uint8_t * q = x[i].qs + 32*il + n*ir;

    uint8_t sc, m;
    get_scale_min_k4(is + 0, x[i].scales, sc, m);
    const float d1 = dall * sc; const float m1 = dmin * m;
    get_scale_min_k4(is + 1, x[i].scales, sc, m);
    const float d2 = dall * sc; const float m2 = dmin * m;
    for (int l = 0; l < n; ++l) {
        y[l + 0] = d1 * (q[l] & 0xF) - m1;
        y[l +32] = d2 * (q[l] >>  4) - m2;
    }
}

template<typename dst_t>
static __global__ void dequantize_block_q5_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
    const block_q5_K * x = (const block_q5_K *) vx;

    const int64_t i = blockIdx.x;

    // assume 64 threads - this is very slightly better than the one below
    const int64_t tid = threadIdx.x;
    const int64_t il  = tid/16;   // il is in 0...3
    const int64_t ir  = tid%16;   // ir is in 0...15
    const int64_t is  = 2*il;     // is is in 0...6

    dst_t * y = yy + i*QK_K + 64*il + 2*ir;

    const float dall = __low2half(x[i].dm);
    const float dmin = __high2half(x[i].dm);

    const uint8_t * ql = x[i].qs + 32*il + 2*ir;
    const uint8_t * qh = x[i].qh + 2*ir;

    uint8_t sc, m;
    get_scale_min_k4(is + 0, x[i].scales, sc, m);
    const float d1 = dall * sc; const float m1 = dmin * m;
    get_scale_min_k4(is + 1, x[i].scales, sc, m);
    const float d2 = dall * sc; const float m2 = dmin * m;

    uint8_t   hm  = 1 << (2*il);
    y[ 0] = d1 * ((ql[ 0] & 0xF) + (qh[ 0] & hm ? 16 : 0)) - m1;
    y[ 1] = d1 * ((ql[ 1] & 0xF) + (qh[ 1] & hm ? 16 : 0)) - m1;
    hm <<= 1;
    y[32] = d2 * ((ql[ 0] >>  4) + (qh[ 0] & hm ? 16 : 0)) - m2;
    y[33] = d2 * ((ql[ 1] >>  4) + (qh[ 1] & hm ? 16 : 0)) - m2;
}

template<typename dst_t>
static __global__ void dequantize_block_q6_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
    const block_q6_K * x = (const block_q6_K *) vx;

    const int64_t i = blockIdx.x;

    // assume 64 threads - this is very slightly better than the one below
    const int64_t tid = threadIdx.x;
    const int64_t ip  = tid/32;   // ip is 0 or 1
    const int64_t il  = tid - 32*ip; // 0...32
    const int64_t is  = 8*ip + il/16;

    dst_t * y = yy + i*QK_K + 128*ip + il;

    const float d = x[i].d;

    const uint8_t * ql = x[i].ql + 64*ip + il;
    const uint8_t   qh = x[i].qh[32*ip + il];
    const int8_t  * sc = x[i].scales + is;

    y[ 0] = d * sc[0] * ((int8_t)((ql[ 0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
    y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32);
    y[64] = d * sc[4] * ((int8_t)((ql[ 0]  >> 4) | (((qh >> 4) & 3) << 4)) - 32);
    y[96] = d * sc[6] * ((int8_t)((ql[32]  >> 4) | (((qh >> 6) & 3) << 4)) - 32);
}

template<typename dst_t>
static __global__ void dequantize_block_iq2_xxs(const void * __restrict__ vx, dst_t * __restrict__ yy) {

    const int64_t i   = blockIdx.x;
    const block_iq2_xxs * x = (const block_iq2_xxs  *) vx;

    const int64_t tid = threadIdx.x;
    const int64_t il = tid/8; // 0...3
    const int64_t ib = tid%8; // 0...7
    dst_t * y = yy + i*QK_K + 32*ib + 8*il;
    const uint16_t * q2 = x[i].qs + 4*ib;
    const uint8_t  * aux8 = (const uint8_t *)q2;
    const uint8_t  * grid = (const uint8_t *)(iq2xxs_grid + aux8[il]);
    const uint32_t aux32 = q2[2] | (q2[3] << 16);
    const float d = (float)x[i].d * (0.5f + (aux32 >> 28)) * 0.25f;
    const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*il) & 127];
    for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
}

template<typename dst_t>
static __global__ void dequantize_block_iq2_xs(const void * __restrict__ vx, dst_t * __restrict__ yy) {

    const int64_t i   = blockIdx.x;
    const block_iq2_xs * x = (const block_iq2_xs *) vx;

    const int64_t tid = threadIdx.x;
    const int64_t il = tid/8; // 0...3
    const int64_t ib = tid%8; // 0...7
    dst_t * y = yy + i*QK_K + 32*ib + 8*il;
    const uint16_t * q2 = x[i].qs + 4*ib;
    const uint8_t  * grid = (const uint8_t *)(iq2xs_grid + (q2[il] & 511));
    const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f;
    const uint8_t signs = ksigns_iq2xs[q2[il] >> 9];
    for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
}

template<typename dst_t>
static __global__ void dequantize_block_iq2_s(const void * __restrict__ vx, dst_t * __restrict__ yy) {

    const int64_t i   = blockIdx.x;
    const block_iq2_s * x = (const block_iq2_s *) vx;

    const int64_t tid = threadIdx.x;
    const int64_t il = tid/8; // 0...3
    const int64_t ib = tid%8; // 0...7
    dst_t * y = yy + i*QK_K + 32*ib + 8*il;
    const uint8_t * grid = (const uint8_t *)(iq2s_grid + (x[i].qs[4*ib+il] | ((x[i].qh[ib] << (8-2*il)) & 0x300)));
    const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f;
    const uint8_t signs = x[i].qs[QK_K/8+4*ib+il];
    for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
}

template<typename dst_t>
static __global__ void dequantize_block_iq3_xxs(const void * __restrict__ vx, dst_t * __restrict__ yy) {

    const int64_t i   = blockIdx.x;
    const block_iq3_xxs * x = (const block_iq3_xxs  *) vx;

    const int64_t tid = threadIdx.x;
    const int64_t il = tid/8; // 0...3
    const int64_t ib = tid%8; // 0...7
    dst_t * y = yy + i*QK_K + 32*ib + 8*il;
    const uint8_t  * q3 = x[i].qs + 8*ib;
    const uint16_t * gas = (const uint16_t *)(x[i].qs + QK_K/4) + 2*ib;
    const uint8_t  * grid1 = (const uint8_t *)(iq3xxs_grid + q3[2*il+0]);
    const uint8_t  * grid2 = (const uint8_t *)(iq3xxs_grid + q3[2*il+1]);
    const uint32_t aux32 = gas[0] | (gas[1] << 16);
    const float d = (float)x[i].d * (0.5f + (aux32 >> 28)) * 0.5f;
    const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*il) & 127];
    for (int j = 0; j < 4; ++j) {
        y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
        y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
    }
}

template<typename dst_t>
static __global__ void dequantize_block_iq3_s(const void * __restrict__ vx, dst_t * __restrict__ yy) {

    const int64_t i   = blockIdx.x;
    const block_iq3_s * x = (const block_iq3_s *) vx;

    const int64_t tid = threadIdx.x;
    const int64_t il = tid/8; // 0...3
    const int64_t ib = tid%8; // 0...7
    dst_t * y = yy + i*QK_K + 32*ib + 8*il;
    const uint8_t * qs = x[i].qs + 8*ib;
    const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*il+0] | ((x[i].qh[ib] << (8-2*il)) & 256)));
    const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*il+1] | ((x[i].qh[ib] << (7-2*il)) & 256)));
    const float d = (float)x[i].d * (1 + 2*((x[i].scales[ib/2] >> 4*(ib%2)) & 0xf));
    const uint8_t signs = x[i].signs[4*ib + il];
    for (int j = 0; j < 4; ++j) {
        y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
        y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
    }
}

template<typename dst_t>
static __global__ void dequantize_block_iq1_s(const void * __restrict__ vx, dst_t * __restrict__ yy) {

    const int64_t i   = blockIdx.x;
    const block_iq1_s * x = (const block_iq1_s  *) vx;

    const int64_t tid = threadIdx.x;
    const int64_t il = tid/8; // 0...3
    const int64_t ib = tid%8; // 0...7
    dst_t * y = yy + i*QK_K + 32*ib + 8*il;
    const float delta = x[i].qh[ib] & 0x8000 ? -1 - IQ1S_DELTA : -1 + IQ1S_DELTA;
    const float d = (float)x[i].d * (2*((x[i].qh[ib] >> 12) & 7) + 1);
    uint32_t grid32[2]; const int8_t * q = (const int8_t *)grid32;
    grid32[0] = iq1s_grid_gpu[x[i].qs[4*ib+il] | (((x[i].qh[ib] >> 3*il) & 7) << 8)];
    grid32[1] = (grid32[0] >> 4) & 0x0f0f0f0f;
    grid32[0] &= 0x0f0f0f0f;
    for (int j = 0; j < 8; ++j) {
        y[j] = d * (q[j] + delta);
    }
}

template<typename dst_t>
static __global__ void dequantize_block_iq1_m(const void * __restrict__ vx, dst_t * __restrict__ yy) {

    const int64_t i   = blockIdx.x;
    const block_iq1_m * x = (const block_iq1_m  *) vx;

    const int64_t tid = threadIdx.x;
    const int64_t il = tid/8; // 0...3
    const int64_t ib = tid%8; // 0...7
    dst_t * y = yy + i*QK_K + 32*ib + 8*il;
    const uint16_t * sc = (const uint16_t *)x[i].scales;
    iq1m_scale_t scale;
    scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
    const int64_t ib16 = 2*ib + il/2; // sc[ib16/4] >> 3*(ib16%4) -> sc[ib/2] >> 3*((2*ib+il/2)%4);
    const float d = (float)scale.f16 * (2*((sc[ib16/4] >> 3*(ib16%4)) & 0x7) + 1);
    const float delta = x[i].qh[2*ib+il/2] & (0x08 << 4*(il%2)) ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA;
    uint32_t grid32[2]; const int8_t * q = (const int8_t *)grid32;
    grid32[0] = iq1s_grid_gpu[x[i].qs[4*ib+il] | (((x[i].qh[2*ib+il/2] >> 4*(il%2)) & 7) << 8)];
    grid32[1] = (grid32[0] >> 4) & 0x0f0f0f0f;
    grid32[0] &= 0x0f0f0f0f;
    for (int j = 0; j < 8; ++j) {
        y[j] = d * (q[j] + delta);
    }
}

template<typename dst_t>
static __global__ void dequantize_block_iq4_nl(const void * __restrict__ vx, dst_t * __restrict__ yy) {

    const int64_t i   = blockIdx.x;
    const block_iq4_nl * x = (const block_iq4_nl *) vx + i*(QK_K/QK4_NL);

    const int64_t tid = threadIdx.x;
    const int64_t il = tid/8; // 0...3
    const int64_t ib = tid%8; // 0...7
    dst_t * y = yy + i*QK_K + 32*ib + 4*il;
    const uint8_t  * q4 = x[ib].qs + 4*il;
    const float d = (float)x[ib].d;
    for (int j = 0; j < 4; ++j) {
        y[j+ 0] = d * kvalues_iq4nl[q4[j] & 0xf];
        y[j+16] = d * kvalues_iq4nl[q4[j] >>  4];
    }
}

template<typename dst_t>
static __global__ void dequantize_block_iq4_xs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
    const int64_t i   = blockIdx.x;
    const block_iq4_xs * x = (const block_iq4_xs *)vx;

    const int64_t tid = threadIdx.x;
    const int64_t il = tid/8; // 0...3
    const int64_t ib = tid%8; // 0...7
    dst_t * y = yy + i*QK_K + 32*ib + 4*il;
    const uint8_t  * q4 = x[i].qs + 16*ib + 4*il;
    const float d = (float)x[i].d * ((((x[i].scales_l[ib/2] >> 4*(ib%2)) & 0xf) | (((x[i].scales_h >> 2*ib) & 3) << 4)) - 32);
    for (int j = 0; j < 4; ++j) {
        y[j+ 0] = d * kvalues_iq4nl[q4[j] & 0xf];
        y[j+16] = d * kvalues_iq4nl[q4[j] >>  4];
    }
}

template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
static void dequantize_block_cuda(const void * __restrict__ vx, dst_t * __restrict__ y, const int64_t k, cudaStream_t stream) {
    const int num_blocks = (k + 2*CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / (2*CUDA_DEQUANTIZE_BLOCK_SIZE);
    dequantize_block<qk, qr, dequantize_kernel><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
}

static void dequantize_block_q8_0_f16_cuda(const void * __restrict__ vx, half * __restrict__ y, const int64_t k, cudaStream_t stream) {
    const int num_blocks = (k + CUDA_Q8_0_NE_ALIGN - 1) / CUDA_Q8_0_NE_ALIGN;
    if (k % CUDA_Q8_0_NE_ALIGN == 0) {
        const bool need_check = false;
        dequantize_block_q8_0_f16<need_check><<<num_blocks, WARP_SIZE, 0, stream>>>(vx, y, k);
    } else {
        const bool need_check = true;
        dequantize_block_q8_0_f16<need_check><<<num_blocks, WARP_SIZE, 0, stream>>>(vx, y, k);
    }
}

template<typename dst_t>
static void dequantize_row_q2_K_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
    const int nb = k / QK_K;
    dequantize_block_q2_K<<<nb, 64, 0, stream>>>(vx, y);
}

template<typename dst_t>
static void dequantize_row_q3_K_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
    const int nb = k / QK_K;
    dequantize_block_q3_K<<<nb, 64, 0, stream>>>(vx, y);
}

template<typename dst_t>
static void dequantize_row_q4_0_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
    const int nb32 = k / 32;
    const int nb = (k + 255) / 256;
    dequantize_block_q4_0<<<nb, 32, 0, stream>>>(vx, y, nb32);
}

template<typename dst_t>
static void dequantize_row_q4_1_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
    const int nb32 = k / 32;
    const int nb = (k + 255) / 256;
    dequantize_block_q4_1<<<nb, 32, 0, stream>>>(vx, y, nb32);
}

template<typename dst_t>
static void dequantize_row_q4_K_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
    const int nb = k / QK_K;
    dequantize_block_q4_K<<<nb, 32, 0, stream>>>(vx, y);
}

template<typename dst_t>
static void dequantize_row_q5_K_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
    const int nb = k / QK_K;
    dequantize_block_q5_K<<<nb, 64, 0, stream>>>(vx, y);
}

template<typename dst_t>
static void dequantize_row_q6_K_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
    const int nb = k / QK_K;
    dequantize_block_q6_K<<<nb, 64, 0, stream>>>(vx, y);
}

template<typename dst_t>
static void dequantize_row_iq2_xxs_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
    const int nb = k / QK_K;
    dequantize_block_iq2_xxs<<<nb, 32, 0, stream>>>(vx, y);
}

template<typename dst_t>
static void dequantize_row_iq2_xs_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
    const int nb = k / QK_K;
    dequantize_block_iq2_xs<<<nb, 32, 0, stream>>>(vx, y);
}

template<typename dst_t>
static void dequantize_row_iq2_s_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
    const int nb = k / QK_K;
    dequantize_block_iq2_s<<<nb, 32, 0, stream>>>(vx, y);
}

template<typename dst_t>
static void dequantize_row_iq3_xxs_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
    const int nb = k / QK_K;
    dequantize_block_iq3_xxs<<<nb, 32, 0, stream>>>(vx, y);
}

template<typename dst_t>
static void dequantize_row_iq3_s_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
    const int nb = k / QK_K;
    dequantize_block_iq3_s<<<nb, 32, 0, stream>>>(vx, y);
}

template<typename dst_t>
static void dequantize_row_iq1_s_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
    const int nb = k / QK_K;
    dequantize_block_iq1_s<<<nb, 32, 0, stream>>>(vx, y);
}

template<typename dst_t>
static void dequantize_row_iq4_nl_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
    const int nb = (k + QK_K - 1) / QK_K;
    dequantize_block_iq4_nl<<<nb, 32, 0, stream>>>(vx, y);
}

template<typename dst_t>
static void dequantize_row_iq1_m_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
    const int nb = k / QK_K;
    dequantize_block_iq1_m<<<nb, 32, 0, stream>>>(vx, y);
}

template<typename dst_t>
static void dequantize_row_iq4_xs_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
    const int nb = (k + QK_K - 1) / QK_K;
    dequantize_block_iq4_xs<<<nb, 32, 0, stream>>>(vx, y);
}

template <typename src_t, typename dst_t>
static __global__ void convert_unary(const void * __restrict__ vx, dst_t * __restrict__ y, const int64_t k) {
    const int64_t i = (int64_t)blockDim.x*blockIdx.x + threadIdx.x;

    if (i >= k) {
        return;
    }

    const src_t * x = (src_t *) vx;

    y[i] = x[i];
}

template <typename src_t, typename dst_t>
static void convert_unary_cuda(const void * __restrict__ vx, dst_t * __restrict__ y, const int64_t k, cudaStream_t stream) {
    const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
    convert_unary<src_t><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
}

to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) {
    switch (type) {
        case GGML_TYPE_Q4_0:
            return dequantize_row_q4_0_cuda;
        case GGML_TYPE_Q4_1:
            return dequantize_row_q4_1_cuda;
        case GGML_TYPE_Q5_0:
            return dequantize_block_cuda<QK5_0, QR5_0, dequantize_q5_0>;
        case GGML_TYPE_Q5_1:
            return dequantize_block_cuda<QK5_1, QR5_1, dequantize_q5_1>;
        case GGML_TYPE_Q8_0:
            if (ggml_cuda_info().devices[ggml_cuda_get_device()].cc >= CC_PASCAL) {
                return dequantize_block_q8_0_f16_cuda;
            }
            return dequantize_block_cuda<QK8_0, QR8_0, dequantize_q8_0>;
        case GGML_TYPE_Q2_K:
            return dequantize_row_q2_K_cuda;
        case GGML_TYPE_Q3_K:
            return dequantize_row_q3_K_cuda;
        case GGML_TYPE_Q4_K:
            return dequantize_row_q4_K_cuda;
        case GGML_TYPE_Q5_K:
            return dequantize_row_q5_K_cuda;
        case GGML_TYPE_Q6_K:
            return dequantize_row_q6_K_cuda;
        case GGML_TYPE_IQ2_XXS:
            return dequantize_row_iq2_xxs_cuda;
        case GGML_TYPE_IQ2_XS:
            return dequantize_row_iq2_xs_cuda;
        case GGML_TYPE_IQ2_S:
            return dequantize_row_iq2_s_cuda;
        case GGML_TYPE_IQ3_XXS:
            return dequantize_row_iq3_xxs_cuda;
        case GGML_TYPE_IQ1_S:
            return dequantize_row_iq1_s_cuda;
        case GGML_TYPE_IQ1_M:
            return dequantize_row_iq1_m_cuda;
        case GGML_TYPE_IQ4_NL:
            return dequantize_row_iq4_nl_cuda;
        case GGML_TYPE_IQ4_XS:
            return dequantize_row_iq4_xs_cuda;
        case GGML_TYPE_IQ3_S:
            return dequantize_row_iq3_s_cuda;
        case GGML_TYPE_F32:
            return convert_unary_cuda<float>;
        default:
            return nullptr;
    }
}

to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) {
    switch (type) {
        case GGML_TYPE_Q4_0:
            return dequantize_row_q4_0_cuda;
        case GGML_TYPE_Q4_1:
            return dequantize_row_q4_1_cuda;
        case GGML_TYPE_Q5_0:
            return dequantize_block_cuda<QK5_0, QR5_0, dequantize_q5_0>;
        case GGML_TYPE_Q5_1:
            return dequantize_block_cuda<QK5_1, QR5_1, dequantize_q5_1>;
        case GGML_TYPE_Q8_0:
            return dequantize_block_cuda<QK8_0, QR8_0, dequantize_q8_0>;
        case GGML_TYPE_Q2_K:
            return dequantize_row_q2_K_cuda;
        case GGML_TYPE_Q3_K:
            return dequantize_row_q3_K_cuda;
        case GGML_TYPE_Q4_K:
            return dequantize_row_q4_K_cuda;
        case GGML_TYPE_Q5_K:
            return dequantize_row_q5_K_cuda;
        case GGML_TYPE_Q6_K:
            return dequantize_row_q6_K_cuda;
        case GGML_TYPE_IQ2_XXS:
            return dequantize_row_iq2_xxs_cuda;
        case GGML_TYPE_IQ2_XS:
            return dequantize_row_iq2_xs_cuda;
        case GGML_TYPE_IQ2_S:
            return dequantize_row_iq2_s_cuda;
        case GGML_TYPE_IQ3_XXS:
            return dequantize_row_iq3_xxs_cuda;
        case GGML_TYPE_IQ1_S:
            return dequantize_row_iq1_s_cuda;
        case GGML_TYPE_IQ1_M:
            return dequantize_row_iq1_m_cuda;
        case GGML_TYPE_IQ4_NL:
            return dequantize_row_iq4_nl_cuda;
        case GGML_TYPE_IQ4_XS:
            return dequantize_row_iq4_xs_cuda;
        case GGML_TYPE_IQ3_S:
            return dequantize_row_iq3_s_cuda;
        case GGML_TYPE_F16:
            return convert_unary_cuda<half>;
        default:
            return nullptr;
    }
}