#include "ggml.h" #include "ggml-opencl.h" #include "ggml-backend-impl.h" #include <array> #include <atomic> #include <cstdio> #include <cstdlib> #include <cstring> #include <limits> #include <sstream> #include <vector> #define CL_TARGET_OPENCL_VERSION 120 #include <clblast.h> #if defined(_MSC_VER) #pragma warning(disable: 4244 4267) // possible loss of data #endif #define CL_DMMV_LOCAL_SIZE 32 #ifndef K_QUANTS_PER_ITERATION #define K_QUANTS_PER_ITERATION 1 #else static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUANTS_PER_ITERATION must be 1 or 2"); #endif #define MULTILINE_QUOTE(...) #__VA_ARGS__ static std::string program_source = MULTILINE_QUOTE( typedef char int8_t; typedef uchar uint8_t; typedef short int16_t; typedef ushort uint16_t; typedef int int32_t; typedef uint uint32_t; struct __attribute__ ((packed)) block_q4_0 { half d; uint8_t qs[QK4_0 / 2]; }; struct __attribute__ ((packed)) block_q4_1 { half d; half m; uint8_t qs[QK4_1 / 2]; }; struct __attribute__ ((packed)) block_q5_0 { half d; uint32_t qh; uint8_t qs[QK5_0 / 2]; }; struct __attribute__ ((packed)) block_q5_1 { half d; half m; uint32_t qh; uint8_t qs[QK5_1 / 2]; }; struct __attribute__ ((packed)) block_q8_0 { half d; int8_t qs[QK8_0]; }; struct __attribute__((packed)) block_q2_K { uint8_t scales[16]; uint8_t qs[64]; half d; half dmin; }; struct __attribute__((packed)) block_q3_K { uint8_t hmask[32]; uint8_t qs[64]; uint8_t scales[12]; half d; }; struct __attribute__((packed)) block_q4_K { half d; half dmin; uint8_t scales[12]; uint8_t qs[128]; }; struct __attribute__((packed)) block_q5_K { half d; half dmin; uint8_t scales[12]; uint8_t qh[32]; uint8_t qs[128]; }; struct __attribute__((packed)) block_q6_K { uint8_t ql[128]; uint8_t qh[64]; int8_t scales[16]; half d; }; __kernel void convert_fp16_to_fp32(__global half* x, __global float* y) { const uint i = get_global_id(0); y[i] = vload_half(0, &x[i]); } void dequantize_q4_0(__global const struct block_q4_0* x, const int ib, const int iqs, float* v0, float* v1) { const float d = vload_half(0, &x[ib].d); const uint8_t vui = x[ib].qs[iqs]; const int8_t vi0 = vui & 0xF; const int8_t vi1 = vui >> 4; *v0 = (vi0 - 8)*d; *v1 = (vi1 - 8)*d; } void dequantize_q4_1(__global const struct block_q4_1* x, const int ib, const int iqs, float* v0, float* v1) { const float d = vload_half(0, &x[ib].d); const float m = vload_half(0, &x[ib].m); const uint8_t vui = x[ib].qs[iqs]; const int8_t vi0 = vui & 0xF; const int8_t vi1 = vui >> 4; *v0 = vi0*d + m; *v1 = vi1*d + m; } void dequantize_q5_0(__global const struct block_q5_0* x, const int ib, const int iqs, float* v0, float* v1) { const float d = vload_half(0, &x[ib].d); uint32_t qh = x[ib].qh; const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10; const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10; const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0) - 16; const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1) - 16; *v0 = x0*d; *v1 = x1*d; } void dequantize_q5_1(__global const struct block_q5_1* x, const int ib, const int iqs, float* v0, float* v1) { const float d = vload_half(0, &x[ib].d); const float m = vload_half(0, &x[ib].m); uint32_t qh = x[ib].qh; const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10; const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10; const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0); const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1); *v0 = x0*d + m; *v1 = x1*d + m; } void dequantize_q8_0(__global const struct block_q8_0* x, const int ib, const int iqs, float* v0, float* v1) { const float d = vload_half(0, &x[ib].d); const int8_t vi0 = x[ib].qs[iqs + 0]; const int8_t vi1 = x[ib].qs[iqs + 1]; *v0 = vi0*d; *v1 = vi1*d; } void convert_f16(__global half* x, const int ib, const int iqs, float* v0, float* v1){ *v0 = vload_half(0, &x[ib + 0]); *v1 = vload_half(0, &x[ib + 1]); } ); static std::string k_quants_source = MULTILINE_QUOTE( inline void get_scale_min_k4(int j, const __global uint8_t *q, uint8_t *d, uint8_t *m) { if (j < 4) { *d = q[j] & 63; *m = q[j + 4] & 63; } else { *d = (q[j + 4] & 0xF) | ((q[j - 4] >> 6) << 4); *m = (q[j + 4] >> 4) | ((q[j - 0] >> 6) << 4); } } __kernel void dequantize_block_q2_K(__global const struct block_q2_K *x, __global float *yy) { const int i = get_group_id(0) + get_global_offset(0); const int tid = get_local_id(0); const int n = tid / 32; const int l = tid - 32 * n; const int is = 8 * n + l / 16; const uint8_t q = x[i].qs[32 * n + l]; __global float *y = yy + get_group_id(0) * QK_K + 128 * n; const float dall = vload_half(0, &x[i].d); const float dmin = vload_half(0, &x[i].dmin); y[l + 0] = dall * (x[i].scales[is + 0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is + 0] >> 4); y[l + 32] = dall * (x[i].scales[is + 2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is + 2] >> 4); y[l + 64] = dall * (x[i].scales[is + 4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is + 4] >> 4); y[l + 96] = dall * (x[i].scales[is + 6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is + 6] >> 4); } __kernel void dequantize_block_q3_K(__global const struct block_q3_K *x, __global float *yy) { int r = get_local_id(0) / 4; int i = get_group_id(0) + get_global_offset(0); int tid = r / 2; int is0 = r % 2; int l0 = 16 * is0 + 4 * (get_local_id(0) % 4); int n = tid / 4; int j = tid - 4 * n; uint8_t m = 1 << (4 * n + j); int is = 8 * n + 2 * j + is0; int shift = 2 * j; int8_t us = is < 4 ? (x[i].scales[is - 0] & 0xF) | (((x[i].scales[is + 8] >> 0) & 3) << 4) : is < 8 ? (x[i].scales[is - 0] & 0xF) | (((x[i].scales[is + 4] >> 2) & 3) << 4) : is < 12 ? (x[i].scales[is - 8] >> 4) | (((x[i].scales[is + 0] >> 4) & 3) << 4) : (x[i].scales[is - 8] >> 4) | (((x[i].scales[is - 4] >> 6) & 3) << 4); float d_all = vload_half(0, &x[i].d); float dl = d_all * (us - 32); __global float *y = yy + get_group_id(0) * QK_K + 128 * n + 32 * j; const __global uint8_t *q = x[i].qs + 32 * n; const __global uint8_t *hm = x[i].hmask; for (int l = l0; l < l0 + 4; ++l) y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4)); } __kernel void dequantize_block_q4_K(__global const struct block_q4_K *x, __global float *yy) { const int i = get_group_id(0) + get_global_offset(0); const int tid = get_local_id(0); const int il = tid / 8; const int ir = tid % 8; const int is = 2 * il; const int n = 4; __global float *y = yy + get_group_id(0) * QK_K + 64 * il + n * ir; const float dall = vload_half(0, &x[i].d); const float dmin = vload_half(0, &x[i].dmin); __global const uint8_t *q = x[i].qs + 32 * il + n * ir; uint8_t sc, m; get_scale_min_k4(is + 0, x[i].scales, &sc, &m); float d1 = dall * sc; float m1 = dmin * m; get_scale_min_k4(is + 1, x[i].scales, &sc, &m); float d2 = dall * sc; float m2 = dmin * m; for (int l = 0; l < n; ++l) { y[l + 0] = d1 * (q[l] & 0xF) - m1; y[l + 32] = d2 * (q[l] >> 4) - m2; } } __kernel void dequantize_block_q5_K(__global const struct block_q5_K *x, __global float *yy) { const int i = get_group_id(0) + get_global_offset(0); const int tid = get_local_id(0); const int il = tid / 16; const int ir = tid % 16; const int is = 2 * il; __global float *y = yy + get_group_id(0) * QK_K + 64 * il + 2 * ir; const float dall = vload_half(0, &x[i].d); const float dmin = vload_half(0, &x[i].dmin); __global const uint8_t *ql = x[i].qs + 32 * il + 2 * ir; __global const uint8_t *qh = x[i].qh + 2 * ir; uint8_t sc, m; get_scale_min_k4(is + 0, x[i].scales, &sc, &m); const float d1 = dall * sc; const float m1 = dmin * m; get_scale_min_k4(is + 1, x[i].scales, &sc, &m); const float d2 = dall * sc; const float m2 = dmin * m; uint8_t hm = 1 << (2 * il); y[0] = d1 * ((ql[0] & 0xF) + (qh[0] & hm ? 16 : 0)) - m1; y[1] = d1 * ((ql[1] & 0xF) + (qh[1] & hm ? 16 : 0)) - m1; hm <<= 1; y[32] = d2 * ((ql[0] >> 4) + (qh[0] & hm ? 16 : 0)) - m2; y[33] = d2 * ((ql[1] >> 4) + (qh[1] & hm ? 16 : 0)) - m2; } __kernel void dequantize_block_q6_K(__global const struct block_q6_K *x, __global float *yy) { const int i = get_group_id(0) + get_global_offset(0); const int tid = get_local_id(0); const int ip = tid / 32; const int il = tid - 32 * ip; const int is = 8 * ip + il / 16; __global float *y = yy + get_group_id(0) * QK_K + 128 * ip + il; const float d = vload_half(0, &x[i].d); __global const uint8_t *ql = x[i].ql + 64 * ip + il; const uint8_t qh = x[i].qh[32 * ip + il]; __global const int8_t *sc = x[i].scales + is; y[0] = d * sc[0] * ((int8_t)((ql[0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32); y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32); y[64] = d * sc[4] * ((int8_t)((ql[0] >> 4) | (((qh >> 4) & 3) << 4)) - 32); y[96] = d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32); } __kernel void dequantize_mul_mat_vec_q2_K(__global const struct block_q2_K * xx, __local float* tmp, __global float* yy, __global float* dst, const int ncols) { const int row = get_group_id(0); const int num_blocks_per_row = ncols / QK_K; const int ib0 = row*num_blocks_per_row + get_global_offset(0); __global const struct block_q2_K * x = xx + ib0; const int tid = get_local_id(0)/K_QUANTS_PER_ITERATION; // 0...31 or 0...15 const int ix = get_local_id(0)%K_QUANTS_PER_ITERATION; // 0 or 0,1 const int step = 16/K_QUANTS_PER_ITERATION; const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128... const int in = tid - step*im; // 0...15 or 0...7 const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15 or 0...14 in steps of 2 const int q_offset = 32*im + l0; const int s_offset = 8*im; const int y_offset = 128*im + l0; tmp[16 * ix + tid] = 0; uint32_t aux[4]; const uint8_t * d = (const uint8_t *)aux; const uint8_t * m = (const uint8_t *)(aux + 2); for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) { __global const float * y = yy + i * QK_K + y_offset; __global const uint8_t * q = x[i].qs + q_offset; const float dall = vload_half(0, &x[i].d); const float dmin = vload_half(0, &x[i].dmin); __global const uint32_t * a = (__global const uint32_t *)(x[i].scales + s_offset); aux[0] = a[0] & 0x0f0f0f0f; aux[1] = a[1] & 0x0f0f0f0f; aux[2] = (a[0] >> 4) & 0x0f0f0f0f; aux[3] = (a[1] >> 4) & 0x0f0f0f0f; float sum1 = 0, sum2 = 0; for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) { sum1 += y[l+ 0] * d[0] * ((q[l+ 0] >> 0) & 3) + y[l+32] * d[2] * ((q[l+ 0] >> 2) & 3) + y[l+64] * d[4] * ((q[l+ 0] >> 4) & 3) + y[l+96] * d[6] * ((q[l+ 0] >> 6) & 3) + y[l+16] * d[1] * ((q[l+16] >> 0) & 3) + y[l+48] * d[3] * ((q[l+16] >> 2) & 3) + y[l+80] * d[5] * ((q[l+16] >> 4) & 3) +y[l+112] * d[7] * ((q[l+16] >> 6) & 3); sum2 += y[l+ 0] * m[0] + y[l+32] * m[2] + y[l+64] * m[4] + y[ l+96] * m[6] + y[l+16] * m[1] + y[l+48] * m[3] + y[l+80] * m[5] + y[l+112] * m[7]; } tmp[16 * ix + tid] += dall * sum1 - dmin * sum2; } // sum up partial sums and write back result barrier(CLK_LOCAL_MEM_FENCE); for (int s=16; s>0; s>>=1) { if (tid < s) { tmp[tid] += tmp[tid + s]; } barrier(CLK_LOCAL_MEM_FENCE); } if (tid == 0) { dst[row] = tmp[0]; } } __kernel void dequantize_mul_mat_vec_q3_K(__global const struct block_q3_K * xx, __local float* tmp, __global float* yy, __global float* dst, const int ncols) { const uint16_t kmask1 = 0x0303; const uint16_t kmask2 = 0x0f0f; const int row = get_group_id(0); const int num_blocks_per_row = ncols / QK_K; const int ib0 = row*num_blocks_per_row + get_global_offset(0); __global const struct block_q3_K * x = xx + ib0; const int tid = get_local_id(0)/K_QUANTS_PER_ITERATION; // 0...31 or 0...16 const int ix = get_local_id(0)%K_QUANTS_PER_ITERATION; // 0 or 0,1 const int n = K_QUANTS_PER_ITERATION; // iterations in the inner loop const int step = 16/K_QUANTS_PER_ITERATION; const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128... const int in = tid - step*im; // 0....15 or 0...7 const uint8_t m = 1 << (4*im); const int l0 = n*in; // 0...15 or 0...14 in steps of 2 const int q_offset = 32*im + l0; const int y_offset = 128*im + l0; uint16_t utmp[4]; const int8_t * s = (const int8_t *)utmp; const uint16_t s_shift = 4*im; tmp[16 * ix + tid] = 0; for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) { __global const float * y = yy + i * QK_K + y_offset; __global const uint8_t * q = x[i].qs + q_offset; __global const uint8_t * h = x[i].hmask + l0; __global const uint16_t * a = (__global const uint16_t *)x[i].scales; utmp[0] = ((a[0] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 0)) & kmask1) << 4); utmp[1] = ((a[1] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 0)) & kmask1) << 4); utmp[2] = ((a[2] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 2)) & kmask1) << 4); utmp[3] = ((a[3] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 2)) & kmask1) << 4); const float d = vload_half(0, &x[i].d); float sum = 0; for (int l = 0; l < n; ++l) { sum += y[l+ 0] * (s[0] - 32) * (((q[l] >> 0) & 3) - (h[l] & (m << 0) ? 0 : 4)) + y[l+32] * (s[2] - 32) * (((q[l] >> 2) & 3) - (h[l] & (m << 1) ? 0 : 4)) + y[l+64] * (s[4] - 32) * (((q[l] >> 4) & 3) - (h[l] & (m << 2) ? 0 : 4)) + y[l+96] * (s[6] - 32) * (((q[l] >> 6) & 3) - (h[l] & (m << 3) ? 0 : 4)); sum += y[l+16] * (s[1] - 32) * (((q[l+16] >> 0) & 3) - (h[l+16] & (m << 0) ? 0 : 4)) + y[l+48] * (s[3] - 32) * (((q[l+16] >> 2) & 3) - (h[l+16] & (m << 1) ? 0 : 4)) + y[l+80] * (s[5] - 32) * (((q[l+16] >> 4) & 3) - (h[l+16] & (m << 2) ? 0 : 4)) + y[l+112] * (s[7] - 32) * (((q[l+16] >> 6) & 3) - (h[l+16] & (m << 3) ? 0 : 4)); } tmp[16 * ix + tid] += d * sum; } // sum up partial sums and write back result barrier(CLK_LOCAL_MEM_FENCE); for (int s=16; s>0; s>>=1) { if (tid < s) { tmp[tid] += tmp[tid + s]; } barrier(CLK_LOCAL_MEM_FENCE); } if (tid == 0) { dst[row] = tmp[0]; } } __kernel void dequantize_mul_mat_vec_q4_K(__global const struct block_q4_K * xx, __local float* tmp, __global float* yy, __global float* dst, const int ncols) { //to rename it later, just to test now const uint16_t kmask1 = 0x3f3f; const uint16_t kmask2 = 0x0f0f; const uint16_t kmask3 = 0xc0c0; const int row = get_group_id(0); const int num_blocks_per_row = ncols / QK_K; const int ib0 = row*num_blocks_per_row + get_global_offset(0); const int tid = get_local_id(0)/K_QUANTS_PER_ITERATION; // 0...15 const int ix = get_local_id(0)%K_QUANTS_PER_ITERATION; const int step = 8/K_QUANTS_PER_ITERATION; const int il = tid/step; // 0...3 const int ir = tid - step*il;// 0...3 const int n = 2*K_QUANTS_PER_ITERATION; const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224 const int in = il%2; const int l0 = n*(2*ir + in); const int q_offset = 32*im + l0; const int y_offset = 64*im + l0; uint16_t aux[4]; const uint8_t * sc = (const uint8_t *)aux; __global const struct block_q4_K * x = xx + ib0; tmp[16 * ix + tid] = 0; for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) { __global const uint8_t * q1 = x[i].qs + q_offset; __global const uint8_t * q2 = q1 + 64; __global const float * y1 = yy + i*QK_K + y_offset; __global const float * y2 = y1 + 128; const float dall = vload_half(0, &x[i].d); const float dmin = vload_half(0, &x[i].dmin); __global const uint16_t * a = (__global const uint16_t *)x[i].scales; aux[0] = a[im+0] & kmask1; aux[1] = a[im+2] & kmask1; aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2); aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2); float4 s = (float4)(0.f); float smin = 0; for (int l = 0; l < n; ++l) { s.x += y1[l] * (q1[l] & 0xF); s.y += y1[l+32] * (q1[l] >> 4); s.z += y2[l] * (q2[l] & 0xF); s.w += y2[l+32] * (q2[l] >> 4); smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7]; } tmp[16 * ix + tid] += dall * (s.x * sc[0] + s.y * sc[1] + s.z * sc[4] + s.w * sc[5]) - dmin * smin; } // sum up partial sums and write back result barrier(CLK_LOCAL_MEM_FENCE); for (int s=16; s>0; s>>=1) { if (tid < s) { tmp[tid] += tmp[tid + s]; } barrier(CLK_LOCAL_MEM_FENCE); } if (tid == 0) { dst[row] = tmp[0]; } } __kernel void dequantize_mul_mat_vec_q5_K(__global const struct block_q5_K * xx, __local float* tmp, __global float* yy, __global float* dst, const int ncols) { const uint16_t kmask1 = 0x3f3f; const uint16_t kmask2 = 0x0f0f; const uint16_t kmask3 = 0xc0c0; const int row = get_group_id(0); const int num_blocks_per_row = ncols / QK_K; const int ib0 = row*num_blocks_per_row + get_global_offset(0); const int tid = get_local_id(0)/2; // 0...15 const int ix = get_local_id(0)%2; const int il = tid/4; // 0...3 const int ir = tid - 4*il;// 0...3 const int n = 2; const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224 const int in = il%2; const int l0 = n*(2*ir + in); const int q_offset = 32*im + l0; const int y_offset = 64*im + l0; const uint8_t hm1 = 1 << (2*im); const uint8_t hm2 = hm1 << 4; uint16_t aux[4]; const uint8_t * sc = (const uint8_t *)aux; __global const struct block_q5_K * x = xx + ib0; tmp[16 * ix + tid] = 0; for (int i = ix; i < num_blocks_per_row; i += 2) { __global const uint8_t * ql1 = x[i].qs + q_offset; __global const uint8_t * ql2 = ql1 + 64; __global const uint8_t * qh = x[i].qh + l0; __global const float * y1 = yy + i*QK_K + y_offset; __global const float * y2 = y1 + 128; const float dall = vload_half(0, &x[i].d); const float dmin = vload_half(0, &x[i].dmin); __global const uint16_t * a = (__global const uint16_t *)x[i].scales; aux[0] = a[im+0] & kmask1; aux[1] = a[im+2] & kmask1; aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2); aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2); float4 sum = (float4)(0.f); float smin = 0; for (int l = 0; l < n; ++l) { sum.x += y1[l+ 0] * ((ql1[l+ 0] & 0xF) + (qh[l+ 0] & (hm1 << 0) ? 16 : 0)) + y1[l+16] * ((ql1[l+16] & 0xF) + (qh[l+16] & (hm1 << 0) ? 16 : 0)); sum.y += y1[l+32] * ((ql1[l+ 0] >> 4) + (qh[l+ 0] & (hm1 << 1) ? 16 : 0)) + y1[l+48] * ((ql1[l+16] >> 4) + (qh[l+16] & (hm1 << 1) ? 16 : 0)); sum.z += y2[l+ 0] * ((ql2[l+ 0] & 0xF) + (qh[l+ 0] & (hm2 << 0) ? 16 : 0)) + y2[l+16] * ((ql2[l+16] & 0xF) + (qh[l+16] & (hm2 << 0) ? 16 : 0)); sum.w += y2[l+32] * ((ql2[l+ 0] >> 4) + (qh[l+ 0] & (hm2 << 1) ? 16 : 0)) + y2[l+48] * ((ql2[l+16] >> 4) + (qh[l+16] & (hm2 << 1) ? 16 : 0)); smin += (y1[l] + y1[l+16]) * sc[2] + (y1[l+32] + y1[l+48]) * sc[3] + (y2[l] + y2[l+16]) * sc[6] + (y2[l+32] + y2[l+48]) * sc[7]; } tmp[16 * ix + tid] += dall * (sum.x * sc[0] + sum.y * sc[1] + sum.z * sc[4] + sum.w * sc[5]) - dmin * smin; } // sum up partial sums and write back result barrier(CLK_LOCAL_MEM_FENCE); for (int s=16; s>0; s>>=1) { if (tid < s) { tmp[tid] += tmp[tid + s]; } barrier(CLK_LOCAL_MEM_FENCE); } if (tid == 0) { dst[row] = tmp[0]; } } __kernel void dequantize_mul_mat_vec_q6_K(__global const struct block_q6_K * xx, __local float* tmp, __global const float * yy, __global float * dst, const int ncols) { const int row = get_group_id(0); const int num_blocks_per_row = ncols / QK_K; const int ib0 = row*num_blocks_per_row + get_global_offset(0); __global const struct block_q6_K * x = xx + ib0; const int tid = get_local_id(0)/K_QUANTS_PER_ITERATION; // 0...31 or 0...16 const int ix = get_local_id(0)%K_QUANTS_PER_ITERATION; // 0 or 0, 1 const int step = 16/K_QUANTS_PER_ITERATION; // 16 or 8 const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128... const int in = tid - step*im; // 0...15 or 0...7 \n#if K_QUANTS_PER_ITERATION == 1\n const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15 const int is = 0; \n#else\n const int l0 = 4 * in; // 0, 4, 8, ..., 28 const int is = in / 4; \n#endif\n const int ql_offset = 64*im + l0; const int qh_offset = 32*im + l0; const int s_offset = 8*im + is; const int y_offset = 128*im + l0; tmp[16 * ix + tid] = 0; // partial sum for thread in warp for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) { __global const float * y = yy + i * QK_K + y_offset; __global const uint8_t * ql = x[i].ql + ql_offset; __global const uint8_t * qh = x[i].qh + qh_offset; __global const int8_t * s = x[i].scales + s_offset; const float d = vload_half(0, &x[i].d); \n#if K_QUANTS_PER_ITERATION == 1\n float sum = y[ 0] * s[0] * d * ((int8_t)((ql[ 0] & 0xF) | ((qh[ 0] & 0x03) << 4)) - 32) + y[16] * s[1] * d * ((int8_t)((ql[16] & 0xF) | ((qh[16] & 0x03) << 4)) - 32) + y[32] * s[2] * d * ((int8_t)((ql[32] & 0xF) | ((qh[ 0] & 0x0c) << 2)) - 32) + y[48] * s[3] * d * ((int8_t)((ql[48] & 0xF) | ((qh[16] & 0x0c) << 2)) - 32) + y[64] * s[4] * d * ((int8_t)((ql[ 0] >> 4) | ((qh[ 0] & 0x30) >> 0)) - 32) + y[80] * s[5] * d * ((int8_t)((ql[16] >> 4) | ((qh[16] & 0x30) >> 0)) - 32) + y[96] * s[6] * d * ((int8_t)((ql[32] >> 4) | ((qh[ 0] & 0xc0) >> 2)) - 32) +y[112] * s[7] * d * ((int8_t)((ql[48] >> 4) | ((qh[16] & 0xc0) >> 2)) - 32); tmp[16 * ix + tid] += sum; \n#else\n float sum = 0; for (int l = 0; l < 4; ++l) { sum += y[l+ 0] * s[0] * d * ((int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32) + y[l+32] * s[2] * d * ((int8_t)((ql[l+32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32) + y[l+64] * s[4] * d * ((int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32) + y[l+96] * s[6] * d * ((int8_t)((ql[l+32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32); } tmp[16 * ix + tid] += sum; \n#endif\n } // sum up partial sums and write back result barrier(CLK_LOCAL_MEM_FENCE); for (int s=16; s>0; s>>=1) { if (tid < s) { tmp[tid] += tmp[tid + s]; } barrier(CLK_LOCAL_MEM_FENCE); } if (tid == 0) { dst[row] = tmp[0]; } } ); std::string dequant_template = MULTILINE_QUOTE( __kernel void KERNEL_NAME(__global X_TYPE* x, __global float* y) { const int i = get_group_id(0)*get_local_size(0) + get_local_id(0)*2; if (i >= get_global_size(0)) { return; } const uint qk = QUANT_K; const uint qr = QUANT_R; const int ib = i/qk + get_global_offset(0); // block index const int iqs = (i%qk)/qr; // quant index const int iybs = i - i%qk; // y block start index const int y_offset = qr == 1 ? 1 : qk/2; // dequantize float v0, v1; DEQUANT_FUNC(x, ib, iqs, &v0, &v1); y[iybs + iqs + 0] = v0; y[iybs + iqs + y_offset] = v1; } ); std::string dequant_mul_mat_vec_template = MULTILINE_QUOTE( __kernel void KERNEL_NAME(__global X_TYPE* x, __local float* tmp, __global float* y, __global float* dst, const int ncols) { const int local_size = get_local_size(0); const int row = get_group_id(0); const int tid = get_local_id(0); const uint qk = QUANT_K; const uint qr = QUANT_R; const int col_step = local_size * 2; const int y_offset = qr == 1 ? 1 : qk/2; x += get_global_offset(0); tmp[tid] = 0; for (int col = tid*2; col < ncols; col += col_step) { const int ib = (row*ncols + col)/qk; // block index const int iqs = (col%qk)/qr; // quant index const int iybs = col - col%qk; // y block start index // dequantize float v0, v1; DEQUANT_FUNC(x, ib, iqs, &v0, &v1); // matrix multiplication tmp[tid] += v0 * y[iybs + iqs + 0]; tmp[tid] += v1 * y[iybs + iqs + y_offset]; } // sum up partial sums and write back result barrier(CLK_LOCAL_MEM_FENCE); for (int s=local_size/2; s>0; s>>=1) { if (tid < s) { tmp[tid] += tmp[tid + s]; } barrier(CLK_LOCAL_MEM_FENCE); } if (tid == 0) { dst[row] = tmp[0]; } } ); std::string mul_template = MULTILINE_QUOTE( __kernel void KERNEL_NAME(__global TYPE* x, const int x_offset, __global TYPE* y, const int y_offset, __global TYPE* dst, const int dst_offset, const int ky) { const int i = get_group_id(0)*get_local_size(0) + get_local_id(0); if (i >= get_global_size(0)) { return; } dst[dst_offset + i] = x[x_offset + i] * y[y_offset + i%ky]; } ); std::string add_template = MULTILINE_QUOTE( __kernel void add_f32(__global float * x, const int x_offset, __global float * y, const int y_offset, __global float * dst, const int dst_offset, const int ky) { const int i = get_group_id(0)*get_local_size(0) + get_local_id(0); if (i >= get_global_size(0)) { return; } dst[dst_offset + i] = x[x_offset + i] + y[y_offset + i%ky]; } ); #define CL_CHECK(err) \ do { \ cl_int err_ = (err); \ if (err_ != CL_SUCCESS) { \ fprintf(stderr, "ggml_opencl: %s error %d at %s:%d\n", \ #err, err_, __FILE__, __LINE__); \ exit(1); \ } \ } while (0) #define CLBLAST_CHECK(err) \ do { \ CLBlastStatusCode err_ = (err); \ if (err_ != CLBlastSuccess) { \ fprintf(stderr, "ggml_opencl: %s error %d at %s:%d\n", \ #err, err_, __FILE__, __LINE__); \ exit(1); \ } \ } while (0) std::array<std::string, 5> dequant_str_keys = { "KERNEL_NAME", "X_TYPE", "QUANT_K", "QUANT_R", "DEQUANT_FUNC" }; std::array<std::string, 30> dequant_str_values = { "dequantize_row_q4_0", "struct block_q4_0", "QK4_0", "QR4_0", "dequantize_q4_0", "dequantize_row_q4_1", "struct block_q4_1", "QK4_1", "QR4_1", "dequantize_q4_1", "dequantize_row_q5_0", "struct block_q5_0", "QK5_0", "QR5_0", "dequantize_q5_0", "dequantize_row_q5_1", "struct block_q5_1", "QK5_1", "QR5_1", "dequantize_q5_1", "dequantize_row_q8_0", "struct block_q8_0", "QK8_0", "QR8_0", "dequantize_q8_0", "convert_row_f16", "half", "1", "1", "convert_f16" }; std::array<std::string, 30> dequant_mul_mat_vec_str_values = { "dequantize_mul_mat_vec_q4_0", "struct block_q4_0", "QK4_0", "QR4_0", "dequantize_q4_0", "dequantize_mul_mat_vec_q4_1", "struct block_q4_1", "QK4_1", "QR4_1", "dequantize_q4_1", "dequantize_mul_mat_vec_q5_0", "struct block_q5_0", "QK5_0", "QR5_0", "dequantize_q5_0", "dequantize_mul_mat_vec_q5_1", "struct block_q5_1", "QK5_1", "QR5_1", "dequantize_q5_1", "dequantize_mul_mat_vec_q8_0", "struct block_q8_0", "QK8_0", "QR8_0", "dequantize_q8_0", "convert_mul_mat_vec_f16", "half", "1", "1", "convert_f16" }; std::array<std::string, 2> mul_str_keys = { "KERNEL_NAME", "TYPE" }; std::array<std::string, 2> mul_str_values = { "mul_f32", "float" }; static std::string& replace(std::string& s, const std::string& from, const std::string& to) { size_t pos = 0; while ((pos = s.find(from, pos)) != std::string::npos) { s.replace(pos, from.length(), to); pos += to.length(); } return s; } static std::string generate_kernels() { std::stringstream src; src << program_source << '\n'; src << k_quants_source << '\n'; for (size_t i = 0; i < dequant_str_values.size(); i += dequant_str_keys.size()) { std::string dequant_kernel = dequant_template; std::string dmmv_kernel = dequant_mul_mat_vec_template; for (size_t j = 0; j < dequant_str_keys.size(); j++) { replace(dequant_kernel, dequant_str_keys[j], dequant_str_values[i + j]); replace(dmmv_kernel, dequant_str_keys[j], dequant_mul_mat_vec_str_values[i + j]); } src << dequant_kernel << '\n'; src << dmmv_kernel << '\n'; } for (size_t i = 0; i < mul_str_values.size(); i += mul_str_keys.size()) { std::string mul_kernel = mul_template; for (size_t j = 0; j < mul_str_keys.size(); j++) { replace(mul_kernel, mul_str_keys[j], mul_str_values[i + j]); } src << mul_kernel << '\n'; } src << add_template << '\n'; return src.str(); } static cl_platform_id platform; static cl_device_id device; static cl_context context; static cl_command_queue queue; static cl_program program; static cl_kernel convert_row_f16_cl; static cl_kernel dequantize_row_q4_0_cl, dequantize_row_q4_1_cl, dequantize_row_q5_0_cl, dequantize_row_q5_1_cl, dequantize_row_q8_0_cl; static cl_kernel dequantize_mul_mat_vec_q4_0_cl, dequantize_mul_mat_vec_q4_1_cl, dequantize_mul_mat_vec_q5_0_cl, dequantize_mul_mat_vec_q5_1_cl, dequantize_mul_mat_vec_q8_0_cl, convert_mul_mat_vec_f16_cl; static cl_kernel dequantize_block_q2_k_cl, dequantize_block_q3_k_cl, dequantize_block_q4_k_cl, dequantize_block_q5_k_cl, dequantize_block_q6_k_cl; static cl_kernel dequantize_mul_mat_vec_q2_K_cl, dequantize_mul_mat_vec_q3_K_cl, dequantize_mul_mat_vec_q4_K_cl, dequantize_mul_mat_vec_q5_K_cl, dequantize_mul_mat_vec_q6_K_cl; static cl_kernel mul_f32_cl; static cl_kernel add_f32_cl; static bool fp16_support; static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer) { cl_program p; char *program_log; size_t program_size; size_t log_size; int err; program_size = strlen(program_buffer); p = clCreateProgramWithSource(ctx, 1, (const char**)&program_buffer, &program_size, &err); if(err < 0) { fprintf(stderr, "OpenCL error creating program"); exit(1); } std::string compile_opts = "-cl-mad-enable -cl-unsafe-math-optimizations -cl-finite-math-only -cl-fast-relaxed-math " "-DQK4_0=32 -DQR4_0=2 -DQK4_1=32 -DQR4_1=2 -DQK5_0=32 -DQR5_0=2 -DQK5_1=32 -DQR5_1=2 -DQK8_0=32 -DQR8_0=1 " "-DQK_K=256 -DK_QUANTS_PER_ITERATION=" + std::to_string(K_QUANTS_PER_ITERATION); err = clBuildProgram(p, 0, NULL, compile_opts.c_str(), NULL, NULL); if(err < 0) { clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size); program_log = (char*) malloc(log_size + 1); program_log[log_size] = '\0'; clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, log_size + 1, program_log, NULL); fprintf(stderr, "ggml_opencl: kernel compile error:\n\n%s\n", program_log); free(program_log); exit(1); } return p; } void ggml_cl_init(void) { static bool initialized = false; if (initialized) { return; } initialized = true; cl_int err; struct cl_device; struct cl_platform { cl_platform_id id; unsigned number; char name[128]; char vendor[128]; struct cl_device * devices; unsigned n_devices; struct cl_device * default_device; }; struct cl_device { struct cl_platform * platform; cl_device_id id; unsigned number; cl_device_type type; char name[128]; }; enum { NPLAT = 16, NDEV = 16 }; struct cl_platform platforms[NPLAT]; unsigned n_platforms = 0; struct cl_device devices[NDEV]; unsigned n_devices = 0; struct cl_device * default_device = NULL; platform = NULL; device = NULL; cl_platform_id platform_ids[NPLAT]; CL_CHECK(clGetPlatformIDs(NPLAT, platform_ids, &n_platforms)); for (unsigned i = 0; i < n_platforms; i++) { struct cl_platform * p = &platforms[i]; p->number = i; p->id = platform_ids[i]; CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_NAME, sizeof(p->name), &p->name, NULL)); CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_VENDOR, sizeof(p->vendor), &p->vendor, NULL)); cl_device_id device_ids[NDEV]; cl_int clGetDeviceIDsError = clGetDeviceIDs(p->id, CL_DEVICE_TYPE_ALL, NDEV, device_ids, &p->n_devices); if (clGetDeviceIDsError == CL_DEVICE_NOT_FOUND) { p->n_devices = 0; } else { CL_CHECK(clGetDeviceIDsError); } p->devices = p->n_devices > 0 ? &devices[n_devices] : NULL; p->default_device = NULL; for (unsigned j = 0; j < p->n_devices; j++) { struct cl_device * d = &devices[n_devices]; d->number = n_devices++; d->id = device_ids[j]; d->platform = p; CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_NAME, sizeof(d->name), &d->name, NULL)); CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_TYPE, sizeof(d->type), &d->type, NULL)); if (p->default_device == NULL && d->type == CL_DEVICE_TYPE_GPU) { p->default_device = d; } } if (default_device == NULL && p->default_device != NULL) { default_device = p->default_device; } } if (n_devices == 0) { fprintf(stderr, "ggml_opencl: could find any OpenCL devices.\n"); exit(1); } char * user_platform_string = getenv("GGML_OPENCL_PLATFORM"); char * user_device_string = getenv("GGML_OPENCL_DEVICE"); int user_platform_number = -1; int user_device_number = -1; unsigned n; if (user_platform_string != NULL && sscanf(user_platform_string, " %u", &n) == 1 && n < n_platforms) { user_platform_number = (int)n; } if (user_device_string != NULL && sscanf(user_device_string, " %u", &n) == 1 && n < n_devices) { user_device_number = (int)n; } if (user_platform_number != -1 && user_device_number != -1) { cl_platform* platform = &platforms[user_platform_number]; if ((unsigned)user_device_number >= platform->n_devices) { fprintf(stderr, "ggml_opencl: invalid device number %d\n", user_device_number); exit(1); } default_device = &platform->devices[user_device_number]; } else { struct cl_device * selected_devices = devices; unsigned n_selected_devices = n_devices; if (user_platform_number == -1 && user_platform_string != NULL && user_platform_string[0] != 0) { for (unsigned i = 0; i < n_platforms; i++) { struct cl_platform * p = &platforms[i]; if (strstr(p->name, user_platform_string) != NULL || strstr(p->vendor, user_platform_string) != NULL) { user_platform_number = (int)i; break; } } if (user_platform_number == -1) { fprintf(stderr, "ggml_opencl: no platform matching '%s' was found.\n", user_platform_string); exit(1); } } if (user_platform_number != -1) { struct cl_platform * p = &platforms[user_platform_number]; selected_devices = p->devices; n_selected_devices = p->n_devices; default_device = p->default_device; if (n_selected_devices == 0) { fprintf(stderr, "ggml_opencl: selected platform '%s' does not have any devices.\n", p->name); exit(1); } } if (user_device_number == -1 && user_device_string != NULL && user_device_string[0] != 0) { for (unsigned i = 0; i < n_selected_devices; i++) { struct cl_device * d = &selected_devices[i]; if (strstr(d->name, user_device_string) != NULL) { user_device_number = d->number; break; } } if (user_device_number == -1) { fprintf(stderr, "ggml_opencl: no device matching '%s' was found.\n", user_device_string); exit(1); } } if (user_device_number != -1) { selected_devices = &devices[user_device_number]; n_selected_devices = 1; default_device = &selected_devices[0]; } GGML_ASSERT(n_selected_devices > 0); if (default_device == NULL) { default_device = &selected_devices[0]; } } fprintf(stderr, "ggml_opencl: selecting platform: '%s'\n", default_device->platform->name); fprintf(stderr, "ggml_opencl: selecting device: '%s'\n", default_device->name); if (default_device->type != CL_DEVICE_TYPE_GPU) { fprintf(stderr, "ggml_opencl: warning, not a GPU: '%s'.\n", default_device->name); } platform = default_device->platform->id; device = default_device->id; size_t ext_str_size; clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, 0, NULL, &ext_str_size); char *ext_buffer = (char *)alloca(ext_str_size + 1); clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, ext_str_size, ext_buffer, NULL); ext_buffer[ext_str_size] = '\0'; // ensure it is null terminated // Disabled due to faulty outputs // Check if ext_buffer contains cl_khr_fp16 fp16_support = false; // strstr(ext_buffer, "cl_khr_fp16") != NULL; // fprintf(stderr, "ggml_opencl: device FP16 support: %s\n", fp16_support ? "true" : "false"); cl_context_properties properties[] = { (intptr_t)CL_CONTEXT_PLATFORM, (intptr_t)platform, 0 }; CL_CHECK((context = clCreateContext(properties, 1, &device, NULL, NULL, &err), err)); CL_CHECK((queue = clCreateCommandQueue(context, device, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err), (err != CL_INVALID_QUEUE_PROPERTIES && err != CL_INVALID_VALUE ? err : (queue = clCreateCommandQueue(context, device, 0, &err), err) ))); const std::string kernel_src = generate_kernels(); program = build_program_from_source(context, device, kernel_src.c_str()); // FP16 to FP32 kernel CL_CHECK((convert_row_f16_cl = clCreateKernel(program, "convert_row_f16", &err), err)); // Dequantize kernels CL_CHECK((dequantize_row_q4_0_cl = clCreateKernel(program, "dequantize_row_q4_0", &err), err)); CL_CHECK((dequantize_row_q4_1_cl = clCreateKernel(program, "dequantize_row_q4_1", &err), err)); CL_CHECK((dequantize_row_q5_0_cl = clCreateKernel(program, "dequantize_row_q5_0", &err), err)); CL_CHECK((dequantize_row_q5_1_cl = clCreateKernel(program, "dequantize_row_q5_1", &err), err)); CL_CHECK((dequantize_row_q8_0_cl = clCreateKernel(program, "dequantize_row_q8_0", &err), err)); CL_CHECK((dequantize_row_q8_0_cl = clCreateKernel(program, "dequantize_row_q8_0", &err), err)); CL_CHECK((dequantize_block_q2_k_cl = clCreateKernel(program, "dequantize_block_q2_K", &err), err)); CL_CHECK((dequantize_block_q3_k_cl = clCreateKernel(program, "dequantize_block_q3_K", &err), err)); CL_CHECK((dequantize_block_q4_k_cl = clCreateKernel(program, "dequantize_block_q4_K", &err), err)); CL_CHECK((dequantize_block_q5_k_cl = clCreateKernel(program, "dequantize_block_q5_K", &err), err)); CL_CHECK((dequantize_block_q6_k_cl = clCreateKernel(program, "dequantize_block_q6_K", &err), err)); // dequant mul mat kernel CL_CHECK((dequantize_mul_mat_vec_q4_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_0", &err), err)); CL_CHECK((dequantize_mul_mat_vec_q4_1_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_1", &err), err)); CL_CHECK((dequantize_mul_mat_vec_q5_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_0", &err), err)); CL_CHECK((dequantize_mul_mat_vec_q5_1_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_1", &err), err)); CL_CHECK((dequantize_mul_mat_vec_q8_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q8_0", &err), err)); CL_CHECK((convert_mul_mat_vec_f16_cl = clCreateKernel(program, "convert_mul_mat_vec_f16", &err), err)); CL_CHECK((dequantize_mul_mat_vec_q2_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q2_K", &err), err)); CL_CHECK((dequantize_mul_mat_vec_q3_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q3_K", &err), err)); CL_CHECK((dequantize_mul_mat_vec_q4_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_K", &err), err)); CL_CHECK((dequantize_mul_mat_vec_q5_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_K", &err), err)); CL_CHECK((dequantize_mul_mat_vec_q6_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q6_K", &err), err)); // mul kernel CL_CHECK((mul_f32_cl = clCreateKernel(program, "mul_f32", &err), err)); CL_CHECK((add_f32_cl = clCreateKernel(program, "add_f32", &err), err)); } static cl_kernel* ggml_get_to_fp32_cl(ggml_type type) { switch (type) { case GGML_TYPE_Q4_0: return &dequantize_row_q4_0_cl; case GGML_TYPE_Q4_1: return &dequantize_row_q4_1_cl; case GGML_TYPE_Q5_0: return &dequantize_row_q5_0_cl; case GGML_TYPE_Q5_1: return &dequantize_row_q5_1_cl; case GGML_TYPE_Q8_0: return &dequantize_row_q8_0_cl; case GGML_TYPE_Q2_K: return &dequantize_block_q2_k_cl; case GGML_TYPE_Q3_K: return &dequantize_block_q3_k_cl; case GGML_TYPE_Q4_K: return &dequantize_block_q4_k_cl; case GGML_TYPE_Q5_K: return &dequantize_block_q5_k_cl; case GGML_TYPE_Q6_K: return &dequantize_block_q6_k_cl; case GGML_TYPE_F16: return &convert_row_f16_cl; default: return nullptr; } } static size_t ggml_cl_global_denom(ggml_type type) { switch (type) { case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: case GGML_TYPE_Q5_0: case GGML_TYPE_Q5_1: case GGML_TYPE_Q8_0: return 1; case GGML_TYPE_Q2_K: case GGML_TYPE_Q3_K: return 4; case GGML_TYPE_Q4_K: return 8; case GGML_TYPE_Q5_K: case GGML_TYPE_Q6_K: return 4; case GGML_TYPE_F16: default: return 1; } } static size_t ggml_cl_local_size(ggml_type type) { switch (type) { case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: case GGML_TYPE_Q5_0: case GGML_TYPE_Q5_1: case GGML_TYPE_Q8_0: return 0; case GGML_TYPE_Q2_K: case GGML_TYPE_Q3_K: return 64; case GGML_TYPE_Q4_K: return 32; case GGML_TYPE_Q5_K: case GGML_TYPE_Q6_K: return 64; case GGML_TYPE_F16: default: return 0; } } static cl_kernel* ggml_get_dequantize_mul_mat_vec_cl(ggml_type type) { switch (type) { case GGML_TYPE_Q4_0: return &dequantize_mul_mat_vec_q4_0_cl; case GGML_TYPE_Q4_1: return &dequantize_mul_mat_vec_q4_1_cl; case GGML_TYPE_Q5_0: return &dequantize_mul_mat_vec_q5_0_cl; case GGML_TYPE_Q5_1: return &dequantize_mul_mat_vec_q5_1_cl; case GGML_TYPE_Q8_0: return &dequantize_mul_mat_vec_q8_0_cl; case GGML_TYPE_F16: return &convert_mul_mat_vec_f16_cl; case GGML_TYPE_Q2_K: return &dequantize_mul_mat_vec_q2_K_cl; case GGML_TYPE_Q3_K: return &dequantize_mul_mat_vec_q3_K_cl; case GGML_TYPE_Q4_K: return &dequantize_mul_mat_vec_q4_K_cl; case GGML_TYPE_Q5_K: return &dequantize_mul_mat_vec_q5_K_cl; case GGML_TYPE_Q6_K: return &dequantize_mul_mat_vec_q6_K_cl; default: return nullptr; } } // buffer pool for cl #define MAX_CL_BUFFERS 256 struct scoped_spin_lock { std::atomic_flag& lock; scoped_spin_lock(std::atomic_flag& lock) : lock(lock) { while (lock.test_and_set(std::memory_order_acquire)) { ; // spin } } ~scoped_spin_lock() { lock.clear(std::memory_order_release); } scoped_spin_lock(const scoped_spin_lock&) = delete; scoped_spin_lock& operator=(const scoped_spin_lock&) = delete; }; struct cl_buffer { cl_mem mem; size_t size = 0; }; static cl_buffer g_cl_buffer_pool[MAX_CL_BUFFERS]; static std::atomic_flag g_cl_pool_lock = ATOMIC_FLAG_INIT; static cl_mem ggml_cl_pool_malloc(size_t size, size_t * actual_size) { scoped_spin_lock lock(g_cl_pool_lock); cl_int err; int best_i = -1; size_t best_size = std::numeric_limits<size_t>::max(); //smallest unused buffer that fits our needs int worst_i = -1; size_t worst_size = 0; //largest unused buffer seen so far for (int i = 0; i < MAX_CL_BUFFERS; ++i) { cl_buffer &b = g_cl_buffer_pool[i]; if (b.size > 0 && b.size >= size && b.size < best_size) { best_i = i; best_size = b.size; } if (b.size > 0 && b.size > worst_size) { worst_i = i; worst_size = b.size; } } if(best_i!=-1) //found the smallest buffer that fits our needs { cl_buffer& b = g_cl_buffer_pool[best_i]; cl_mem mem = b.mem; *actual_size = b.size; b.size = 0; return mem; } if(worst_i!=-1) //no buffer that fits our needs, resize largest one to save memory { cl_buffer& b = g_cl_buffer_pool[worst_i]; cl_mem mem = b.mem; b.size = 0; clReleaseMemObject(mem); } cl_mem mem; CL_CHECK((mem = clCreateBuffer(context, CL_MEM_READ_WRITE, size, NULL, &err), err)); *actual_size = size; return mem; } static void ggml_cl_pool_free(cl_mem mem, size_t size) { scoped_spin_lock lock(g_cl_pool_lock); for (int i = 0; i < MAX_CL_BUFFERS; ++i) { cl_buffer& b = g_cl_buffer_pool[i]; if (b.size == 0) { b.mem = mem; b.size = size; return; } } fprintf(stderr, "WARNING: cl buffer pool full, increase MAX_CL_BUFFERS\n"); clReleaseMemObject(mem); } void ggml_cl_free_data(const struct ggml_tensor* tensor) { if (tensor->backend != GGML_BACKEND_TYPE_GPU) { return; } cl_mem mem = (cl_mem)tensor->extra; clReleaseMemObject(mem); } static cl_int ggml_cl_h2d_tensor_2d(cl_command_queue queue, cl_mem dst, size_t offset, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, cl_event* ev) { cl_int err; const uint64_t ne0 = src->ne[0]; const uint64_t ne1 = src->ne[1]; const uint64_t nb0 = src->nb[0]; const uint64_t nb1 = src->nb[1]; const uint64_t nb2 = src->nb[2]; const uint64_t nb3 = src->nb[3]; const enum ggml_type type = src->type; const size_t ts = ggml_type_size(type); const size_t bs = ggml_blck_size(type); const uint64_t row_size = ts*ne0/bs; const char * x = (const char *) src->data + i2*nb2 + i3*nb3; if (nb0 == ts && nb1 == row_size) { return clEnqueueWriteBuffer(queue, dst, CL_FALSE, offset, ne1*row_size, x, 0, NULL, ev); } if (nb0 == ts) { const size_t buffer_origin[3] = { offset, 0, 0 }; const size_t host_origin[3] = { 0, 0, 0 }; const size_t region[3] = { row_size, ne1, 1 }; return clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, row_size, 0, nb1, 0, x, 0, NULL, ev); } std::vector<cl_event> events; if (ev && ne1>1) events.reserve(ne1-1); for (uint64_t i1 = 0; i1 < ne1; i1++) { // pretend the row is a matrix with cols=1 const size_t buffer_origin[3] = { offset + i1*row_size, 0, 0 }; const size_t host_origin[3] = { 0, 0, 0 }; const size_t region[3] = { ts, ne0/bs, 1 }; // if an event is requested, make the last write wait for all previous writes to complete if (ev && i1) { events.push_back(*ev); } cl_uint nevents = i1 == ne1-1 ? events.size() : 0U; err = clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, ts, 0, nb0, 0, x + i1*nb1, nevents, nevents ? events.data() : nullptr, ev); if (err != CL_SUCCESS) { for (auto event : events) { clReleaseEvent(event); } return err; } } for (auto event : events) { CL_CHECK(clReleaseEvent(event)); } return CL_SUCCESS; } static void ggml_cl_mul_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { GGML_ASSERT(src1->backend == GGML_BACKEND_TYPE_GPU); const int64_t ne00 = src0->ne[0]; const int64_t ne01 = src0->ne[1]; const int64_t ne02 = src0->ne[2]; const int64_t ne03 = src0->ne[3]; const int64_t ne10 = src1->ne[0]; const int64_t ne11 = src1->ne[1]; const int64_t ne12 = src1->ne[2]; const int64_t ne13 = src1->ne[3]; const int nb2 = dst->nb[2]; const int nb3 = dst->nb[3]; size_t x_size; size_t d_size; cl_mem d_X = ggml_cl_pool_malloc(ne00 * ne01 * sizeof(float), &x_size); // src0 cl_mem d_Y = (cl_mem) src1->extra; // src1 is already on device, broadcasted. cl_mem d_D = ggml_cl_pool_malloc(ne00 * ne01 * sizeof(float), &d_size); // dst for (int64_t i03 = 0; i03 < ne03; i03++) { for (int64_t i02 = 0; i02 < ne02; i02++) { cl_event ev; // copy src0 to device CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, &ev)); const int64_t i13 = i03%ne13; const int64_t i12 = i02%ne12; const int i1 = i13*ne12*ne11 + i12*ne11; cl_int x_offset = 0; cl_int y_offset = i1*ne10; cl_int d_offset = 0; size_t global = ne00 * ne01; cl_int ky = ne10 * ne11; CL_CHECK(clSetKernelArg(mul_f32_cl, 0, sizeof(cl_mem), &d_X)); CL_CHECK(clSetKernelArg(mul_f32_cl, 1, sizeof(cl_int), &x_offset)); CL_CHECK(clSetKernelArg(mul_f32_cl, 2, sizeof(cl_mem), &d_Y)); CL_CHECK(clSetKernelArg(mul_f32_cl, 3, sizeof(cl_int), &y_offset)); CL_CHECK(clSetKernelArg(mul_f32_cl, 4, sizeof(cl_mem), &d_D)); CL_CHECK(clSetKernelArg(mul_f32_cl, 5, sizeof(cl_int), &d_offset)); CL_CHECK(clSetKernelArg(mul_f32_cl, 6, sizeof(cl_int), &ky)); CL_CHECK(clEnqueueNDRangeKernel(queue, mul_f32_cl, 1, NULL, &global, NULL, 1, &ev, NULL)); CL_CHECK(clReleaseEvent(ev)); CL_CHECK(clFinish(queue)); // copy dst to host float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * ne00*ne01, d, 0, NULL, NULL)); } } ggml_cl_pool_free(d_X, x_size); ggml_cl_pool_free(d_D, d_size); } void ggml_cl_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) { GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32); ggml_cl_mul_f32(src0, src1, dst); } static void ggml_cl_add_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { GGML_ASSERT(src1->backend == GGML_BACKEND_TYPE_GPU); const int64_t ne00 = src0->ne[0]; const int64_t ne01 = src0->ne[1]; const int64_t ne02 = src0->ne[2]; const int64_t ne03 = src0->ne[3]; const int64_t ne10 = src1->ne[0]; const int64_t ne11 = src1->ne[1]; const int64_t ne12 = src1->ne[2]; const int64_t ne13 = src1->ne[3]; const int nb2 = dst->nb[2]; const int nb3 = dst->nb[3]; size_t x_size; size_t d_size; cl_mem d_X = ggml_cl_pool_malloc(ne00 * ne01 * sizeof(float), &x_size); // src0 cl_mem d_Y = (cl_mem) src1->extra; // src1 is already on device, broadcasted. cl_mem d_D = ggml_cl_pool_malloc(ne00 * ne01 * sizeof(float), &d_size); // dst for (int64_t i03 = 0; i03 < ne03; i03++) { for (int64_t i02 = 0; i02 < ne02; i02++) { cl_event ev; // copy src0 to device CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, &ev)); const int64_t i13 = i03%ne13; const int64_t i12 = i02%ne12; const int i1 = i13*ne12*ne11 + i12*ne11; cl_int x_offset = 0; cl_int y_offset = i1*ne10; cl_int d_offset = 0; size_t global = ne00 * ne01; cl_int ky = ne10 * ne11; CL_CHECK(clSetKernelArg(add_f32_cl, 0, sizeof(cl_mem), &d_X)); CL_CHECK(clSetKernelArg(add_f32_cl, 1, sizeof(cl_int), &x_offset)); CL_CHECK(clSetKernelArg(add_f32_cl, 2, sizeof(cl_mem), &d_Y)); CL_CHECK(clSetKernelArg(add_f32_cl, 3, sizeof(cl_int), &y_offset)); CL_CHECK(clSetKernelArg(add_f32_cl, 4, sizeof(cl_mem), &d_D)); CL_CHECK(clSetKernelArg(add_f32_cl, 5, sizeof(cl_int), &d_offset)); CL_CHECK(clSetKernelArg(add_f32_cl, 6, sizeof(cl_int), &ky)); CL_CHECK(clEnqueueNDRangeKernel(queue, add_f32_cl, 1, NULL, &global, NULL, 1, &ev, NULL)); CL_CHECK(clReleaseEvent(ev)); CL_CHECK(clFinish(queue)); // copy dst to host float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * ne00*ne01, d, 0, NULL, NULL)); } } ggml_cl_pool_free(d_X, x_size); ggml_cl_pool_free(d_D, d_size); } void ggml_cl_add(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) { GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32); ggml_cl_add_f32(src0, src1, dst); } static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { const int64_t ne00 = src0->ne[0]; const int64_t ne01 = src0->ne[1]; const int64_t ne02 = src0->ne[2]; const int64_t ne03 = src0->ne[3]; const int64_t ne10 = src1->ne[0]; const int64_t ne11 = src1->ne[1]; const int64_t ne12 = src1->ne[2]; const int64_t ne13 = src1->ne[3]; const int nb2 = dst->nb[2]; const int nb3 = dst->nb[3]; const int64_t r2 = ne12 / ne02; const int64_t r3 = ne13 / ne03; const float alpha = 1.0f; const float beta = 0.0f; const int x_ne = ne01 * ne00; const int y_ne = ne11 * ne10; const int d_ne = ne11 * ne01; size_t x_size; size_t y_size; size_t d_size; cl_mem d_X; if (src0->backend == GGML_BACKEND_TYPE_GPU) { // NOLINT d_X = (cl_mem) src0->extra; } else { d_X = ggml_cl_pool_malloc(sizeof(float) * x_ne, &x_size); } cl_mem d_Y = src1->backend == GGML_BACKEND_TYPE_GPU ? (cl_mem) src1->extra : ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size); cl_mem d_D = dst->backend == GGML_BACKEND_TYPE_GPU ? (cl_mem) dst->extra : ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size); size_t x_offset = 0; for (int64_t i03 = 0; i03 < ne03; i03++) { // TODO: copy src0 here when r3>1 for (int64_t i13 = i03 * r3, e13 = i13 + r3; i13 < e13; i13++) { for (int64_t i02 = 0; i02 < ne02; i02++) { if (src0->backend == GGML_BACKEND_TYPE_GPU) { x_offset = (i03 * ne02 + i02) * x_ne; } else { // copy src0 to device CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL)); } for (int64_t i12 = i02 * r2, e12 = i12 + r2; i12 < e12; i12++) { // copy src1 to device if (src1->backend == GGML_BACKEND_TYPE_CPU) { CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, NULL)); } CL_CHECK(clFinish(queue)); // compute cl_event ev_sgemm; clblast::StatusCode status = clblast::Gemm<cl_float>(clblast::Layout::kColMajor, clblast::Transpose::kYes, clblast::Transpose::kNo, ne01, ne11, ne10, alpha, d_X, x_offset, ne00, d_Y, 0, ne10, beta, d_D, 0, ne01, &queue, &ev_sgemm); if (status != clblast::StatusCode::kSuccess) { GGML_ASSERT(false); } // copy dst to host if (dst->backend == GGML_BACKEND_TYPE_CPU) { float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3); CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL)); } } } } } if (src0->backend != GGML_BACKEND_TYPE_GPU) { ggml_cl_pool_free(d_X, x_size); } if (src1->backend != GGML_BACKEND_TYPE_GPU) { ggml_cl_pool_free(d_Y, y_size); } if (dst->backend != GGML_BACKEND_TYPE_GPU) { ggml_cl_pool_free(d_D, d_size); } } static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t wsize) { GGML_ASSERT(fp16_support); const int64_t ne00 = src0->ne[0]; const int64_t ne01 = src0->ne[1]; const int64_t ne02 = src0->ne[2]; const int64_t ne03 = src0->ne[3]; const int64_t ne10 = src1->ne[0]; const int64_t ne11 = src1->ne[1]; const int64_t ne12 = src1->ne[2]; const int64_t ne13 = src1->ne[3]; const int nb10 = src1->nb[0]; const int nb11 = src1->nb[1]; const int nb12 = src1->nb[2]; const int nb13 = src1->nb[3]; const int nb2 = dst->nb[2]; const int nb3 = dst->nb[3]; const int64_t r2 = ne12 / ne02; const int64_t r3 = ne13 / ne03; const ggml_fp16_t alpha = ggml_fp32_to_fp16(1.0f); const ggml_fp16_t beta = ggml_fp32_to_fp16(0.0f); const int x_ne = ne01 * ne00; const int y_ne = ne11 * ne10; const int d_ne = ne11 * ne01; GGML_ASSERT(wsize >= sizeof(ggml_fp16_t) * y_ne); GGML_ASSERT(wsize >= sizeof(ggml_fp16_t) * d_ne); ggml_fp16_t * const tmp = (ggml_fp16_t *) wdata; size_t x_size; size_t y_size; size_t d_size; cl_mem d_X; if (src0->backend == GGML_BACKEND_TYPE_GPU) { // NOLINT d_X = (cl_mem) src0->extra; } else { d_X = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &x_size); } cl_mem d_Y = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * y_ne, &y_size); cl_mem d_D = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * d_ne, &d_size); bool src1_cont_rows = nb10 == sizeof(float); bool src1_cont_cols = (size_t)nb11 == ne11*sizeof(float); size_t x_offset = 0; for (int64_t i03 = 0; i03 < ne03; i03++) { // TODO: copy src0 here when r3>1 for (int64_t i13 = i03 * r3, e13 = i13 + r3; i13 < e13; i13++) { for (int64_t i02 = 0; i02 < ne02; i02++) { if (src0->backend == GGML_BACKEND_TYPE_GPU) { x_offset = (i03 * ne02 + i02) * x_ne; } else { // copy src0 to device CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL)); } // FIXME: convert on device for (int64_t i12 = i02 * r2, e12 = i12 + r2; i12 < e12; i12++) { // convert src1 to fp16 // TODO: use multiple threads char * src1i = (char *) src1->data + i13*nb13 + i12*nb12; if (src1_cont_rows) { if (src1_cont_cols) { ggml_fp32_to_fp16_row((float *) src1i, tmp, ne10*ne11); } else { for (int64_t i11 = 0; i11 < ne11; i11++) { ggml_fp32_to_fp16_row((float *) (src1i + i11*nb11), tmp + i11*ne10, ne10); } } } else { for (int64_t i11 = 0; i11 < ne11; i11++) { for (int64_t i10 = 0; i10 < ne10; i10++) { // very slow due to no inlining tmp[i11*ne10 + i10] = ggml_fp32_to_fp16(*(float *) (src1i + i11*nb11 + i10*nb10)); } } } // copy src1 to device CL_CHECK(clEnqueueWriteBuffer(queue, d_Y, false, 0, sizeof(ggml_fp16_t) * y_ne, tmp, 0, NULL, NULL)); CL_CHECK(clFinish(queue)); // compute cl_event ev_sgemm; clblast::StatusCode status = clblast::Gemm<cl_half>(clblast::Layout::kColMajor, clblast::Transpose::kYes, clblast::Transpose::kNo, ne01, ne11, ne10, alpha, d_X, x_offset, ne00, d_Y, 0, ne10, beta, d_D, 0, ne01, &queue, &ev_sgemm); if (status != clblast::StatusCode::kSuccess) { GGML_ASSERT(false); } // copy dst to host, then convert to float if (dst->backend == GGML_BACKEND_TYPE_CPU) { CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(ggml_fp16_t) * d_ne, tmp, 1, &ev_sgemm, NULL)); float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3); ggml_fp16_to_fp32_row(tmp, d, d_ne); } else { // FIXME: convert dst to fp32 on device } } } } } if (src0->backend != GGML_BACKEND_TYPE_GPU) { ggml_cl_pool_free(d_X, x_size); } ggml_cl_pool_free(d_Y, y_size); ggml_cl_pool_free(d_D, d_size); } static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { const int64_t ne00 = src0->ne[0]; const int64_t ne01 = src0->ne[1]; const int64_t ne02 = src0->ne[2]; const int64_t ne03 = src0->ne[3]; const int64_t ne10 = src1->ne[0]; const int64_t ne11 = src1->ne[1]; const int64_t ne12 = src1->ne[2]; const int64_t ne13 = src1->ne[3]; const int nb2 = dst->nb[2]; const int nb3 = dst->nb[3]; const ggml_type type = src0->type; const bool mul_mat_vec = ne11 == 1 && ne00%2 == 0; const int64_t r2 = ne12 / ne02; const int64_t r3 = ne13 / ne03; const float alpha = 1.0f; const float beta = 0.0f; const int x_ne = ne01 * ne00; const int y_ne = ne11 * ne10; const int d_ne = ne11 * ne01; const int x_bps = x_ne / ggml_blck_size(type); // blocks per 2D slice const size_t q_sz = ggml_type_size(type) * x_bps; size_t x_size; size_t y_size; size_t d_size; size_t q_size; cl_mem d_X; if (!mul_mat_vec) { d_X = ggml_cl_pool_malloc(sizeof(float) * x_ne, &x_size); } cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size); cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size); cl_mem d_Q; if (src0->backend == GGML_BACKEND_TYPE_CPU) { d_Q = ggml_cl_pool_malloc(q_sz, &q_size); } cl_kernel* to_fp32_cl = ggml_get_to_fp32_cl(type); cl_kernel* dmmv = ggml_get_dequantize_mul_mat_vec_cl(type); GGML_ASSERT(to_fp32_cl != nullptr); const size_t global_denom = ggml_cl_global_denom(type); const size_t local = mul_mat_vec ? CL_DMMV_LOCAL_SIZE : ggml_cl_local_size(type); size_t ev_idx = 0; std::vector<cl_event> events; for (int64_t i03 = 0; i03 < ne03; i03++) { // TODO: copy and dequantize src0 here when r3>1 for (int64_t i13 = i03 * r3, e13 = i13 + r3; i13 < e13; i13++) { for (int64_t i02 = 0; i02 < ne02; i02++) { // copy src0 to device if necessary if (src0->backend == GGML_BACKEND_TYPE_CPU) { events.emplace_back(); CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, events.data() + ev_idx++)); } else if (src0->backend == GGML_BACKEND_TYPE_GPU) { d_Q = (cl_mem) src0->extra; } else { GGML_ASSERT(false); } if (!mul_mat_vec) { // convert src0 to fp32 on device const size_t global = x_ne / global_denom; const size_t offset = src0->backend == GGML_BACKEND_TYPE_GPU ? (i03 * ne02 + i02) * x_bps : 0; CL_CHECK(clSetKernelArg(*to_fp32_cl, 0, sizeof(cl_mem), &d_Q)); CL_CHECK(clSetKernelArg(*to_fp32_cl, 1, sizeof(cl_mem), &d_X)); CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, &offset, &global, local > 0 ? &local : NULL, events.size(), !events.empty() ? events.data() : NULL, NULL)); } int64_t i12 = i02 * r2; int64_t e12 = i12 + r2; events.reserve(e12 - i12); for (; i12 < e12; i12++) { if (mul_mat_vec) { // specialized dequantize_mul_mat_vec kernel // copy src1 to device events.emplace_back(); CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, events.data() + ev_idx++)); // compute const size_t global = ne01 * local; const size_t offset = src0->backend == GGML_BACKEND_TYPE_GPU ? (i03 * ne02 + i02) * x_bps : 0; const cl_int ncols = ne00; events.emplace_back(); CL_CHECK(clSetKernelArg(*dmmv, 0, sizeof(cl_mem), &d_Q)); CL_CHECK(clSetKernelArg(*dmmv, 1, sizeof(float) * local, NULL)); CL_CHECK(clSetKernelArg(*dmmv, 2, sizeof(cl_mem), &d_Y)); CL_CHECK(clSetKernelArg(*dmmv, 3, sizeof(cl_mem), &d_D)); CL_CHECK(clSetKernelArg(*dmmv, 4, sizeof(cl_int), &ncols)); CL_CHECK(clEnqueueNDRangeKernel(queue, *dmmv, 1, &offset, &global, &local, events.size() - 1, events.data(), events.data() + ev_idx++)); } else { // CLBlast matrix matrix multiplication // copy src1 to device CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, NULL)); // wait for conversion CL_CHECK(clFinish(queue)); // compute events.emplace_back(); clblast::StatusCode status = clblast::Gemm<cl_float>(clblast::Layout::kColMajor, clblast::Transpose::kYes, clblast::Transpose::kNo, ne01, ne11, ne10, alpha, d_X, 0, ne00, d_Y, 0, ne10, beta, d_D, 0, ne01, &queue, events.data() + ev_idx++); if (status != clblast::StatusCode::kSuccess) { GGML_ASSERT(false); } } // copy dst to host float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3); CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &events[events.size() - 1], NULL)); for (auto *event : events) { clReleaseEvent(event); } ev_idx = 0; events.clear(); } } } } if (!mul_mat_vec) { ggml_cl_pool_free(d_X, x_size); } ggml_cl_pool_free(d_Y, y_size); ggml_cl_pool_free(d_D, d_size); if (src0->backend == GGML_BACKEND_TYPE_CPU) { ggml_cl_pool_free(d_Q, q_size); } } bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, const struct ggml_tensor * dst) { const int64_t ne10 = src1->ne[0]; const int64_t ne0 = dst->ne[0]; const int64_t ne1 = dst->ne[1]; // TODO: find the optimal values for these if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32 && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_BACKEND_TYPE_GPU)) { return true; } return false; } static bool ggml_cl_mul_mat_use_f16(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * /* dst */) { // If device doesn't support FP16 if (!fp16_support) { return false; } size_t src0_sz = ggml_nbytes(src0); size_t src1_sz = ggml_nbytes(src1); // mul_mat_q: src0 is converted to fp32 on device size_t mul_mat_q_transfer = src0_sz + src1_sz; // mul_mat_f16: src1 is converted to fp16 on cpu size_t mul_mat_f16_transfer = src0_sz + sizeof(ggml_fp16_t) * ggml_nelements(src1); // choose the smaller one to transfer to the device // TODO: this is not always the best choice due to the overhead of converting to fp16 return mul_mat_f16_transfer < mul_mat_q_transfer; } void ggml_cl_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize) { GGML_ASSERT(ggml_cl_can_mul_mat(src0, src1, dst)); if (src0->type == GGML_TYPE_F32) { ggml_cl_mul_mat_f32(src0, src1, dst); } else if (src0->type == GGML_TYPE_F16) { if (ggml_cl_mul_mat_use_f16(src0, src1, dst)) { ggml_cl_mul_mat_f16(src0, src1, dst, wdata, wsize); } else { ggml_cl_mul_mat_q_f32(src0, src1, dst); } } else if (ggml_is_quantized(src0->type)) { ggml_cl_mul_mat_q_f32(src0, src1, dst); } else { GGML_ASSERT(false); } } size_t ggml_cl_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) { if (src0->type == GGML_TYPE_F16 && ggml_cl_mul_mat_use_f16(src0, src1, dst)) { return sizeof(ggml_fp16_t) * std::max(src1->ne[0] * src1->ne[1], dst->ne[0] * dst->ne[1]); } return 0; } void ggml_cl_transform_tensor(void * data, ggml_tensor * tensor) { const int64_t ne0 = tensor->ne[0]; const int64_t ne1 = tensor->ne[1]; const int64_t ne2 = tensor->ne[2]; const int64_t ne3 = tensor->ne[3]; const ggml_type type = tensor->type; const size_t s_sz = ggml_type_size(type) * (size_t) (ne0 * ne1 / ggml_blck_size(type)); const size_t q_sz = s_sz * (size_t) (ne2 * ne3); size_t q_size; cl_mem dst = ggml_cl_pool_malloc(q_sz, &q_size); tensor->data = data; // copy tensor to device size_t offset = 0; for (int64_t i3 = 0; i3 < ne3; i3++) { for (int64_t i2 = 0; i2 < ne2; i2++) { CL_CHECK(ggml_cl_h2d_tensor_2d(queue, dst, offset, tensor, i3, i2, NULL)); offset += s_sz; } } CL_CHECK(clFinish(queue)); tensor->extra = dst; GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU); } // ggml-backend // buffer struct ggml_backend_opencl_buffer_context { ~ggml_backend_opencl_buffer_context() { if (buffer) { clReleaseMemObject(buffer); } for (auto * sub_buffer : sub_buffers) { clReleaseMemObject(sub_buffer); } } cl_mem buffer; std::vector<cl_mem> sub_buffers; }; static void * const cl_ptr_base = (void *)(uintptr_t) 0x1000; static const char * ggml_backend_opencl_buffer_get_name(ggml_backend_buffer_t buffer) { return "OpenCL"; GGML_UNUSED(buffer); } static void ggml_backend_opencl_buffer_free_buffer(ggml_backend_buffer_t buffer) { ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context; delete ctx; } static void * ggml_backend_opencl_buffer_get_base(ggml_backend_buffer_t buffer) { return cl_ptr_base; GGML_UNUSED(buffer); } static void ggml_backend_opencl_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) { if (tensor->view_src != NULL && tensor->view_offs == 0) { tensor->extra = tensor->view_src->extra; } else { ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context; cl_buffer_region region = {(size_t)((char *)tensor->data - (char *)cl_ptr_base), ggml_nbytes(tensor)}; cl_int err; cl_mem sub_buffer = clCreateSubBuffer(ctx->buffer, CL_MEM_READ_WRITE, CL_BUFFER_CREATE_TYPE_REGION, ®ion, &err); CL_CHECK(err); ctx->sub_buffers.push_back(sub_buffer); tensor->extra = sub_buffer; } tensor->backend = GGML_BACKEND_TYPE_GPU; } static void ggml_backend_opencl_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { cl_mem tensor_buffer = (cl_mem) tensor->extra; CL_CHECK(clEnqueueWriteBuffer(queue, tensor_buffer, true, offset, size, data, 0, NULL, NULL)); CL_CHECK(clFinish(queue)); GGML_UNUSED(buffer); } static void ggml_backend_opencl_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { cl_mem tensor_buffer = (cl_mem) tensor->extra; CL_CHECK(clEnqueueReadBuffer(queue, tensor_buffer, true, offset, size, data, 0, NULL, NULL)); CL_CHECK(clFinish(queue)); GGML_UNUSED(buffer); } static void ggml_backend_opencl_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context; CL_CHECK(clEnqueueFillBuffer(queue, ctx->buffer, &value, sizeof(value), 0, buffer->size, 0, NULL, NULL)); CL_CHECK(clFinish(queue)); } static void ggml_backend_opencl_buffer_reset(ggml_backend_buffer_t buffer) { ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context; for (auto * sub_buffer : ctx->sub_buffers) { clReleaseMemObject(sub_buffer); } ctx->sub_buffers.clear(); } static ggml_backend_buffer_i ggml_backend_opencl_buffer_interface = { /* .get_name = */ ggml_backend_opencl_buffer_get_name, /* .free_buffer = */ ggml_backend_opencl_buffer_free_buffer, /* .get_base = */ ggml_backend_opencl_buffer_get_base, /* .init_tensor = */ ggml_backend_opencl_buffer_init_tensor, /* .set_tensor = */ ggml_backend_opencl_buffer_set_tensor, /* .get_tensor = */ ggml_backend_opencl_buffer_get_tensor, /* .cpy_tensor = */ NULL, /* .clear = */ ggml_backend_opencl_buffer_clear, /* .reset = */ ggml_backend_opencl_buffer_reset, }; // buffer type static const char * ggml_backend_opencl_buffer_type_name(ggml_backend_buffer_type_t buffer_type) { return "OpenCL"; GGML_UNUSED(buffer_type); } static ggml_backend_buffer_t ggml_backend_opencl_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buffer_type, size_t size) { ggml_cl_init(); cl_int err; cl_mem mem = clCreateBuffer(context, CL_MEM_READ_WRITE, size, NULL, &err); if (err != CL_SUCCESS) { fprintf(stderr, "%s: failed to allocate %.2f MiB\n", __func__, size / 1024.0 / 1024.0); return nullptr; } ggml_backend_opencl_buffer_context * ctx = new ggml_backend_opencl_buffer_context{mem, {}}; return ggml_backend_buffer_init(buffer_type, ggml_backend_opencl_buffer_interface, ctx, size); } static size_t ggml_backend_opencl_buffer_type_get_alignment(ggml_backend_buffer_type_t buffer_type) { // FIXME: not thread safe, device may not be initialized yet static cl_uint alignment = -1; if (alignment == (cl_uint)-1) { ggml_cl_init(); clGetDeviceInfo(device, CL_DEVICE_MEM_BASE_ADDR_ALIGN, sizeof(cl_uint), &alignment, NULL); alignment /= 8; // bits to bytes } return alignment; GGML_UNUSED(buffer_type); } static size_t ggml_backend_opencl_buffer_type_get_max_size(ggml_backend_buffer_type_t buffer_type) { static size_t max_size = -1; if (max_size == (size_t)-1) { ggml_cl_init(); clGetDeviceInfo(device, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof(size_t), &max_size, NULL); } return max_size; } static bool ggml_backend_opencl_buffer_type_supports_backend(ggml_backend_buffer_type_t buffer_type, ggml_backend_t backend) { //return ggml_backend_is_opencl(backend); // opencl must be used through the cpu backend return ggml_backend_is_cpu(backend); GGML_UNUSED(buffer_type); } static ggml_backend_buffer_type_i ggml_backend_opencl_buffer_type_interface = { /* .get_name = */ ggml_backend_opencl_buffer_type_name, /* .alloc_buffer = */ ggml_backend_opencl_buffer_type_alloc_buffer, /* .get_alignment = */ ggml_backend_opencl_buffer_type_get_alignment, /* .get_max_size = */ ggml_backend_opencl_buffer_type_get_max_size, /* .get_alloc_size = */ NULL, /* .supports_backend = */ ggml_backend_opencl_buffer_type_supports_backend, /* .is_host = */ NULL, }; ggml_backend_buffer_type_t ggml_backend_opencl_buffer_type() { static ggml_backend_buffer_type buffer_type = { /* .iface = */ ggml_backend_opencl_buffer_type_interface, /* .context = */ nullptr, }; return &buffer_type; } #if 0 // host buffer type static const char * ggml_backend_opencl_host_buffer_type_name(ggml_backend_buffer_type_t buft) { return "CL_Host"; GGML_UNUSED(buft); } static const char * ggml_backend_opencl_host_buffer_name(ggml_backend_buffer_t buffer) { return "CL_Host"; GGML_UNUSED(buffer); } static void ggml_backend_opencl_host_buffer_free_buffer(ggml_backend_buffer_t buffer) { ggml_cl_host_free(buffer->context); } static ggml_backend_buffer_t ggml_backend_opencl_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { void * ptr = ggml_cl_host_malloc(size); if (ptr == nullptr) { // fallback to cpu buffer return ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size); } ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size); buffer->buft = buft; buffer->iface.get_name = ggml_backend_opencl_host_buffer_name; buffer->iface.free_buffer = ggml_backend_opencl_host_buffer_free_buffer; return buffer; } ggml_backend_buffer_type_t ggml_backend_opencl_host_buffer_type() { static struct ggml_backend_buffer_type ggml_backend_opencl_buffer_type_host = { /* .iface = */ { /* .get_name = */ ggml_backend_opencl_host_buffer_type_name, /* .alloc_buffer = */ ggml_backend_opencl_host_buffer_type_alloc_buffer, /* .get_alignment = */ ggml_backend_cpu_buffer_type()->iface.get_alignment, /* .get_max_size = */ NULL, // defaults to SIZE_MAX /* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size, /* .supports_backend = */ ggml_backend_cpu_buffer_type()->iface.supports_backend, /* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host, }, /* .context = */ nullptr, }; return &ggml_backend_opencl_buffer_type_host; } // backend static const char * ggml_backend_opencl_name(ggml_backend_t backend) { return "OpenCL"; GGML_UNUSED(backend); } static void ggml_backend_opencl_free(ggml_backend_t backend) { GGML_UNUSED(backend); } static ggml_backend_buffer_type_t ggml_backend_opencl_get_default_buffer_type(ggml_backend_t backend) { return ggml_backend_opencl_buffer_type(); GGML_UNUSED(backend); } static ggml_status ggml_backend_opencl_graph_compute(ggml_backend_t backend, ggml_cgraph * graph) { for (int i = 0; i < graph->n_nodes; ++i) { ggml_tensor * node = graph->nodes[i]; if (ggml_is_empty(node)) { continue; } switch (node->op) { case GGML_OP_MUL_MAT: ggml_cl_mul_mat(node->src[0], node->src[1], node, nullptr, 0); break; case GGML_OP_MUL: ggml_cl_mul(node->src[0], node->src[1], node); break; default: GGML_ASSERT(false); } } return GGML_STATUS_SUCCESS; GGML_UNUSED(backend); } static bool ggml_backend_opencl_supports_op(ggml_backend_t backend, const ggml_tensor * op) { switch (op->op) { case GGML_OP_MUL_MAT: return ggml_cl_can_mul_mat(op->src[0], op->src[1], op); case GGML_OP_MUL: // return ggml_can_repeat_rows(op->src[1], op->src[0]); return true; default: return false; } GGML_UNUSED(backend); } static ggml_backend_i opencl_backend_i = { /* .get_name = */ ggml_backend_opencl_name, /* .free = */ ggml_backend_opencl_free, /* .get_default_buffer_type = */ ggml_backend_opencl_get_default_buffer_type, /* .set_tensor_async = */ NULL, /* .get_tensor_async = */ NULL, /* .cpy_tensor_from_async = */ NULL, /* .cpy_tensor_to_async = */ NULL, /* .synchronize = */ NULL, /* .graph_plan_create = */ NULL, /* .graph_plan_free = */ NULL, /* .graph_plan_compute = */ NULL, /* .graph_compute = */ ggml_backend_opencl_graph_compute, /* .supports_op = */ ggml_backend_opencl_supports_op, }; ggml_backend_t ggml_backend_opencl_init() { ggml_backend_t backend = new ggml_backend { /* .interface = */ opencl_backend_i, /* .context = */ nullptr }; return backend; } bool ggml_backend_is_opencl(ggml_backend_t backend) { return backend && backend->iface.get_name == ggml_backend_opencl_name; } #endif