#include "llama-context.h" #include #include #include #include void llama_set_k_shift(struct llama_context & lctx) { const int64_t kv_size = lctx.kv_self.size; assert(ggml_backend_buffer_is_host(lctx.inp_K_shift->buffer)); int32_t * data = (int32_t *) lctx.inp_K_shift->data; for (int i = 0; i < kv_size; ++i) { data[i] = lctx.kv_self.cells[i].delta; } } void llama_set_s_copy(struct llama_context & lctx) { const int64_t kv_size = lctx.kv_self.size; assert(ggml_backend_buffer_is_host(lctx.inp_s_copy->buffer)); int32_t * data = (int32_t *) lctx.inp_s_copy->data; for (int i = 0; i < kv_size; ++i) { data[i] = lctx.kv_self.cells[i].src; } } // llama input static int32_t llama_relative_position_bucket(llama_pos x, llama_pos y, uint64_t n_buckets, bool bidirectional) { // TODO move to hparams if a T5 variant appears that uses a different value const int64_t max_distance = 128; if (bidirectional) { n_buckets >>= 1; } const int64_t max_exact = n_buckets >> 1; int32_t relative_position = x - y; int32_t relative_bucket = 0; if (bidirectional) { relative_bucket += (relative_position > 0) * n_buckets; relative_position = abs(relative_position); } else { relative_position = -std::min(relative_position, 0); } int32_t relative_position_if_large = floorf(max_exact + logf(1.0 * relative_position / max_exact) * (n_buckets - max_exact) / log(1.0 * max_distance / max_exact)); relative_position_if_large = std::min(relative_position_if_large, n_buckets - 1); relative_bucket += (relative_position < max_exact ? relative_position : relative_position_if_large); return relative_bucket; } void llama_set_inputs(llama_context & lctx, const llama_ubatch & ubatch) { // // set input data // const auto & hparams = lctx.model.hparams; const auto & cparams = lctx.cparams; const auto & kv_self = lctx.kv_self; if (ubatch.token) { const int64_t n_tokens = ubatch.n_tokens; ggml_backend_tensor_set(lctx.inp_tokens, ubatch.token, 0, n_tokens*ggml_element_size(lctx.inp_tokens)); } if (ubatch.embd) { const int64_t n_embd = hparams.n_embd; const int64_t n_tokens = ubatch.n_tokens; ggml_backend_tensor_set(lctx.inp_embd, ubatch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd)); } if (ubatch.pos && lctx.inp_pos) { const int64_t n_tokens = ubatch.n_tokens; auto n_pos = lctx.n_pos_per_token; ggml_backend_tensor_set(lctx.inp_pos, ubatch.pos, 0, n_tokens*n_pos*ggml_element_size(lctx.inp_pos)); } if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) { //GGML_ASSERT(lctx.inp_out_ids && "every model that can must skip unused outputs"); if (!lctx.inp_out_ids) { LLAMA_LOG_WARN("%s: 'lctx.inp_out_ids' is not created\n", __func__); } else { const int64_t n_tokens = ubatch.n_tokens; GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_out_ids->buffer)); int32_t * data = (int32_t *) lctx.inp_out_ids->data; if (lctx.n_outputs == n_tokens) { for (int i = 0; i < n_tokens; ++i) { data[i] = i; } } else if (ubatch.output) { int32_t n_outputs = 0; for (int i = 0; i < n_tokens; ++i) { if (ubatch.output[i]) { data[n_outputs++] = i; } } // the graph needs to have been passed the correct number of outputs GGML_ASSERT(lctx.n_outputs == n_outputs); } else if (lctx.n_outputs == 1) { // only keep last output data[0] = n_tokens - 1; } else { GGML_ASSERT(lctx.n_outputs == 0); } } } GGML_ASSERT( // (!a || b) is a logical implication (a -> b) // !hparams.causal_attn -> !cparams.causal_attn (hparams.causal_attn || !cparams.causal_attn) && "causal attention is not supported by this model" ); if (lctx.inp_KQ_mask || lctx.inp_KQ_mask_swa) { // NOTE: hparams.causal_attn indicates the model is capable of generation and uses the kv cache. if (cparams.causal_attn && !lctx.is_encoding) { const int64_t n_kv = kv_self.n; const int64_t n_tokens = ubatch.n_tokens; const int64_t n_seq_tokens = ubatch.n_seq_tokens; const int64_t n_seqs = ubatch.n_seqs; float * data = nullptr; float * data_swa = nullptr; if (lctx.inp_KQ_mask) { GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer)); data = (float *) lctx.inp_KQ_mask->data; } if (lctx.inp_KQ_mask_swa) { GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask_swa->buffer)); data_swa = (float *) lctx.inp_KQ_mask_swa->data; } // For causal attention, use only the previous KV cells // of the correct sequence for each token of the ubatch. // It's assumed that if a token in the batch has multiple sequences, they are equivalent. for (int h = 0; h < 1; ++h) { for (int s = 0; s < n_seqs; ++s) { const llama_seq_id seq_id = ubatch.seq_id[s][0]; for (int j = 0; j < n_seq_tokens; ++j) { const llama_pos pos = ubatch.pos[s*n_seq_tokens + j]; for (int i = 0; i < n_kv; ++i) { float f; if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) { f = -INFINITY; } else { if (hparams.use_alibi) { f = -std::abs(kv_self.cells[i].pos - pos); } else { f = 0.0f; } } if (data) { data[h*(n_kv*n_tokens) + s*(n_kv*n_seq_tokens) + j*n_kv + i] = f; } // may need to cut off old tokens for sliding window if (data_swa) { if (pos - kv_self.cells[i].pos >= (int32_t)hparams.n_swa) { f = -INFINITY; } data_swa[h*(n_kv*n_tokens) + s*(n_kv*n_seq_tokens) + j*n_kv + i] = f; } } } } if (data) { for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) { for (int j = 0; j < n_kv; ++j) { data[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY; } } } if (data_swa) { for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) { for (int j = 0; j < n_kv; ++j) { data_swa[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY; } } } } } else { const int64_t n_tokens = ubatch.n_tokens; const int64_t n_seq_tokens = ubatch.n_seq_tokens; const int64_t n_seqs = ubatch.n_seqs; // when using kv cache, the mask needs to match the kv cache size const int64_t n_stride = hparams.causal_attn && !lctx.is_encoding ? kv_self.n : n_tokens; GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer)); float * data = (float *) lctx.inp_KQ_mask->data; for (int h = 0; h < 1; ++h) { for (int s1 = 0; s1 < n_seqs; ++s1) { const llama_seq_id seq_id = ubatch.seq_id[s1][0]; for (int j = 0; j < n_seq_tokens; ++j) { const int32_t tj = s1*n_seq_tokens + j; for (int s0 = 0; s0 < n_seqs; ++s0) { for (int i = 0; i < n_seq_tokens; ++i) { const int32_t ti = s0*n_seq_tokens + i; float f = -INFINITY; for (int s = 0; s < ubatch.n_seq_id[s0]; ++s) { if (ubatch.seq_id[s0][s] == seq_id) { if (hparams.use_alibi) { f = -std::abs(ubatch.pos[ti] - ubatch.pos[tj]); } else { f = 0.0f; } break; } } data[h*(n_tokens*n_tokens) + tj*n_stride + ti] = f; } } for (int i = n_tokens; i < n_stride; ++i) { data[h*(n_tokens*n_tokens) + tj*n_stride + i] = -INFINITY; } } } } } } if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) { const int64_t n_tokens = ubatch.n_tokens; const int64_t n_seq_tokens = ubatch.n_seq_tokens; const int64_t n_seqs = ubatch.n_seqs; GGML_ASSERT(lctx.inp_mean); GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer)); float * data = (float *) lctx.inp_mean->data; memset(lctx.inp_mean->data, 0, n_tokens * n_tokens * ggml_element_size(lctx.inp_mean)); std::vector sum(n_tokens, 0); for (int s = 0; s < n_seqs; ++s) { const llama_seq_id seq_id = ubatch.seq_id[s][0]; // TODO: adapt limits to n_seqs when ubatch.equal_seqs is true GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN"); sum[seq_id] += ubatch.n_seq_tokens; } std::vector div(n_tokens, 0.0f); for (int i = 0; i < n_tokens; ++i) { const uint64_t s = sum[i]; if (s > 0) { div[i] = 1.0f/float(s); } } for (int s = 0; s < n_seqs; ++s) { const llama_seq_id seq_id = ubatch.seq_id[s][0]; for (int i = 0; i < n_seq_tokens; ++i) { data[seq_id*n_tokens + s*n_seq_tokens + i] = div[seq_id]; } } } if (cparams.embeddings && ( cparams.pooling_type == LLAMA_POOLING_TYPE_CLS || cparams.pooling_type == LLAMA_POOLING_TYPE_RANK)) { const int64_t n_tokens = ubatch.n_tokens; const int64_t n_seq_tokens = ubatch.n_seq_tokens; const int64_t n_seqs = ubatch.n_seqs; GGML_ASSERT(lctx.inp_cls); GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer)); uint32_t * data = (uint32_t *) lctx.inp_cls->data; memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls)); for (int s = 0; s < n_seqs; ++s) { const llama_seq_id seq_id = ubatch.seq_id[s][0]; // TODO: adapt limits to n_seqs when ubatch.equal_seqs is true GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS or RANK"); for (int i = 0; i < n_seq_tokens; ++i) { const llama_pos pos = ubatch.pos[s*n_seq_tokens + i]; if (pos == 0) { data[seq_id] = s*n_seq_tokens + i; } } } } if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_LAST) { const int64_t n_tokens = ubatch.n_tokens; const int64_t n_seq_tokens = ubatch.n_seq_tokens; const int64_t n_seqs = ubatch.n_seqs; GGML_ASSERT(lctx.inp_cls); GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer)); uint32_t * data = (uint32_t *) lctx.inp_cls->data; memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls)); std::vector last_pos(n_tokens, -1); std::vector last_row(n_tokens, -1); for (int s = 0; s < n_seqs; ++s) { const llama_seq_id seq_id = ubatch.seq_id[s][0]; // TODO: adapt limits to n_seqs when ubatch.equal_seqs is true GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == LAST"); for (int i = 0; i < n_seq_tokens; ++i) { const llama_pos pos = ubatch.pos[s*n_seq_tokens + i]; if (pos >= last_pos[seq_id]) { last_pos[seq_id] = pos; last_row[seq_id] = s*n_seq_tokens + i; } } } for (int i = 0; i < n_tokens; ++i) { if (last_row[i] >= 0) { data[i] = last_row[i]; } } } if (kv_self.recurrent) { const int64_t n_kv = kv_self.n; if (lctx.inp_s_mask) { GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_mask->buffer)); float * data = (float *) lctx.inp_s_mask->data; // clear unused states for (int i = 0; i < n_kv; ++i) { const uint32_t cell_id = i + kv_self.head; llama_kv_cell & kv_cell = lctx.kv_self.cells[cell_id]; data[i] = (float) (kv_cell.src >= 0); // only clear once if (kv_cell.src < 0) { kv_cell.src = cell_id; } } } if (lctx.inp_s_copy) { GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_copy->buffer)); int32_t * data = (int32_t *) lctx.inp_s_copy->data; // assuming copy destinations ALWAYS happen ONLY on the cells between head and head+n for (uint32_t i = 0; i < n_kv; ++i) { const uint32_t cell_id = i + kv_self.head; llama_kv_cell & kv_cell = lctx.kv_self.cells[cell_id]; // prevent out-of-bound sources if (kv_cell.src < 0 || (uint32_t) kv_cell.src >= kv_self.size) { kv_cell.src = cell_id; } data[i] = kv_cell.src; // ensure copy only happens once if (kv_cell.src != (int32_t) cell_id) { kv_cell.src = cell_id; } } } } if (lctx.inp_pos_bucket) { const int64_t n_tokens = ubatch.n_tokens; GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_pos_bucket->buffer)); GGML_ASSERT(!ubatch.equal_seqs); // TODO: use ubatch.n_seqs instead of failing int32_t * data = (int32_t *) lctx.inp_pos_bucket->data; if (!lctx.is_encoding) { const int64_t n_kv = kv_self.n; for (int h = 0; h < 1; ++h) { for (int j = 0; j < n_tokens; ++j) { for (int i = 0; i < n_kv; ++i) { data[h*(n_kv*n_tokens) + j*n_kv + i] = llama_relative_position_bucket(lctx.kv_self.cells[i].pos, ubatch.pos[j], hparams.n_rel_attn_bkts, lctx.is_encoding); } } } } else { for (int h = 0; h < 1; ++h) { for (int j = 0; j < n_tokens; ++j) { for (int i = 0; i < n_tokens; ++i) { data[h*(n_tokens*n_tokens) + j*n_tokens + i] = llama_relative_position_bucket(ubatch.pos[i], ubatch.pos[j], hparams.n_rel_attn_bkts, lctx.is_encoding); } } } } } if (!lctx.is_encoding && lctx.inp_embd_enc) { assert(lctx.inp_embd_enc->type == GGML_TYPE_F32); assert((size_t) ggml_nelements(lctx.inp_embd_enc) == lctx.embd_enc.size()); ggml_backend_tensor_set(lctx.inp_embd_enc, lctx.embd_enc.data(), 0, ggml_nbytes(lctx.inp_embd_enc)); } if (!lctx.is_encoding && lctx.inp_KQ_mask_cross) { const int64_t n_output_enc = lctx.embd_enc.size() / hparams.n_embd; const int64_t n_tokens = ubatch.n_tokens; GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask_cross->buffer)); GGML_ASSERT(!ubatch.equal_seqs); // TODO: use ubatch.n_seqs instead of failing float * data = (float *) lctx.inp_KQ_mask_cross->data; for (int h = 0; h < 1; ++h) { for (int j = 0; j < n_tokens; ++j) { for (int i = 0; i < n_output_enc; ++i) { float f = -INFINITY; for (int s = 0; s < ubatch.n_seq_id[j]; ++s) { const llama_seq_id seq_id = ubatch.seq_id[j][s]; if (lctx.seq_ids_enc[i].find(seq_id) != lctx.seq_ids_enc[i].end()) { f = 0.0f; } } data[h*(n_output_enc*n_tokens) + j*n_output_enc + i] = f; } } for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) { for (int j = 0; j < n_output_enc; ++j) { data[h*(n_output_enc*n_tokens) + i*n_output_enc + j] = -INFINITY; } } } } } // llama output size_t llama_output_reserve(struct llama_context & lctx, size_t n_outputs) { const auto & cparams = lctx.cparams; const auto & hparams = lctx.model.hparams; const size_t n_outputs_max = std::max(n_outputs, (size_t) cparams.n_seq_max); const auto n_batch = cparams.n_batch; const auto n_vocab = hparams.n_vocab; const auto n_embd = hparams.n_embd; // TODO: use a per-batch flag for logits presence instead const bool has_logits = !cparams.embeddings; const bool has_embd = cparams.embeddings && (cparams.pooling_type == LLAMA_POOLING_TYPE_NONE); const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0; const size_t embd_size = has_embd ? n_embd*n_outputs_max : 0; if (lctx.output_ids.empty()) { // init, never resized afterwards lctx.output_ids.resize(n_batch); } const size_t prev_size = lctx.buf_output ? ggml_backend_buffer_get_size(lctx.buf_output.get()) : 0; const size_t new_size = (logits_size + embd_size) * sizeof(float); // alloc only when more than the current capacity is required // TODO: also consider shrinking the buffer if (!lctx.buf_output || prev_size < new_size) { if (lctx.buf_output) { #ifndef NDEBUG // This doesn't happen often, but may be annoying in some cases (like the HellaSwag benchmark) LLAMA_LOG_INFO("%s: reallocating output buffer from size %.02f MiB to %.02f MiB\n", __func__, prev_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0); #endif lctx.buf_output = nullptr; lctx.logits = nullptr; lctx.embd = nullptr; } auto * buft = ggml_backend_cpu_buffer_type(); // try to use the host buffer of the device where the output tensor is allocated for faster transfer to system memory auto * output_dev = lctx.model.dev_output.dev; auto * output_dev_host_buft = output_dev ? ggml_backend_dev_host_buffer_type(output_dev) : nullptr; if (output_dev_host_buft) { buft = output_dev_host_buft; } lctx.buf_output.reset(ggml_backend_buft_alloc_buffer(buft, new_size)); if (lctx.buf_output == nullptr) { LLAMA_LOG_ERROR("%s: failed to allocate output buffer of size %.2f MiB\n", __func__, new_size / (1024.0 * 1024.0)); return 0; } } float * output_base = (float *) ggml_backend_buffer_get_base(lctx.buf_output.get()); lctx.logits = has_logits ? output_base : nullptr; lctx.embd = has_embd ? output_base + logits_size : nullptr; lctx.output_size = n_outputs_max; lctx.logits_size = logits_size; lctx.embd_size = embd_size; // set all ids as invalid (negative) std::fill(lctx.output_ids.begin(), lctx.output_ids.end(), -1); ggml_backend_buffer_clear(lctx.buf_output.get(), 0); lctx.n_outputs = 0; return n_outputs_max; } void llama_output_reorder(struct llama_context & ctx) { std::vector & out_ids = ctx.sbatch.out_ids; if (!out_ids.empty()) { const uint32_t n_vocab = ctx.model.hparams.n_vocab; const uint32_t n_embd = ctx.model.hparams.n_embd; const int32_t n_outputs = ctx.n_outputs; GGML_ASSERT((size_t) n_outputs == out_ids.size()); // TODO: is there something more efficient which also minimizes swaps? // selection sort, to minimize swaps (from https://en.wikipedia.org/wiki/Selection_sort) for (int32_t i = 0; i < n_outputs - 1; ++i) { int32_t j_min = i; for (int32_t j = i + 1; j < n_outputs; ++j) { if (out_ids[j] < out_ids[j_min]) { j_min = j; } } if (j_min == i) { continue; } std::swap(out_ids[i], out_ids[j_min]); if (ctx.logits_size > 0) { for (uint32_t k = 0; k < n_vocab; k++) { std::swap(ctx.logits[i*n_vocab + k], ctx.logits[j_min*n_vocab + k]); } } if (ctx.embd_size > 0) { for (uint32_t k = 0; k < n_embd; k++) { std::swap(ctx.embd[i*n_embd + k], ctx.embd[j_min*n_embd + k]); } } } std::fill(ctx.output_ids.begin(), ctx.output_ids.end(), -1); for (int32_t i = 0; i < n_outputs; ++i) { ctx.output_ids[out_ids[i]] = i; } out_ids.clear(); } } // // interface implementation // void llama_free(struct llama_context * ctx) { delete ctx; } uint32_t llama_n_ctx(const struct llama_context * ctx) { return ctx->cparams.n_ctx; } uint32_t llama_n_batch(const struct llama_context * ctx) { return ctx->cparams.n_batch; } uint32_t llama_n_ubatch(const struct llama_context * ctx) { return ctx->cparams.n_ubatch; } uint32_t llama_n_seq_max(const struct llama_context * ctx) { return ctx->kv_self.size; } const struct llama_model * llama_get_model(const struct llama_context * ctx) { return &ctx->model; } enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx) { return ctx->cparams.pooling_type; } void llama_attach_threadpool( struct llama_context * ctx, ggml_threadpool_t threadpool, ggml_threadpool_t threadpool_batch) { ctx->threadpool = threadpool; ctx->threadpool_batch = threadpool_batch ? threadpool_batch : threadpool; } void llama_detach_threadpool(struct llama_context * ctx) { ctx->threadpool = nullptr; ctx->threadpool_batch = nullptr; } void llama_set_n_threads(struct llama_context * ctx, int32_t n_threads, int32_t n_threads_batch) { ctx->cparams.n_threads = n_threads; ctx->cparams.n_threads_batch = n_threads_batch; } int32_t llama_n_threads(struct llama_context * ctx) { return ctx->cparams.n_threads; } int32_t llama_n_threads_batch(struct llama_context * ctx) { return ctx->cparams.n_threads_batch; } void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)(void * data), void * abort_callback_data) { ctx->abort_callback = abort_callback; ctx->abort_callback_data = abort_callback_data; for (auto & backend : ctx->backends) { auto * reg = ggml_backend_dev_backend_reg(ggml_backend_get_device(backend.get())); auto * set_abort_callback_fn = (ggml_backend_set_abort_callback_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_abort_callback"); if (set_abort_callback_fn) { set_abort_callback_fn(backend.get(), ctx->abort_callback, ctx->abort_callback_data); } } } void llama_set_embeddings(struct llama_context * ctx, bool embeddings) { ctx->cparams.embeddings = embeddings; } void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) { ctx->cparams.causal_attn = causal_attn; } void llama_synchronize(struct llama_context * ctx) { ggml_backend_sched_synchronize(ctx->sched.get()); // FIXME: if multiple single tokens are evaluated without a synchronization, // the stats will be added to the prompt evaluation stats // this should only happen when using batch size 1 to evaluate a batch // add the evaluation to the stats if (ctx->n_queued_tokens == 1) { if (!ctx->cparams.no_perf) { ctx->t_eval_us += ggml_time_us() - ctx->t_compute_start_us; } ctx->n_eval++; } else if (ctx->n_queued_tokens > 1) { if (!ctx->cparams.no_perf) { ctx->t_p_eval_us += ggml_time_us() - ctx->t_compute_start_us; } ctx->n_p_eval += ctx->n_queued_tokens; } // get a more accurate load time, upon first eval if (ctx->n_queued_tokens > 0 && !ctx->has_evaluated_once) { ctx->t_load_us = ggml_time_us() - ctx->t_start_us; ctx->has_evaluated_once = true; } ctx->n_queued_tokens = 0; ctx->t_compute_start_us = 0; } float * llama_get_logits(struct llama_context * ctx) { llama_synchronize(ctx); // reorder logits for backward compatibility // TODO: maybe deprecate this llama_output_reorder(*ctx); return ctx->logits; } float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) { int32_t j = -1; llama_synchronize(ctx); try { if (ctx->logits == nullptr) { throw std::runtime_error("no logits"); } if (i < 0) { j = ctx->n_outputs + i; if (j < 0) { throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs)); } } else if ((size_t) i >= ctx->output_ids.size()) { throw std::runtime_error(format("out of range [0, %zu)", ctx->output_ids.size())); } else { j = ctx->output_ids[i]; } if (j < 0) { throw std::runtime_error(format("batch.logits[%d] != true", i)); } if (j >= ctx->n_outputs) { // This should not happen throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs)); } return ctx->logits + j*ctx->model.hparams.n_vocab; } catch (const std::exception & err) { LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what()); #ifndef NDEBUG GGML_ABORT("fatal error"); #else return nullptr; #endif } } float * llama_get_embeddings(struct llama_context * ctx) { llama_synchronize(ctx); // reorder embeddings for backward compatibility // TODO: maybe deprecate this llama_output_reorder(*ctx); return ctx->embd; } float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i) { int32_t j = -1; llama_synchronize(ctx); try { if (ctx->embd == nullptr) { throw std::runtime_error("no embeddings"); } if (i < 0) { j = ctx->n_outputs + i; if (j < 0) { throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs)); } } else if ((size_t) i >= ctx->output_ids.size()) { throw std::runtime_error(format("out of range [0, %zu)", ctx->output_ids.size())); } else { j = ctx->output_ids[i]; } if (j < 0) { throw std::runtime_error(format("batch.logits[%d] != true", i)); } if (j >= ctx->n_outputs) { // This should not happen throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs)); } return ctx->embd + j*ctx->model.hparams.n_embd; } catch (const std::exception & err) { LLAMA_LOG_ERROR("%s: invalid embeddings id %d, reason: %s\n", __func__, i, err.what()); #ifndef NDEBUG GGML_ABORT("fatal error"); #else return nullptr; #endif } } float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id) { llama_synchronize(ctx); auto it = ctx->embd_seq.find(seq_id); if (it == ctx->embd_seq.end()) { return nullptr; } return it->second.data(); } // llama state API // deprecated size_t llama_get_state_size(struct llama_context * ctx) { return llama_state_get_size(ctx); } // deprecated size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) { return llama_state_get_data(ctx, dst, -1); } // deprecated size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) { return llama_state_set_data(ctx, src, -1); } // deprecated bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) { return llama_state_load_file(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out); } // deprecated bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) { return llama_state_save_file(ctx, path_session, tokens, n_token_count); } // TODO: replace all non-fatal assertions with returned errors or exceptions struct llama_data_write { virtual void write(const void * src, size_t size) = 0; virtual void write_tensor_data(const struct ggml_tensor * tensor, size_t offset, size_t size) = 0; virtual size_t get_size_written() = 0; virtual ~llama_data_write() = default; void write_string(const std::string & str) { uint32_t str_size = str.size(); write(&str_size, sizeof(str_size)); write(str.data(), str_size); } void write_model_info(const struct llama_context * ctx) { const std::string arch_str = llm_arch_name(ctx->model.arch); write_string(arch_str); // TODO: add more model-specific info which should prevent loading the session file if not identical } //void write_rng(const std::mt19937 & rng) { // std::ostringstream rng_ss; // rng_ss << rng; // const std::string & rng_str = rng_ss.str(); // write_string(rng_str); //} void write_output_ids(struct llama_context * ctx) { llama_output_reorder(*ctx); const uint32_t n_outputs = ctx->n_outputs; std::vector output_pos; const size_t n_batch = ctx->cparams.n_batch; const auto & output_ids = ctx->output_ids; GGML_ASSERT(n_outputs <= ctx->output_size); output_pos.resize(n_outputs); // build a more compact representation of the output ids for (size_t i = 0; i < n_batch; ++i) { // map an output id to a position in the batch int32_t pos = output_ids[i]; if (pos >= 0) { GGML_ASSERT((uint32_t) pos < n_outputs); output_pos[pos] = i; } } write(&n_outputs, sizeof(n_outputs)); if (n_outputs) { write(output_pos.data(), n_outputs * sizeof(int32_t)); } } void write_logits(const struct llama_context * ctx) { const uint64_t logits_size = std::min((uint64_t) ctx->logits_size, (uint64_t) ctx->n_outputs * ctx->model.hparams.n_vocab); write(&logits_size, sizeof(logits_size)); if (logits_size) { write(ctx->logits, logits_size * sizeof(float)); } } void write_embeddings(const struct llama_context * ctx) { const uint64_t embeddings_size = std::min((uint64_t) ctx->embd_size, (uint64_t) ctx->n_outputs * ctx->model.hparams.n_embd); write(&embeddings_size, sizeof(embeddings_size)); if (embeddings_size) { write(ctx->embd, embeddings_size * sizeof(float)); } } void write_kv_cache_meta(const llama_kv_cache & kv_self, const std::vector> & cell_ranges, llama_seq_id seq_id = -1) { for (const auto & range : cell_ranges) { for (uint32_t i = range.first; i < range.second; ++i) { const auto & cell = kv_self.cells[i]; const llama_pos pos = cell.pos; const uint32_t n_seq_id = seq_id == -1 ? cell.seq_id.size() : 0; write(&pos, sizeof(pos)); write(&n_seq_id, sizeof(n_seq_id)); if (n_seq_id) { for (auto seq_id : cell.seq_id) { write(&seq_id, sizeof(seq_id)); } } } } } void write_kv_cache_data(const struct llama_context * ctx, const std::vector> & cell_ranges) { const struct llama_kv_cache & kv_self = ctx->kv_self; const struct llama_hparams & hparams = ctx->model.hparams; const uint32_t v_trans = kv_self.v_trans ? 1 : 0; const uint32_t n_layer = hparams.n_layer; write(&v_trans, sizeof(v_trans)); write(&n_layer, sizeof(n_layer)); std::vector tmp_buf; // Iterate and write all the keys first, each row is a cell // Get whole range at a time for (uint32_t il = 0; il < n_layer; ++il) { const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s(); // Write key type const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type; write(&k_type_i, sizeof(k_type_i)); // Write row size of key const uint64_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa); write(&k_size_row, sizeof(k_size_row)); // Read each range of cells of k_size length each into tmp_buf and write out for (const auto & range : cell_ranges) { const size_t range_size = range.second - range.first; const size_t buf_size = range_size * k_size_row; write_tensor_data(kv_self.k_l[il], range.first * k_size_row, buf_size); } } if (!kv_self.v_trans) { for (uint32_t il = 0; il < n_layer; ++il) { const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s(); // Write value type const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type; write(&v_type_i, sizeof(v_type_i)); // Write row size of value const uint64_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa); write(&v_size_row, sizeof(v_size_row)); // Read each range of cells of v_size length each into tmp_buf and write out for (const auto & range : cell_ranges) { const size_t range_size = range.second - range.first; const size_t buf_size = range_size * v_size_row; write_tensor_data(kv_self.v_l[il], range.first * v_size_row, buf_size); } } } else { // When v is transposed, we also need the element size and get the element ranges from each row const uint32_t kv_size = kv_self.size; for (uint32_t il = 0; il < n_layer; ++il) { const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s(); // Write value type const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type; write(&v_type_i, sizeof(v_type_i)); // Write element size const uint32_t v_size_el = ggml_type_size(kv_self.v_l[il]->type); write(&v_size_el, sizeof(v_size_el)); // Write GQA embedding size write(&n_embd_v_gqa, sizeof(n_embd_v_gqa)); // For each row, we get the element values of each cell for (uint32_t j = 0; j < n_embd_v_gqa; ++j) { // Read each range of cells of v_size_el length each into tmp_buf and write out for (const auto & range : cell_ranges) { const size_t range_size = range.second - range.first; const size_t src_offset = (range.first + j * kv_size) * v_size_el; const size_t buf_size = range_size * v_size_el; write_tensor_data(kv_self.v_l[il], src_offset, buf_size); } } } } } void write_kv_cache(const struct llama_context * ctx, llama_seq_id seq_id = -1) { const struct llama_kv_cache & kv_self = ctx->kv_self; std::vector> cell_ranges; // ranges, from inclusive, to exclusive uint32_t cell_count = 0; // Count the number of cells with the specified seq_id // Find all the ranges of cells with this seq id (or all, when -1) uint32_t cell_range_begin = kv_self.size; for (uint32_t i = 0; i < kv_self.size; ++i) { const auto & cell = kv_self.cells[i]; if ((seq_id == -1 && !cell.is_empty()) || cell.has_seq_id(seq_id)) { ++cell_count; if (cell_range_begin == kv_self.size) { cell_range_begin = i; } } else { if (cell_range_begin != kv_self.size) { cell_ranges.emplace_back(cell_range_begin, i); cell_range_begin = kv_self.size; } } } if (cell_range_begin != kv_self.size) { cell_ranges.emplace_back(cell_range_begin, kv_self.size); } // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count uint32_t cell_count_check = 0; for (const auto & range : cell_ranges) { cell_count_check += range.second - range.first; } GGML_ASSERT(cell_count == cell_count_check); write(&cell_count, sizeof(cell_count)); write_kv_cache_meta(kv_self, cell_ranges, seq_id); write_kv_cache_data(ctx, cell_ranges); } }; struct llama_data_read { virtual const uint8_t * read(size_t size) = 0; virtual void read_to(void * dst, size_t size) = 0; virtual size_t get_size_read() = 0; virtual ~llama_data_read() = default; void read_string(std::string & str) { uint32_t str_size; read_to(&str_size, sizeof(str_size)); str.assign((const char *) read(str_size), str_size); } // validate model information void read_model_info(const struct llama_context * ctx) { const std::string cur_arch_str = llm_arch_name(ctx->model.arch); std::string arch_str; read_string(arch_str); if (cur_arch_str != arch_str) { throw std::runtime_error(format("wrong model arch: '%s' instead of '%s'", arch_str.c_str(), cur_arch_str.c_str())); } // TODO: add more info which needs to be identical but which is not verified otherwise } //void read_rng(std::mt19937 & rng) { // std::string rng_str; // read_string(rng_str); // std::istringstream rng_ss(rng_str); // rng_ss >> rng; // if (rng_ss.fail()) { // throw std::runtime_error("failed to load RNG state"); // } //} void read_output_ids(struct llama_context * ctx) { std::vector output_pos; uint32_t n_outputs; read_to(&n_outputs, sizeof(n_outputs)); if (n_outputs > llama_output_reserve(*ctx, n_outputs)) { throw std::runtime_error("could not reserve outputs"); } if (n_outputs) { output_pos.resize(n_outputs); read_to(output_pos.data(), n_outputs * sizeof(int32_t)); for (int32_t i = 0; i < (int32_t) output_pos.size(); ++i) { int32_t id = output_pos[i]; if ((uint32_t) id >= ctx->cparams.n_batch) { throw std::runtime_error(format("invalid output id, %d does not fit in batch size of %u", id, ctx->cparams.n_batch)); } ctx->output_ids[id] = i; } ctx->n_outputs = n_outputs; } } void read_logits(struct llama_context * ctx) { uint64_t logits_size; read_to(&logits_size, sizeof(logits_size)); if (ctx->logits_size < logits_size) { throw std::runtime_error("logits buffer too small"); } if (logits_size) { read_to(ctx->logits, logits_size * sizeof(float)); } } void read_embeddings(struct llama_context * ctx) { uint64_t embeddings_size; read_to(&embeddings_size, sizeof(embeddings_size)); if (ctx->embd_size < embeddings_size) { throw std::runtime_error("embeddings buffer too small"); } if (embeddings_size) { read_to(ctx->embd, embeddings_size * sizeof(float)); } } bool read_kv_cache_meta(struct llama_context * ctx, uint32_t cell_count, llama_seq_id dest_seq_id = -1) { struct llama_kv_cache & kv_self = ctx->kv_self; if (dest_seq_id != -1) { // single sequence llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1); llama_ubatch batch = ctx->sbatch.reserve_ubatch(cell_count, /* has_embd */ false); batch.n_tokens = cell_count; batch.n_seq_tokens = cell_count; batch.n_seqs = 1; for (uint32_t i = 0; i < cell_count; ++i) { llama_pos pos; uint32_t n_seq_id; read_to(&pos, sizeof(pos)); read_to(&n_seq_id, sizeof(n_seq_id)); if (n_seq_id != 0) { LLAMA_LOG_ERROR("%s: invalid seq_id-agnostic kv cell\n", __func__); return false; } batch.pos[i] = pos; } batch.n_seq_id[0] = 1; batch.seq_id[0] = &dest_seq_id; if (!llama_kv_cache_find_slot(kv_self, batch)) { LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__); return false; } // DEBUG CHECK: kv_self.head should be our first cell, kv_self.head + cell_count - 1 should be our last cell (verify seq_id and pos values) // Assume that this is one contiguous block of cells GGML_ASSERT(kv_self.head + cell_count <= kv_self.size); GGML_ASSERT(kv_self.cells[kv_self.head].pos == batch.pos[0]); GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].pos == batch.pos[cell_count - 1]); GGML_ASSERT(kv_self.cells[kv_self.head].has_seq_id(dest_seq_id)); GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].has_seq_id(dest_seq_id)); } else { // whole KV cache restore if (cell_count > kv_self.size) { LLAMA_LOG_ERROR("%s: not enough cells in kv cache\n", __func__); return false; } llama_kv_cache_clear(kv_self); for (uint32_t i = 0; i < cell_count; ++i) { llama_kv_cell & cell = kv_self.cells[i]; llama_pos pos; uint32_t n_seq_id; read_to(&pos, sizeof(pos)); read_to(&n_seq_id, sizeof(n_seq_id)); cell.pos = pos; for (uint32_t j = 0; j < n_seq_id; ++j) { llama_seq_id seq_id; read_to(&seq_id, sizeof(seq_id)); if (seq_id < 0 || (uint32_t) seq_id >= llama_n_seq_max(ctx)) { LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, %u)\n", __func__, seq_id, llama_n_seq_max(ctx)); return false; } cell.seq_id.insert(seq_id); if (kv_self.recurrent) { int32_t & tail = kv_self.cells[seq_id].tail; if (tail != -1) { LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n", __func__, seq_id, i, tail); return false; } tail = i; } } } kv_self.head = 0; kv_self.used = cell_count; } if (kv_self.recurrent) { for (uint32_t i = 0; i < cell_count; ++i) { uint32_t cell_id = kv_self.head + i; // make sure the recurrent states will keep their restored state kv_self.cells[cell_id].src = cell_id; } } return true; } bool read_kv_cache_data(struct llama_context * ctx, uint32_t cell_count) { const struct llama_hparams & hparams = ctx->model.hparams; struct llama_kv_cache & kv_self = ctx->kv_self; uint32_t v_trans; uint32_t n_layer; read_to(&v_trans, sizeof(v_trans)); read_to(&n_layer, sizeof(n_layer)); if (n_layer != hparams.n_layer) { LLAMA_LOG_ERROR("%s: mismatched layer count (%u instead of %u)\n", __func__, n_layer, hparams.n_layer); return false; } if (cell_count > kv_self.size) { LLAMA_LOG_ERROR("%s: not enough cells in kv cache to restore state (%u > %u)\n", __func__, cell_count, kv_self.size); return false; } if (kv_self.v_trans != (bool) v_trans) { LLAMA_LOG_ERROR("%s: incompatible V transposition\n", __func__); return false; } // For each layer, read the keys for each cell, one row is one cell, read as one contiguous block for (uint32_t il = 0; il < n_layer; ++il) { const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s(); // Read type of key int32_t k_type_i_ref; read_to(&k_type_i_ref, sizeof(k_type_i_ref)); const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type; if (k_type_i != k_type_i_ref) { LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il); return false; } // Read row size of key uint64_t k_size_row_ref; read_to(&k_size_row_ref, sizeof(k_size_row_ref)); const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa); if (k_size_row != k_size_row_ref) { LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, (size_t) k_size_row_ref, il); return false; } if (cell_count) { // Read and set the keys for the whole cell range ggml_backend_tensor_set(kv_self.k_l[il], read(cell_count * k_size_row), kv_self.head * k_size_row, cell_count * k_size_row); } } if (!kv_self.v_trans) { for (uint32_t il = 0; il < n_layer; ++il) { const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s(); // Read type of value int32_t v_type_i_ref; read_to(&v_type_i_ref, sizeof(v_type_i_ref)); const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type; if (v_type_i != v_type_i_ref) { LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il); return false; } // Read row size of value uint64_t v_size_row_ref; read_to(&v_size_row_ref, sizeof(v_size_row_ref)); const size_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa); if (v_size_row != v_size_row_ref) { LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, (size_t) v_size_row_ref, il); return false; } if (cell_count) { // Read and set the values for the whole cell range ggml_backend_tensor_set(kv_self.v_l[il], read(cell_count * v_size_row), kv_self.head * v_size_row, cell_count * v_size_row); } } } else { // For each layer, read the values for each cell (transposed) for (uint32_t il = 0; il < n_layer; ++il) { const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s(); // Read type of value int32_t v_type_i_ref; read_to(&v_type_i_ref, sizeof(v_type_i_ref)); const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type; if (v_type_i != v_type_i_ref) { LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il); return false; } // Read element size of value uint32_t v_size_el_ref; read_to(&v_size_el_ref, sizeof(v_size_el_ref)); const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type); if (v_size_el != v_size_el_ref) { LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, (size_t) v_size_el_ref, il); return false; } // Read GQA embedding size uint32_t n_embd_v_gqa_ref; read_to(&n_embd_v_gqa_ref, sizeof(n_embd_v_gqa_ref)); if (n_embd_v_gqa != n_embd_v_gqa_ref) { LLAMA_LOG_ERROR("%s: mismatched GQA embedding size (%u != %u, layer %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref, il); return false; } if (cell_count) { // For each row in the transposed matrix, read the values for the whole cell range for (uint32_t j = 0; j < n_embd_v_gqa; ++j) { const size_t dst_offset = (kv_self.head + j * kv_self.size) * v_size_el; ggml_backend_tensor_set(kv_self.v_l[il], read(cell_count * v_size_el), dst_offset, cell_count * v_size_el); } } } } return true; } void read_kv_cache(struct llama_context * ctx, llama_seq_id seq_id = -1) { uint32_t cell_count; read_to(&cell_count, sizeof(cell_count)); bool res = read_kv_cache_meta(ctx, cell_count, seq_id) && read_kv_cache_data(ctx, cell_count); if (!res) { if (seq_id == -1) { llama_kv_cache_clear(ctx); } else { llama_kv_cache_seq_rm(ctx, seq_id, -1, -1); } throw std::runtime_error("failed to restore kv cache"); } } }; struct llama_data_write_dummy : llama_data_write { size_t size_written = 0; llama_data_write_dummy() {} void write(const void * /* src */, size_t size) override { size_written += size; } void write_tensor_data(const struct ggml_tensor * /* tensor */, size_t /* offset */, size_t size) override { size_written += size; } size_t get_size_written() override { return size_written; } }; struct llama_data_write_buffer : llama_data_write { uint8_t * ptr; size_t buf_size = 0; size_t size_written = 0; llama_data_write_buffer(uint8_t * p, size_t len) : ptr(p), buf_size(len) {} void write(const void * src, size_t size) override { if (size > buf_size) { throw std::runtime_error("unexpectedly reached end of buffer"); } memcpy(ptr, src, size); ptr += size; size_written += size; buf_size -= size; } void write_tensor_data(const struct ggml_tensor * tensor, size_t offset, size_t size) override { if (size > buf_size) { throw std::runtime_error("unexpectedly reached end of buffer"); } ggml_backend_tensor_get(tensor, ptr, offset, size); ptr += size; size_written += size; buf_size -= size; } size_t get_size_written() override { return size_written; } }; struct llama_data_read_buffer : llama_data_read { const uint8_t * ptr; size_t buf_size = 0; size_t size_read = 0; llama_data_read_buffer(const uint8_t * p, size_t len) : ptr(p), buf_size(len) {} const uint8_t * read(size_t size) override { const uint8_t * base_ptr = ptr; if (size > buf_size) { throw std::runtime_error("unexpectedly reached end of buffer"); } ptr += size; size_read += size; buf_size -= size; return base_ptr; } void read_to(void * dst, size_t size) override { memcpy(dst, read(size), size); } size_t get_size_read() override { return size_read; } }; struct llama_data_write_file : llama_data_write { llama_file * file; size_t size_written = 0; std::vector temp_buffer; llama_data_write_file(llama_file * f) : file(f) {} void write(const void * src, size_t size) override { file->write_raw(src, size); size_written += size; } void write_tensor_data(const struct ggml_tensor * tensor, size_t offset, size_t size) override { temp_buffer.resize(size); ggml_backend_tensor_get(tensor, temp_buffer.data(), offset, size); write(temp_buffer.data(), temp_buffer.size()); } size_t get_size_written() override { return size_written; } }; struct llama_data_read_file : llama_data_read { llama_file * file; size_t size_read = 0; std::vector temp_buffer; llama_data_read_file(llama_file * f) : file(f) {} void read_to(void * dst, size_t size) override { file->read_raw(dst, size); size_read += size; } const uint8_t * read(size_t size) override { temp_buffer.resize(size); read_to(temp_buffer.data(), size); return temp_buffer.data(); } size_t get_size_read() override { return size_read; } }; /** copy state data into either a buffer or file depending on the passed in context * * file context: * llama_file file("/path", "wb"); * llama_data_write_file data_ctx(&file); * llama_state_get_data_internal(ctx, data_ctx); * * buffer context: * std::vector buf(max_size, 0); * llama_data_write_buffer data_ctx(buf.data(), max_size); * llama_state_get_data_internal(ctx, data_ctx); * */ static size_t llama_state_get_data_internal(struct llama_context * ctx, llama_data_write & data_ctx) { llama_synchronize(ctx); data_ctx.write_model_info(ctx); // copy outputs data_ctx.write_output_ids(ctx); data_ctx.write_logits(ctx); data_ctx.write_embeddings(ctx); data_ctx.write_kv_cache(ctx); return data_ctx.get_size_written(); } size_t llama_state_get_data(struct llama_context * ctx, uint8_t * dst, size_t size) { llama_data_write_buffer data_ctx(dst, size); try { return llama_state_get_data_internal(ctx, data_ctx); } catch (const std::exception & err) { LLAMA_LOG_ERROR("%s: error saving state: %s\n", __func__, err.what()); return 0; } } // Returns the *actual* size of the state. // Intended to be used when saving to state to a buffer. size_t llama_state_get_size(struct llama_context * ctx) { llama_data_write_dummy data_ctx; try { return llama_state_get_data_internal(ctx, data_ctx); } catch (const std::exception & err) { LLAMA_LOG_ERROR("%s: error getting state size: %s\n", __func__, err.what()); return 0; } } static size_t llama_state_set_data_internal(struct llama_context * ctx, llama_data_read & data_ctx) { llama_synchronize(ctx); data_ctx.read_model_info(ctx); // set outputs data_ctx.read_output_ids(ctx); data_ctx.read_logits(ctx); data_ctx.read_embeddings(ctx); data_ctx.read_kv_cache(ctx); return data_ctx.get_size_read(); } // Sets the state reading from the specified source address size_t llama_state_set_data(struct llama_context * ctx, const uint8_t * src, size_t size) { llama_data_read_buffer data_ctx(src, size); try { return llama_state_set_data_internal(ctx, data_ctx); } catch (const std::exception & err) { LLAMA_LOG_ERROR("%s: error loading state: %s\n", __func__, err.what()); return 0; } } static bool llama_state_load_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) { llama_file file(path_session, "rb"); // sanity checks { const uint32_t magic = file.read_u32(); const uint32_t version = file.read_u32(); if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) { LLAMA_LOG_ERROR("%s: unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version); return false; } } // load the prompt { const uint32_t n_token_count = file.read_u32(); if (n_token_count > n_token_capacity) { LLAMA_LOG_ERROR("%s: token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity); return false; } file.read_raw(tokens_out, sizeof(llama_token) * n_token_count); *n_token_count_out = n_token_count; } // restore the context state { const size_t n_state_size_cur = file.size() - file.tell(); llama_data_read_file data_ctx(&file); const size_t n_read = llama_state_set_data_internal(ctx, data_ctx); if (n_read != n_state_size_cur) { LLAMA_LOG_ERROR("%s: did not read all of the session file data! size %zu, got %zu\n", __func__, n_state_size_cur, n_read); return false; } } return true; } bool llama_state_load_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) { try { return llama_state_load_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out); } catch (const std::exception & err) { LLAMA_LOG_ERROR("%s: error loading session file: %s\n", __func__, err.what()); return false; } } static bool llama_state_save_file_internal(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) { llama_file file(path_session, "wb"); file.write_u32(LLAMA_SESSION_MAGIC); file.write_u32(LLAMA_SESSION_VERSION); // save the prompt file.write_u32((uint32_t) n_token_count); file.write_raw(tokens, sizeof(llama_token) * n_token_count); // save the context state using stream saving llama_data_write_file data_ctx(&file); llama_state_get_data_internal(ctx, data_ctx); return true; } bool llama_state_save_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) { try { return llama_state_save_file_internal(ctx, path_session, tokens, n_token_count); } catch (const std::exception & err) { LLAMA_LOG_ERROR("%s: error saving session file: %s\n", __func__, err.what()); return false; } } static size_t llama_state_seq_get_data_internal(struct llama_context * ctx, llama_data_write & data_ctx, llama_seq_id seq_id) { llama_synchronize(ctx); data_ctx.write_kv_cache(ctx, seq_id); return data_ctx.get_size_written(); } size_t llama_state_seq_get_size(struct llama_context * ctx, llama_seq_id seq_id) { llama_data_write_dummy data_ctx; return llama_state_seq_get_data_internal(ctx, data_ctx, seq_id); } size_t llama_state_seq_get_data(struct llama_context * ctx, uint8_t * dst, size_t size, llama_seq_id seq_id) { llama_data_write_buffer data_ctx(dst, size); try { return llama_state_seq_get_data_internal(ctx, data_ctx, seq_id); } catch (const std::exception & err) { LLAMA_LOG_ERROR("%s: error saving sequence state: %s\n", __func__, err.what()); return 0; } } static size_t llama_state_seq_set_data_internal(struct llama_context * ctx, llama_data_read & data_ctx, llama_seq_id dest_seq_id) { llama_synchronize(ctx); data_ctx.read_kv_cache(ctx, dest_seq_id); return data_ctx.get_size_read(); } size_t llama_state_seq_set_data(struct llama_context * ctx, const uint8_t * src, size_t size, llama_seq_id dest_seq_id) { llama_data_read_buffer data_ctx(src, size); try { return llama_state_seq_set_data_internal(ctx, data_ctx, dest_seq_id); } catch (const std::exception & err) { LLAMA_LOG_ERROR("%s: error loading sequence state: %s\n", __func__, err.what()); return 0; } } static size_t llama_state_seq_save_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) { llama_file file(filepath, "wb"); file.write_u32(LLAMA_STATE_SEQ_MAGIC); file.write_u32(LLAMA_STATE_SEQ_VERSION); // save the prompt file.write_u32((uint32_t) n_token_count); file.write_raw(tokens, sizeof(llama_token) * n_token_count); // save the context state using stream saving llama_data_write_file data_ctx(&file); llama_state_seq_get_data_internal(ctx, data_ctx, seq_id); const size_t res = file.tell(); GGML_ASSERT(res == sizeof(uint32_t) * 3 + sizeof(llama_token) * n_token_count + data_ctx.get_size_written()); return res; } static size_t llama_state_seq_load_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) { llama_file file(filepath, "rb"); // version checks { const uint32_t magic = file.read_u32(); const uint32_t version = file.read_u32(); if (magic != LLAMA_STATE_SEQ_MAGIC || version != LLAMA_STATE_SEQ_VERSION) { LLAMA_LOG_ERROR("%s: unknown (magic, version) for sequence state file: %08x, %08x\n", __func__, magic, version); return 0; } } // load the prompt { const uint32_t n_token_count = file.read_u32(); if (n_token_count > n_token_capacity) { LLAMA_LOG_ERROR("%s: token count in sequence state file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity); return 0; } file.read_raw(tokens_out, sizeof(llama_token) * n_token_count); *n_token_count_out = n_token_count; } // restore the context state { const size_t state_size = file.size() - file.tell(); llama_data_read_file data_ctx(&file); const size_t nread = llama_state_seq_set_data_internal(ctx, data_ctx, dest_seq_id); if (!nread) { LLAMA_LOG_ERROR("%s: failed to restore sequence state\n", __func__); return 0; } GGML_ASSERT(nread <= state_size); GGML_ASSERT(nread + sizeof(uint32_t) * 3 + sizeof(llama_token) * *n_token_count_out == file.tell()); } return file.tell(); } size_t llama_state_seq_save_file(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) { try { return llama_state_seq_save_file_internal(ctx, filepath, seq_id, tokens, n_token_count); } catch (const std::exception & err) { LLAMA_LOG_ERROR("%s: error saving sequence state file: %s\n", __func__, err.what()); return 0; } } size_t llama_state_seq_load_file(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) { try { return llama_state_seq_load_file_internal(ctx, filepath, dest_seq_id, tokens_out, n_token_capacity, n_token_count_out); } catch (const std::exception & err) { LLAMA_LOG_ERROR("%s: error loading sequence state file: %s\n", __func__, err.what()); return 0; } } const std::vector> & llama_internal_get_tensor_map( struct llama_context * ctx ) { return ctx->model.tensors_by_name; }