#!/usr/bin/env python3 from __future__ import annotations import argparse import concurrent.futures import enum import faulthandler import functools import itertools import json import math import mmap import os import pickle import re import signal import struct import sys import time import warnings import zipfile from abc import ABCMeta, abstractmethod from argparse import ArgumentParser from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor from dataclasses import dataclass from pathlib import Path from typing import ( IO, TYPE_CHECKING, Any, Callable, Iterable, Literal, Optional, Tuple, TypeVar, ) import numpy as np from sentencepiece import SentencePieceProcessor try: from transformers import AutoTokenizer except ModuleNotFoundError as e: warnings.warn(f"Could not import AutoTokenizer from transformers: {e}") # If NO_LOCAL_GGUF is not set, try to import gguf from the local gguf-py directory if "NO_LOCAL_GGUF" not in os.environ: # Use absolute path to the gguf-py directory gguf_py_dir = str(Path(__file__).resolve().parent / "gguf-py") print(gguf_py_dir) # NOTE: Remove this once path is verified after changes are completed if gguf_py_dir not in sys.path: sys.path.insert(1, gguf_py_dir) # Import gguf module try: import gguf except ModuleNotFoundError as e: print(f"Could not import gguf: {e}") sys.exit(1) if TYPE_CHECKING: # NOTE: This isn't necessary. from typing import TypeAlias # This can technically be omitted. if hasattr(faulthandler, "register") and hasattr(signal, "SIGUSR1"): faulthandler.register(signal.SIGUSR1) # NOTE: n-dimensional arrays should be directly referenced NDArray: TypeAlias = "np.ndarray[Any, Any]" # Why is this here? LLAMA and GPT are technically the only compatible ARCHs. ARCH = gguf.MODEL_ARCH.LLAMA DEFAULT_CONCURRENCY = 8 # # data types # # TODO: Clean up and refactor data types @dataclass(frozen=True) class DataType: name: str dtype: np.dtype[Any] valid_conversions: list[str] def elements_to_bytes(self, n_elements: int) -> int: return n_elements * self.dtype.itemsize @dataclass(frozen=True) class UnquantizedDataType(DataType): pass DT_F16 = UnquantizedDataType('F16', dtype = np.dtype(np.float16), valid_conversions = ['F32', 'Q8_0']) DT_F32 = UnquantizedDataType('F32', dtype = np.dtype(np.float32), valid_conversions = ['F16', 'Q8_0']) DT_I32 = UnquantizedDataType('I32', dtype = np.dtype(np.int16), valid_conversions = []) DT_BF16 = UnquantizedDataType('BF16', dtype = np.dtype(np.uint16), valid_conversions = ['F32', 'F16', 'Q8_0']) @dataclass(frozen=True) class QuantizedDataType(DataType): block_size: int quantized_dtype: np.dtype[Any] ggml_type: gguf.GGMLQuantizationType def quantize(self, arr: NDArray) -> NDArray: raise NotImplementedError(f'Quantization for {self.name} not implemented') def elements_to_bytes(self, n_elements: int) -> int: assert n_elements % self.block_size == 0, f'Invalid number of elements {n_elements} for {self.name} with block size {self.block_size}' return self.quantized_dtype.itemsize * (n_elements // self.block_size) @dataclass(frozen=True) class Q8_0QuantizedDataType(QuantizedDataType): # Mini Q8_0 quantization in Python! def quantize(self, arr: NDArray) -> NDArray: assert arr.size % self.block_size == 0 and arr.size != 0, f'Bad array size {arr.size}' assert arr.dtype == np.float32, f'Bad array type {arr.dtype}' n_blocks = arr.size // self.block_size blocks = arr.reshape((n_blocks, self.block_size)) # Much faster implementation of block quantization contributed by @Cebtenzzre def quantize_blocks_q8_0(blocks: NDArray) -> Iterable[tuple[Any, Any]]: d = abs(blocks).max(axis = 1) / np.float32(127) with np.errstate(divide = 'ignore'): qs = (blocks / d[:, None]).round() qs[d == 0] = 0 yield from zip(d, qs) return np.fromiter(quantize_blocks_q8_0(blocks), count = n_blocks, dtype = self.quantized_dtype) DT_Q8_0 = Q8_0QuantizedDataType('Q8_0', dtype = np.dtype(np.float32), valid_conversions = [], ggml_type = gguf.GGMLQuantizationType.Q8_0, block_size = 32, quantized_dtype = np.dtype([('d', ' DataType: dt = GGML_FILE_TYPE_TO_DATA_TYPE.get(self) if dt is None: raise ValueError(self) # 1D tensors are always F32. return dt if len(tensor.shape) > 1 else DT_F32 GGML_FILE_TYPE_TO_DATA_TYPE: dict[GGMLFileType, DataType] = { GGMLFileType.AllF32 : DT_F32, GGMLFileType.MostlyF16 : DT_F16, GGMLFileType.MostlyQ8_0: DT_Q8_0, } # # hparams loading # @dataclass class Params: n_vocab: int n_embd: int n_layer: int n_ctx: int n_ff: int n_head: int n_head_kv: int f_norm_eps: Optional[float] = None n_experts: Optional[int] = None n_experts_used: Optional[int] = None rope_scaling_type: Optional[gguf.RopeScalingType] = None f_rope_freq_base: Optional[float] = None f_rope_scale: Optional[float] = None n_orig_ctx: Optional[int] = None rope_finetuned: Optional[bool] = None ftype: Optional[GGMLFileType] = None # path to the directory containing the model files path_model: Optional[Path] = None @staticmethod def guessed(model: LazyModel) -> "Params": # try transformer naming first n_vocab, n_embd = ( model["model.embed_tokens.weight"].shape if "model.embed_tokens.weight" in model else model["tok_embeddings.weight"].shape ) # try transformer naming first if "model.layers.0.self_attn.q_proj.weight" in model: n_layer = next( i for i in itertools.count() if f"model.layers.{i}.self_attn.q_proj.weight" not in model ) elif ( "model.layers.0.self_attn.W_pack.weight" in model ): # next: try baichuan naming n_layer = next( i for i in itertools.count() if f"model.layers.{i}.self_attn.W_pack.weight" not in model ) else: n_layer = next( i for i in itertools.count() if f"layers.{i}.attention.wq.weight" not in model ) if n_layer < 1: raise Exception( "failed to guess 'n_layer'. This model is unknown or unsupported.\n" "Suggestion: provide 'config.json' of the model in the same directory containing model files." ) n_head = n_embd // 128 # guessed n_mult = 256 # guessed # TODO: verify this n_ff = int(2 * (4 * n_embd) / 3) n_ff = n_mult * ((n_ff + n_mult - 1) // n_mult) return Params( n_vocab=n_vocab, n_embd=n_embd, n_layer=n_layer, n_ctx=-1, n_ff=n_ff, n_head=n_head, n_head_kv=n_head, f_norm_eps=1e-5, ) @staticmethod def load_transformers_config(model: LazyModel, config_path: Path) -> "Params": config = json.load(open(config_path)) rope_scaling_type = f_rope_scale = n_orig_ctx = rope_finetuned = None rope_scaling = config.get("rope_scaling") if rope_scaling is not None and (typ := rope_scaling.get("type")): rope_factor = rope_scaling.get("factor") f_rope_scale = rope_factor if typ == "linear": rope_scaling_type = gguf.RopeScalingType.LINEAR elif typ == "yarn": rope_scaling_type = gguf.RopeScalingType.YARN n_orig_ctx = rope_scaling["original_max_position_embeddings"] rope_finetuned = rope_scaling["finetuned"] else: raise NotImplementedError(f"Unknown rope scaling type: {typ}") if "max_sequence_length" in config: n_ctx = config["max_sequence_length"] elif "max_position_embeddings" in config: n_ctx = config["max_position_embeddings"] else: raise Exception( "failed to guess 'n_ctx'. This model is unknown or unsupported.\n" "Suggestion: provide 'config.json' of the model in the same directory containing model files." ) n_experts = None n_experts_used = None if "num_local_experts" in config: n_experts = config["num_local_experts"] n_experts_used = config["num_experts_per_tok"] return Params( n_vocab=config["vocab_size"], n_embd=config["hidden_size"], n_layer=config["num_hidden_layers"], n_ctx=n_ctx, n_ff=config["intermediate_size"], n_head=(n_head := config["num_attention_heads"]), n_head_kv=config.get("num_key_value_heads", n_head), n_experts=n_experts, n_experts_used=n_experts_used, f_norm_eps=config["rms_norm_eps"], f_rope_freq_base=config.get("rope_theta"), rope_scaling_type=rope_scaling_type, f_rope_scale=f_rope_scale, n_orig_ctx=n_orig_ctx, rope_finetuned=rope_finetuned, ) # LLaMA v2 70B params.json # {"dim": 8192, "multiple_of": 4096, "ffn_dim_multiplier": 1.3, "n_heads": 64, "n_kv_heads": 8, "n_layers": 80, "norm_eps": 1e-05, "vocab_size": -1} @staticmethod def load_torch_params(model: LazyModel, config_path: Path) -> "Params": config = json.load(open(config_path)) n_experts = None n_experts_used = None f_rope_freq_base = None # hack to determine LLaMA v1 vs v2 vs CodeLlama if config.get("moe"): # Mixtral n_ctx = 32768 elif config.get("rope_theta") == 1000000: # CodeLlama n_ctx = 16384 elif config["norm_eps"] == 1e-05: # LLaMA v2 n_ctx = 4096 else: # LLaMA v1 n_ctx = 2048 if "layers.0.feed_forward.w1.weight" in model: n_ff = model["layers.0.feed_forward.w1.weight"].shape[0] if config.get("moe"): n_ff = model["layers.0.feed_forward.experts.0.w1.weight"].shape[0] n_experts = config["moe"]["num_experts"] n_experts_used = config["moe"]["num_experts_per_tok"] f_rope_freq_base = 1e6 return Params( n_vocab=config.get("vocab_size", model["tok_embeddings.weight"].shape[0]), n_embd=config["dim"], n_layer=config["n_layers"], n_ctx=n_ctx, n_ff=n_ff, n_head=(n_head := config["n_heads"]), n_head_kv=config.get("n_kv_heads", n_head), n_experts=n_experts, n_experts_used=n_experts_used, f_norm_eps=config["norm_eps"], f_rope_freq_base=config.get("rope_theta", f_rope_freq_base), ) @staticmethod def load(model_plus: ModelPlus) -> "Params": hf_config_path = model_plus.paths[0].parent / "config.json" orig_config_path = model_plus.paths[0].parent / "params.json" if hf_config_path.exists(): params = Params.load_transformers_config(model_plus.model, hf_config_path) elif orig_config_path.exists(): params = Params.load_torch_params(model_plus.model, orig_config_path) elif model_plus.format != "none": params = Params.guessed(model_plus.model) else: raise ValueError("Cannot guess params when model format is none") params.path_model = model_plus.paths[0].parent return params class BpeVocab: # GPT def __init__( self, fname_tokenizer: Path, fname_added_tokens: Optional[Path] ) -> None: self.bpe_tokenizer = json.loads( open(str(fname_tokenizer), encoding="utf-8").read() ) added_tokens: dict[str, int] if fname_added_tokens is not None: # FIXME: Verify that added tokens here _cannot_ overlap with the main vocab. added_tokens = json.load(open(fname_added_tokens, encoding="utf-8")) else: # Fall back to trying to find the added tokens in tokenizer.json tokenizer_json_file = fname_tokenizer.parent / "tokenizer.json" if not tokenizer_json_file.is_file(): added_tokens = {} else: tokenizer_json = json.load(open(tokenizer_json_file, encoding="utf-8")) added_tokens = dict( (item["content"], item["id"]) for item in tokenizer_json.get("added_tokens", []) # Added tokens here can be duplicates of the main vocabulary. if item["content"] not in self.bpe_tokenizer ) vocab_size: int = len(self.bpe_tokenizer) expected_ids = list(range(vocab_size, vocab_size + len(added_tokens))) actual_ids = sorted(added_tokens.values()) if expected_ids != actual_ids: expected_end_id = vocab_size + len(actual_ids) - 1 raise Exception( f"Expected the {len(actual_ids)} added token ID(s) to be sequential in the range {vocab_size} - {expected_end_id}; got {actual_ids}" ) items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1]) self.added_tokens_list = [text for (text, idx) in items] self.vocab_size_base: int = vocab_size self.vocab_size: int = self.vocab_size_base + len(self.added_tokens_list) self.fname_tokenizer = fname_tokenizer self.fname_added_tokens = fname_added_tokens def bpe_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: tokenizer = self.bpe_tokenizer reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.items()} for i, _ in enumerate(tokenizer): yield reverse_vocab[i], 0.0, gguf.TokenType.NORMAL def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: for text in self.added_tokens_list: score = -1000.0 yield text.encode("utf-8"), score, gguf.TokenType.CONTROL def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: yield from self.bpe_tokens() yield from self.added_tokens() def __repr__(self) -> str: return f"" class SentencePieceVocab: # LlaMa def __init__( self, fname_tokenizer: Path, fname_added_tokens: Optional[Path] ) -> None: self.sentencepiece_tokenizer = SentencePieceProcessor(str(fname_tokenizer)) added_tokens: dict[str, int] if fname_added_tokens is not None: added_tokens = json.load(open(fname_added_tokens, encoding="utf-8")) else: added_tokens = {} vocab_size: int = self.sentencepiece_tokenizer.vocab_size() new_tokens = { id: piece for piece, id in added_tokens.items() if id >= vocab_size } expected_new_ids = list(range(vocab_size, vocab_size + len(new_tokens))) actual_new_ids = sorted(new_tokens.keys()) if expected_new_ids != actual_new_ids: raise ValueError( f"Expected new token IDs {expected_new_ids} to be sequential; got {actual_new_ids}" ) # Token pieces that were added to the base vocabulary. self.added_tokens_dict = added_tokens self.added_tokens_list = [new_tokens[id] for id in actual_new_ids] self.vocab_size_base = vocab_size self.vocab_size = self.vocab_size_base + len(self.added_tokens_list) self.fname_tokenizer = fname_tokenizer self.fname_added_tokens = fname_added_tokens def sentencepiece_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: tokenizer = self.sentencepiece_tokenizer for i in range(tokenizer.vocab_size()): piece = tokenizer.id_to_piece(i) text: bytes = piece.encode("utf-8") score: float = tokenizer.get_score(i) toktype = gguf.TokenType.NORMAL if tokenizer.is_unknown(i): toktype = gguf.TokenType.UNKNOWN if tokenizer.is_control(i): toktype = gguf.TokenType.CONTROL # NOTE: I think added_tokens are user defined. # ref: https://github.com/google/sentencepiece/blob/master/src/sentencepiece_model.proto # if tokenizer.is_user_defined(i): toktype = gguf.TokenType.USER_DEFINED if tokenizer.is_unused(i): toktype = gguf.TokenType.UNUSED if tokenizer.is_byte(i): toktype = gguf.TokenType.BYTE yield text, score, toktype def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: for text in self.added_tokens_list: score = -1000.0 yield text.encode("utf-8"), score, gguf.TokenType.USER_DEFINED def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: yield from self.sentencepiece_tokens() yield from self.added_tokens() def __repr__(self) -> str: return f"" class HfVocab: def __init__( self, fname_tokenizer: Path, fname_added_tokens: Optional[Path] = None, ) -> None: print("fname_tokenizer:", fname_tokenizer) # Allow the tokenizer to default to slow or fast versions. # Explicitly set tokenizer to use local paths. self.tokenizer = AutoTokenizer.from_pretrained( fname_tokenizer, cache_dir=fname_tokenizer, local_files_only=True, ) # Initialize lists and dictionaries for added tokens self.added_tokens_list = [] self.added_tokens_dict = dict() self.added_tokens_ids = set() # Process added tokens for tok, tokidx in sorted( self.tokenizer.get_added_vocab().items(), key=lambda x: x[1] ): # Only consider added tokens that are not in the base vocabulary if tokidx >= self.tokenizer.vocab_size: self.added_tokens_list.append(tok) self.added_tokens_dict[tok] = tokidx self.added_tokens_ids.add(tokidx) # Store special tokens and their IDs self.specials = { tok: self.tokenizer.get_vocab()[tok] for tok in self.tokenizer.all_special_tokens } self.special_ids = set(self.tokenizer.all_special_ids) # Set vocabulary sizes self.vocab_size_base = self.tokenizer.vocab_size self.vocab_size = self.vocab_size_base + len(self.added_tokens_list) self.fname_tokenizer = fname_tokenizer self.fname_added_tokens = fname_added_tokens def hf_tokens(self) -> Iterable[Tuple[bytes, float, gguf.TokenType]]: reverse_vocab = { id: encoded_tok for encoded_tok, id in self.tokenizer.get_vocab().items() } for token_id in range(self.vocab_size_base): # Skip processing added tokens here if token_id in self.added_tokens_ids: continue # Convert token text to bytes token_text = reverse_vocab[token_id].encode("utf-8") # Yield token text, score, and type yield token_text, self.get_token_score(token_id), self.get_token_type( token_id, self.special_ids # Reuse already stored special IDs ) def get_token_type(self, token_id: int, special_ids: set) -> gguf.TokenType: # Determine token type based on whether it's a special token return ( gguf.TokenType.CONTROL if token_id in special_ids else gguf.TokenType.NORMAL ) def get_token_score(self, token_id: int) -> float: # Placeholder for actual logic to determine the token's score # This needs to be implemented based on specific requirements return -1000.0 # Default score def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: for text in self.added_tokens_list: if text in self.specials: toktype = self.get_token_type(self.specials[text], self.special_ids) score = self.get_token_score(self.specials[text]) else: toktype = gguf.TokenType.USER_DEFINED score = -1000.0 yield text.encode("utf-8"), score, toktype def has_newline_token(self): return "<0x0A>" in self.tokenizer.vocab or "\n" in self.tokenizer.vocab def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: yield from self.hf_tokens() yield from self.added_tokens() def __repr__(self) -> str: return f"" Vocab: TypeAlias = "BpeVocab | SentencePieceVocab | HfVocab" # # data loading # TODO: reuse (probably move to gguf.py?) # def permute(weights: NDArray, n_head: int, n_head_kv: int) -> NDArray: # print( "permute debug " + str(weights.shape[0]) + " x " + str(weights.shape[1]) + " nhead " + str(n_head) + " nheadkv " + str(n_kv_head) ) if n_head_kv is not None and n_head != n_head_kv: n_head = n_head_kv return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) .swapaxes(1, 2) .reshape(weights.shape)) class Tensor(metaclass=ABCMeta): data_type: DataType @abstractmethod def astype(self, data_type: DataType) -> Tensor: ... @abstractmethod def permute(self, n_head: int, n_head_kv: int) -> Tensor: ... @abstractmethod def permute_part(self, n_part: int, n_head: int, n_head_kv: int) -> UnquantizedTensor: ... @abstractmethod def part(self, n_part: int) -> UnquantizedTensor: ... @abstractmethod def to_ggml(self) -> GGMLCompatibleTensor: ... def bf16_to_fp32(bf16_arr: np.ndarray[Any, np.dtype[np.uint16]]) -> NDArray: assert bf16_arr.dtype == np.uint16, f"Input array should be of dtype uint16, but got {bf16_arr.dtype}" fp32_arr = bf16_arr.astype(np.uint32) << 16 return fp32_arr.view(np.float32) class UnquantizedTensor(Tensor): def __init__(self, ndarray: NDArray) -> None: assert isinstance(ndarray, np.ndarray) self.ndarray = ndarray self.data_type = NUMPY_TYPE_TO_DATA_TYPE[ndarray.dtype] def astype(self, data_type: DataType) -> Tensor: dtype = data_type.dtype if self.data_type == DT_BF16: self.ndarray = bf16_to_fp32(self.ndarray) return UnquantizedTensor(self.ndarray.astype(dtype)) def to_ggml(self) -> UnquantizedTensor: return self def permute_part(self, n_part: int, n_head: int, n_head_kv: int) -> UnquantizedTensor: r = self.ndarray.shape[0] // 3 return UnquantizedTensor(permute(self.ndarray[r * n_part : r * n_part + r, ...], n_head, n_head_kv)) def part(self, n_part: int) -> UnquantizedTensor: r = self.ndarray.shape[0] // 3 return UnquantizedTensor(self.ndarray[r * n_part : r * n_part + r, ...]) def permute(self, n_head: int, n_head_kv: int) -> UnquantizedTensor: return UnquantizedTensor(permute(self.ndarray, n_head, n_head_kv)) def load_unquantized(lazy_tensor: LazyTensor, expected_dtype: Any = None, convert: bool = False) -> NDArray: tensor = lazy_tensor.load() assert isinstance(tensor, UnquantizedTensor) # double-check: actual_shape = list(tensor.ndarray.shape) assert actual_shape == lazy_tensor.shape, (actual_shape, lazy_tensor.shape) if expected_dtype is not None and expected_dtype != tensor.ndarray.dtype: if convert: tensor.ndarray = tensor.ndarray.astype(expected_dtype) else: raise ValueError(f'expected this tensor to have dtype {expected_dtype}, got {tensor.ndarray.dtype}') return tensor.ndarray GGMLCompatibleTensor = UnquantizedTensor @dataclass class LazyTensor: _load: Callable[[], Tensor] shape: list[int] data_type: DataType description: str def load(self) -> Tensor: ret = self._load() # Should be okay if it maps to the same numpy type? assert ret.data_type == self.data_type or (self.data_type.dtype == ret.data_type.dtype), \ (self.data_type, ret.data_type, self.description) return ret def astype(self, data_type: DataType) -> LazyTensor: self.validate_conversion_to(data_type) def load() -> Tensor: return self.load().astype(data_type) return LazyTensor(load, self.shape, data_type, f'convert({data_type}) {self.description}') def validate_conversion_to(self, data_type: DataType) -> None: if data_type != self.data_type and data_type.name not in self.data_type.valid_conversions: raise ValueError(f'Cannot validate conversion from {self.data_type} to {data_type}.') LazyModel: TypeAlias = 'dict[str, LazyTensor]' @dataclass class ModelPlus: model: LazyModel paths: list[Path] # Where this was read from. format: Literal['ggml', 'torch', 'safetensors', 'none'] vocab: Vocab | None # For GGML models (which have vocab built in), the vocab. def merge_sharded(models: list[LazyModel]) -> LazyModel: # Original LLaMA models have each file contain one part of each tensor. # Use a dict instead of a set to preserve order. names = {name: None for model in models for name in model} def convert(name: str) -> LazyTensor: lazy_tensors: list[LazyTensor] = [model[name] for model in models] if len(lazy_tensors) == 1: # only one file; don't go through this procedure since there might # be quantized tensors return lazy_tensors[0] if len(lazy_tensors[0].shape) == 1: # the tensor is just duplicated in every file return lazy_tensors[0] if name.startswith('tok_embeddings.') or \ name.endswith('.attention.wo.weight') or \ name.endswith('.feed_forward.w2.weight'): # split by columns axis = 1 else: # split by rows axis = 0 concatenated_shape = list(lazy_tensors[0].shape) concatenated_shape[axis] = sum(tensor.shape[axis] for tensor in lazy_tensors) def load() -> UnquantizedTensor: ndarrays = [load_unquantized(tensor) for tensor in lazy_tensors] concatenated: NDArray = np.concatenate(ndarrays, axis=axis) return UnquantizedTensor(concatenated) description = 'concatenated[[' + '] | ['.join(lt.description for lt in lazy_tensors) + ']]' return LazyTensor(load, concatenated_shape, lazy_tensors[0].data_type, description) return {name: convert(name) for name in names} def merge_multifile_models(models_plus: list[ModelPlus]) -> ModelPlus: formats = set(mp.format for mp in models_plus) assert len(formats) == 1, "different formats?" format = formats.pop() paths = [path for mp in models_plus for path in mp.paths] # Use the first non-None vocab, if any. try: vocab = next(mp.vocab for mp in models_plus if mp.vocab is not None) except StopIteration: vocab = None if any("model.embed_tokens.weight" in mp.model for mp in models_plus): # Transformers models put different tensors in different files, but # don't split individual tensors between files. model: LazyModel = {} for mp in models_plus: model.update(mp.model) else: model = merge_sharded([mp.model for mp in models_plus]) return ModelPlus(model, paths, format, vocab) def permute_lazy(lazy_tensor: LazyTensor, n_head: int, n_head_kv: int) -> LazyTensor: def load() -> Tensor: return lazy_tensor.load().permute(n_head, n_head_kv) return LazyTensor(load, lazy_tensor.shape, lazy_tensor.data_type, f'permute({n_head}, {n_head_kv}) ' + lazy_tensor.description) def permute_part_lazy(lazy_tensor: LazyTensor, n_part: int, n_head: int, n_head_kv: int) -> LazyTensor: def load() -> Tensor: return lazy_tensor.load().permute_part(n_part, n_head, n_head_kv) s = lazy_tensor.shape.copy() s[0] = s[0] // 3 return LazyTensor(load, s, lazy_tensor.data_type, f'permute({n_head}, {n_head_kv}) ' + lazy_tensor.description) def part_lazy(lazy_tensor: LazyTensor, n_part: int) -> LazyTensor: def load() -> Tensor: return lazy_tensor.load().part(n_part) s = lazy_tensor.shape.copy() s[0] = s[0] // 3 return LazyTensor(load, s, lazy_tensor.data_type, 'part ' + lazy_tensor.description) # Functionality that simulates `torch.load` but where individual tensors are # only loaded into memory on demand, not all at once. # PyTorch can't do this natively as of time of writing: # - https://github.com/pytorch/pytorch/issues/64327 # This allows us to de-shard without multiplying RAM usage, and also # conveniently drops the PyTorch dependency (though we still need numpy). @dataclass class LazyStorageKind: data_type: DataType @dataclass class LazyStorage: load: Callable[[int, int], NDArray] kind: LazyStorageKind description: str class LazyUnpickler(pickle.Unpickler): def __init__(self, fp: IO[bytes], data_base_path: str, zip_file: zipfile.ZipFile): super().__init__(fp) self.data_base_path = data_base_path self.zip_file = zip_file def persistent_load(self, pid: Any) -> Any: assert pid[0] == 'storage' assert isinstance(pid[1], LazyStorageKind) data_type = pid[1].data_type filename_stem = pid[2] filename = f'{self.data_base_path}/{filename_stem}' info = self.zip_file.getinfo(filename) def load(offset: int, elm_count: int) -> NDArray: dtype = data_type.dtype fp = self.zip_file.open(info) fp.seek(offset * dtype.itemsize) size = elm_count * dtype.itemsize data = fp.read(size) assert len(data) == size return np.frombuffer(data, dtype) description = f'storage data_type={data_type} path-in-zip={filename} path={self.zip_file.filename}' return LazyStorage(load=load, kind=pid[1], description=description) @staticmethod def lazy_rebuild_tensor_v2(storage: Any, storage_offset: Any, size: Any, stride: Any, requires_grad: Any, backward_hooks: Any, metadata: Any = None) -> LazyTensor: assert isinstance(storage, LazyStorage) def load() -> UnquantizedTensor: elm_count = stride[0] * size[0] return UnquantizedTensor(storage.load(storage_offset, elm_count).reshape(size)) description = f'pickled storage_offset={storage_offset} in {storage.description}' return LazyTensor(load, list(size), storage.kind.data_type, description) @staticmethod def rebuild_from_type_v2(func, new_type, args, state): return func(*args) CLASSES: dict[tuple[str, str], Any] = { # getattr used here as a workaround for mypy not being smart enough to determine # the staticmethods have a __func__ attribute. ("torch._tensor", "_rebuild_from_type_v2"): getattr( rebuild_from_type_v2, "__func__" ), ("torch._utils", "_rebuild_tensor_v2"): getattr( lazy_rebuild_tensor_v2, "__func__" ), ("torch", "BFloat16Storage"): LazyStorageKind(DT_BF16), ("torch", "HalfStorage"): LazyStorageKind(DT_F16), ("torch", "FloatStorage"): LazyStorageKind(DT_F32), ("torch", "IntStorage"): LazyStorageKind(DT_I32), ("torch", "Tensor"): LazyTensor, } def find_class(self, module: str, name: str) -> Any: if not module.startswith('torch'): return super().find_class(module, name) return self.CLASSES[(module, name)] def lazy_load_torch_file(outer_fp: IO[bytes], path: Path) -> ModelPlus: zf = zipfile.ZipFile(outer_fp) pickle_paths = [name for name in zf.namelist() if name.endswith('.pkl')] assert len(pickle_paths) == 1, pickle_paths pickle_fp = zf.open(pickle_paths[0], 'r') unpickler = LazyUnpickler(pickle_fp, data_base_path=pickle_paths[0][:-4], zip_file=zf) model = unpickler.load() if 'model' in model: model = model['model'] as_dict = dict(model.items()) return ModelPlus(model=as_dict, paths=[path], format='torch', vocab=None) def lazy_load_safetensors_file(fp: IO[bytes], path: Path) -> ModelPlus: header_size, = struct.unpack(' LazyTensor: data_type = SAFETENSORS_DATA_TYPES[info['dtype']] numpy_dtype = data_type.dtype shape: list[int] = info['shape'] begin, end = info['data_offsets'] assert 0 <= begin <= end <= len(byte_buf) assert end - begin == math.prod(shape) * numpy_dtype.itemsize buf = byte_buf[begin:end] def load() -> UnquantizedTensor: return UnquantizedTensor(np.frombuffer(buf, dtype=numpy_dtype).reshape(shape)) description = f'safetensors begin={begin} end={end} type={data_type} path={path}' return LazyTensor(load, shape, data_type, description) model = {name: convert(info) for (name, info) in header.items() if name != '__metadata__'} return ModelPlus(model=model, paths=[path], format='safetensors', vocab=None) def must_read(fp: IO[bytes], length: int) -> bytes: ret = fp.read(length) if len(ret) < length: raise Exception("unexpectedly reached end of file") return ret @functools.lru_cache(maxsize=None) def lazy_load_file(path: Path) -> ModelPlus: fp = open(path, 'rb') first8 = fp.read(8) fp.seek(0) if first8[:2] == b'PK': # A zip file, i.e. PyTorch format return lazy_load_torch_file(fp, path) elif struct.unpack(' Iterable[Out]: '''Parallel map, but with backpressure. If the caller doesn't call `next` fast enough, this will stop calling `func` at some point rather than letting results pile up in memory. Specifically, there is a max of one output value buffered per thread.''' if concurrency < 2: yield from map(func, iterable) # Not reached. iterable = iter(iterable) executor_class: type[ThreadPoolExecutor] | type[ProcessPoolExecutor] if use_processpool_executor: executor_class = ProcessPoolExecutor else: executor_class = ThreadPoolExecutor with executor_class(max_workers = max_workers) as executor: futures: list[concurrent.futures.Future[Out]] = [] done = False for _ in range(concurrency): try: futures.append(executor.submit(func, next(iterable))) except StopIteration: done = True break while futures: result = futures.pop(0).result() while not done and len(futures) < concurrency: try: futures.append(executor.submit(func, next(iterable))) except StopIteration: done = True break yield result def check_vocab_size(params: Params, vocab: Vocab, pad_vocab: bool = False) -> None: # Handle special case where the model's vocab size is not set if params.n_vocab == -1: raise ValueError( f"The model's vocab size is set to -1 in params.json. Please update it manually. Maybe {vocab.vocab_size}?" ) # Check for a vocab size mismatch if params.n_vocab == vocab.vocab_size: print("Ignoring added_tokens.json since model matches vocab size without it.") return if pad_vocab and params.n_vocab > vocab.vocab_size: pad_count = params.n_vocab - vocab.vocab_size print( f"Padding vocab with {pad_count} token(s) - through " ) for i in range(1, pad_count + 1): vocab.added_tokens_dict[f""] = -1 vocab.vocab_size = params.n_vocab return msg = f"Vocab size mismatch (model has {params.n_vocab}, but {vocab.fname_tokenizer} has {vocab.vocab_size})." if vocab.vocab_size < params.n_vocab < vocab.vocab_size + 20: msg += f" Most likely you are missing added_tokens.json (should be in {vocab.fname_tokenizer.parent})." if vocab.vocab_size < params.n_vocab: msg += " Add the --pad-vocab option and try again." raise Exception(msg) class OutputFile: def __init__( self, fname_out: Path, endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE ) -> None: self.gguf = gguf.GGUFWriter( fname_out, gguf.MODEL_ARCH_NAMES[ARCH], endianess=endianess ) def add_meta_arch(self, params: Params) -> None: name = "LLaMA" # TODO: better logic to determine model name if params.n_ctx == 4096: name = "LLaMA v2" elif params.path_model is not None: name = str(params.path_model.parent).split("/")[-1] self.gguf.add_name(name) self.gguf.add_context_length(params.n_ctx) self.gguf.add_embedding_length(params.n_embd) self.gguf.add_block_count(params.n_layer) self.gguf.add_feed_forward_length(params.n_ff) self.gguf.add_rope_dimension_count(params.n_embd // params.n_head) self.gguf.add_head_count(params.n_head) self.gguf.add_head_count_kv(params.n_head_kv) if params.f_norm_eps is None: raise ValueError("f_norm_eps is None") self.gguf.add_layer_norm_rms_eps(params.f_norm_eps) if params.n_experts: self.gguf.add_expert_count(params.n_experts) if params.n_experts_used: self.gguf.add_expert_used_count(params.n_experts_used) if params.f_rope_freq_base is not None: self.gguf.add_rope_freq_base(params.f_rope_freq_base) if params.rope_scaling_type: assert params.f_rope_scale is not None self.gguf.add_rope_scaling_type(params.rope_scaling_type) self.gguf.add_rope_scaling_factor(params.f_rope_scale) if params.n_orig_ctx is not None: self.gguf.add_rope_scaling_orig_ctx_len(params.n_orig_ctx) if params.rope_finetuned is not None: self.gguf.add_rope_scaling_finetuned(params.rope_finetuned) if params.ftype is not None: self.gguf.add_file_type(params.ftype) def handle_tokenizer_model(self, vocab: Vocab) -> str: # Map the vocab types to the supported tokenizer models tokenizer_model = { SentencePieceVocab: "llama", HfVocab: "llama", BpeVocab: "gpt2", }.get(type(vocab)) # Block if vocab type is not predefined if tokenizer_model is None: raise ValueError("Unknown vocab type: Not supported") return tokenizer_model def extract_vocabulary_from_model(self, vocab: Vocab) -> Tuple[list, list, list]: tokens = [] scores = [] toktypes = [] # NOTE: `all_tokens` returns the base vocabulary and added tokens for text, score, toktype in vocab.all_tokens(): tokens.append(text) scores.append(score) toktypes.append(toktype) return tokens, scores, toktypes def add_meta_vocab(self, vocab: Vocab) -> None: # Handle the tokenizer model tokenizer_model = self.handle_tokenizer_model(vocab) # Ensure that tokenizer_model is added to the GGUF model self.gguf.add_tokenizer_model(tokenizer_model) # Extract model vocabulary for model conversion tokens, scores, toktypes = self.extract_vocabulary_from_model(vocab) # Add extracted token information for model conversion self.gguf.add_token_list(tokens) self.gguf.add_token_scores(scores) self.gguf.add_token_types(toktypes) def add_meta_special_vocab(self, svocab: gguf.SpecialVocab) -> None: svocab.add_to_gguf(self.gguf) def add_tensor_info(self, name: str, tensor: LazyTensor) -> None: n_elements = int(np.prod(tensor.shape)) raw_dtype = getattr(tensor.data_type, "ggml_type", None) data_type = ( getattr(tensor.data_type, "quantized_type", None) or tensor.data_type.dtype ) data_nbytes = tensor.data_type.elements_to_bytes(n_elements) self.gguf.add_tensor_info( name, tensor.shape, data_type, data_nbytes, raw_dtype=raw_dtype ) def write_meta(self) -> None: self.gguf.write_header_to_file() self.gguf.write_kv_data_to_file() def write_tensor_info(self) -> None: self.gguf.write_ti_data_to_file() def close(self) -> None: self.gguf.close() @staticmethod def write_vocab_only( fname_out: Path, params: Params, vocab: Vocab, svocab: gguf.SpecialVocab, endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE, pad_vocab: bool = False, ) -> None: check_vocab_size(params, vocab, pad_vocab=pad_vocab) of = OutputFile(fname_out, endianess=endianess) # meta data of.add_meta_arch(params) of.add_meta_vocab(vocab) of.add_meta_special_vocab(svocab) of.write_meta() of.close() @staticmethod def do_item(item: tuple[str, LazyTensor]) -> tuple[DataType, NDArray]: name, lazy_tensor = item tensor = lazy_tensor.load().to_ggml() return (lazy_tensor.data_type, tensor.ndarray) @staticmethod def maybe_do_quantize(item: tuple[DataType, NDArray]) -> NDArray: dt, arr = item if not isinstance(dt, QuantizedDataType): return arr return dt.quantize(arr) @staticmethod def write_all( fname_out: Path, ftype: GGMLFileType, params: Params, model: LazyModel, vocab: Vocab, svocab: gguf.SpecialVocab, concurrency: int = DEFAULT_CONCURRENCY, endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE, pad_vocab: bool = False, ) -> None: check_vocab_size(params, vocab, pad_vocab=pad_vocab) of = OutputFile(fname_out, endianess=endianess) # meta data of.add_meta_arch(params) of.add_meta_vocab(vocab) of.add_meta_special_vocab(svocab) # tensor info for name, lazy_tensor in model.items(): of.add_tensor_info(name, lazy_tensor) of.write_meta() of.write_tensor_info() # tensor data ndarrays_inner = bounded_parallel_map( OutputFile.do_item, model.items(), concurrency=concurrency ) if ftype == GGMLFileType.MostlyQ8_0: ndarrays = bounded_parallel_map( OutputFile.maybe_do_quantize, ndarrays_inner, concurrency=concurrency, max_workers=concurrency, use_processpool_executor=True, ) else: ndarrays = map(OutputFile.maybe_do_quantize, ndarrays_inner) start = time.time() for i, ((name, lazy_tensor), ndarray) in enumerate( zip(model.items(), ndarrays) ): elapsed = time.time() - start size = " x ".join(f"{dim:6d}" for dim in lazy_tensor.shape) padi = len(str(len(model))) print( f"[{i+1:{padi}d}/{len(model)}] Writing tensor {name:38s} | size {size:16} | type {lazy_tensor.data_type.name:4} | T+{int(elapsed):4}" ) of.gguf.write_tensor_data(ndarray) of.close() def pick_output_type(model: LazyModel, output_type_str: str | None) -> GGMLFileType: wq_type = model[gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ATTN_Q].format(bid=0) + ".weight"].data_type if output_type_str == "f32" or (output_type_str is None and wq_type == DT_F32): return GGMLFileType.AllF32 if output_type_str == "f16" or (output_type_str is None and wq_type in (DT_F16, DT_BF16)): return GGMLFileType.MostlyF16 if output_type_str == "q8_0": return GGMLFileType.MostlyQ8_0 name_to_type = {name: lazy_tensor.data_type for (name, lazy_tensor) in model.items()} raise Exception(f"Unexpected combination of types: {name_to_type}") def convert_to_output_type(model: LazyModel, output_type: GGMLFileType) -> LazyModel: return {name: tensor.astype(output_type.type_for_tensor(name, tensor)) for (name, tensor) in model.items()} def convert_model_names(model: LazyModel, params: Params) -> LazyModel: tmap = gguf.TensorNameMap(ARCH, params.n_layer) should_skip: set[gguf.MODEL_TENSOR] = set(gguf.MODEL_TENSOR_SKIP.get(ARCH, [])) tmp = model # HF models permut or pack some of the tensors, so we need to undo that for i in itertools.count(): if f"model.layers.{i}.self_attn.q_proj.weight" in model: print(f"Permuting layer {i}") tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], params.n_head, params.n_head) tmp[f"model.layers.{i}.self_attn.k_proj.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], params.n_head, params.n_head_kv) # tmp[f"model.layers.{i}.self_attn.v_proj.weight"] = model[f"model.layers.{i}.self_attn.v_proj.weight"] elif f"model.layers.{i}.self_attn.W_pack.weight" in model: print(f"Unpacking and permuting layer {i}") tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 0, params.n_head, params.n_head) tmp[f"model.layers.{i}.self_attn.k_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 1, params.n_head, params.n_head_kv) tmp[f"model.layers.{i}.self_attn.v_proj.weight"] = part_lazy (model[f"model.layers.{i}.self_attn.W_pack.weight"], 2) del tmp[f"model.layers.{i}.self_attn.W_pack.weight"] else: break out: LazyModel = {} for name, lazy_tensor in model.items(): tensor_type, name_new = tmap.get_type_and_name(name, try_suffixes = (".weight", ".bias")) or (None, None) if name_new is None: raise Exception(f"Unexpected tensor name: {name}") if tensor_type in should_skip: print(f"skipping tensor {name_new}") continue print(f"{name:48s} -> {name_new:40s} | {lazy_tensor.data_type.name:6s} | {lazy_tensor.shape}") out[name_new] = lazy_tensor return out def nth_multifile_path(path: Path, n: int) -> Path | None: '''Given any path belonging to a multi-file model (e.g. foo.bin.1), return the nth path in the model. ''' # Support the following patterns: patterns: list[tuple[str, str]] = [ # - x.00.pth, x.01.pth, etc. (r'\.[0-9]{2}\.pth$', f'.{n:02}.pth'), # - x-00001-of-00002.bin, x-00002-of-00002.bin, etc. (r'-[0-9]{5}-of-(.*)$', fr'-{n:05}-of-\1'), # x.bin, x.bin.1, etc. (r'(\.[0-9]+)?$', r'\1' if n == 0 else fr'\1.{n}') ] for regex, replacement in patterns: if re.search(regex, path.name): new_path = path.with_name(re.sub(regex, replacement, path.name)) if new_path.exists(): return new_path return None def find_multifile_paths(path: Path) -> list[Path]: '''Given any path belonging to a multi-file model (e.g. foo.bin.1), return the whole list of paths in the model. ''' ret: list[Path] = [] for i in itertools.count(): nth_path = nth_multifile_path(path, i) if nth_path is None: break ret.append(nth_path) if not ret: # No matches. This should only happen if the file was named, e.g., # foo.0, and there was no file named foo. Oh well, try to process it # as a single file. return [path] return ret def load_some_model(path: Path) -> ModelPlus: '''Load a model of any supported format.''' # Be extra-friendly and accept either a file or a directory: if path.is_dir(): # Check if it's a set of safetensors files first globs = ["model-00001-of-*.safetensors", "model.safetensors"] files = [file for glob in globs for file in path.glob(glob)] if not files: # Try the PyTorch patterns too, with lower priority globs = ["consolidated.00.pth", "pytorch_model-00001-of-*.bin", "*.pt", "pytorch_model.bin"] files = [file for glob in globs for file in path.glob(glob)] if not files: raise Exception(f"Can't find model in directory {path}") if len(files) > 1: raise Exception(f"Found multiple models in {path}, not sure which to pick: {files}") path = files[0] paths = find_multifile_paths(path) models_plus: list[ModelPlus] = [] for path in paths: print(f"Loading model file {path}") models_plus.append(lazy_load_file(path)) model_plus = merge_multifile_models(models_plus) return model_plus class VocabFactory: def __init__(self, path: Path): self.path = path self.files = { "tokenizer.model": None, "vocab.json": None, "tokenizer.json": None, } self._detect_files() def _detect_files(self): for file in self.files.keys(): file_path = self.path / file parent_file_path = self.path.parent / file if file_path.exists(): self.files[file] = file_path elif parent_file_path.exists(): self.files[file] = parent_file_path def _select_file(self, vocabtype: Optional[str]) -> Path: if vocabtype in ["spm", "bpe"]: # For SentencePiece and BPE, return specific files as before file_key = "tokenizer.model" if vocabtype == "spm" else "vocab.json" if self.files[file_key]: return self.files[file_key] else: raise FileNotFoundError(f"{vocabtype} {file_key} not found.") elif vocabtype == "hfft": # For Hugging Face Fast Tokenizer, return the directory path instead of a specific file return self.path else: raise ValueError(f"Unsupported vocabulary type {vocabtype}") def _create_special_vocab( self, vocab: Vocab, vocabtype: str, model_parent_path: Path, ) -> gguf.SpecialVocab: load_merges = vocabtype == "bpe" n_vocab = vocab.vocab_size if hasattr(vocab, "vocab_size") else None return gguf.SpecialVocab( model_parent_path, load_merges=load_merges, special_token_types=None, # Predetermined or passed as a parameter n_vocab=n_vocab, ) def load_vocab( self, vocabtype: str, model_parent_path: Path ) -> Tuple[Vocab, gguf.SpecialVocab]: path = self._select_file(vocabtype) print(f"Loading vocab file '{path}', type '{vocabtype}'") added_tokens_path = path.parent / "added_tokens.json" if vocabtype == "bpe": vocab = BpeVocab( path, added_tokens_path if added_tokens_path.exists() else None ) elif vocabtype == "spm": vocab = SentencePieceVocab( path, added_tokens_path if added_tokens_path.exists() else None ) elif vocabtype == "hfft": vocab = HfVocab( path, added_tokens_path if added_tokens_path.exists() else None ) else: raise ValueError(f"Unsupported vocabulary type {vocabtype}") special_vocab = self._create_special_vocab( vocab, vocabtype, model_parent_path, ) return vocab, special_vocab def default_output_file(model_paths: list[Path], file_type: GGMLFileType) -> Path: namestr = { GGMLFileType.AllF32: "f32", GGMLFileType.MostlyF16: "f16", GGMLFileType.MostlyQ8_0: "q8_0", }[file_type] ret = model_paths[0].parent / f"ggml-model-{namestr}.gguf" if ret in model_paths: sys.stderr.write( f"Error: Default output path ({ret}) would overwrite the input. " "Please explicitly specify a path using --outfile.\n" ) sys.exit(1) return ret def do_dump_model(model_plus: ModelPlus) -> None: print(f"model_plus.paths = {model_plus.paths!r}") print(f"model_plus.format = {model_plus.format!r}") print(f"model_plus.vocab = {model_plus.vocab!r}") for name, lazy_tensor in model_plus.model.items(): print( f"{name}: shape={lazy_tensor.shape} type={lazy_tensor.data_type}; {lazy_tensor.description}" ) def get_argument_parser() -> ArgumentParser: output_choices = ["f32", "f16"] if np.uint32(1) == np.uint32(1).newbyteorder("<"): # We currently only support Q8_0 output on little endian systems. output_choices.append("q8_0") parser = argparse.ArgumentParser( description="Convert a LLaMa model to a GGML compatible file" ) parser.add_argument( "model", type=Path, help="Directory containing the model file or the model file itself (*.pth, *.pt, *.bin)", ) parser.add_argument( "--awq-path", type=Path, help="Path to the Activation-aware Weight Quantization cache file", default=None, ) parser.add_argument( "--dump", action="store_true", help="Display the model content without converting it", ) parser.add_argument( "--dump-single", action="store_true", help="Display the content of a single model file without conversion", ) parser.add_argument( "--vocab-only", action="store_true", help="Extract and output only the vocabulary", ) parser.add_argument( "--outtype", choices=output_choices, help="Output format - note: q8_0 may be very slow (default: f16 or f32 based on input)", ) parser.add_argument( "--vocab-dir", type=Path, help="Directory containing the tokenizer.model, if separate from the model file", ) parser.add_argument( "--vocab-type", choices=["spm", "bpe", "hfft"], # hfft: Hugging Face Fast Tokenizer default="spm", help="The vocabulary format used to define the tokenizer model (default: spm)", ) parser.add_argument( "--pad-vocab", action="store_true", help="Add padding tokens when the model's vocabulary size exceeds the tokenizer metadata", ) parser.add_argument( "--outfile", type=Path, help="Specify the path for the output file (default is based on input)", ) parser.add_argument( "--ctx", type=int, help="Model training context (default is based on input)" ) parser.add_argument( "--concurrency", type=int, help=f"Concurrency used for conversion (default: {DEFAULT_CONCURRENCY})", default=DEFAULT_CONCURRENCY, ) parser.add_argument( "--big-endian", action="store_true", help="Indicate that the model is executed on a big-endian machine", ) return parser def main(argv: Optional[list[str]] = None) -> None: parser = get_argument_parser() args = parser.parse_args(argv) if args.awq_path: sys.path.insert(1, str(Path(__file__).resolve().parent / "awq-py")) from awq.apply_awq import add_scale_weights tmp_model_path = args.model / "weighted_model" if tmp_model_path.is_dir(): print(f"{tmp_model_path} exists as a weighted model.") else: tmp_model_path.mkdir(parents=True, exist_ok=True) print("Saving new weighted model ...") add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path)) print(f"Saved weighted model at {tmp_model_path}.") args.model = tmp_model_path if args.dump_single: model_plus = lazy_load_file(args.model) do_dump_model(model_plus) return if not args.vocab_only: model_plus = load_some_model(args.model) else: model_plus = ModelPlus( model={}, paths=[args.model / "dummy"], format="none", vocab=None ) if args.dump: do_dump_model(model_plus) return endianess = gguf.GGUFEndian.LITTLE if args.big_endian: endianess = gguf.GGUFEndian.BIG params = Params.load(model_plus) if params.n_ctx == -1: if args.ctx is None: raise Exception( "The model doesn't have a context size, and you didn't specify one with --ctx\n" "Please specify one with --ctx:\n" " - LLaMA v1: --ctx 2048\n" " - LLaMA v2: --ctx 4096\n" ) params.n_ctx = args.ctx if args.outtype: params.ftype = { "f32": GGMLFileType.AllF32, "f16": GGMLFileType.MostlyF16, "q8_0": GGMLFileType.MostlyQ8_0, }[args.outtype] print(f"params = {params}") model_parent_path = model_plus.paths[0].parent vocab_path = Path(args.vocab_dir or args.model or model_parent_path) vocab_factory = VocabFactory(vocab_path) vocab, special_vocab = vocab_factory.load_vocab(args.vocab_type, model_parent_path) if args.vocab_only: if not args.outfile: raise ValueError("need --outfile if using --vocab-only") outfile = args.outfile OutputFile.write_vocab_only( outfile, params, vocab, special_vocab, endianess=endianess, pad_vocab=args.pad_vocab, ) print(f"Wrote {outfile}") return if model_plus.vocab is not None and args.vocab_dir is None: vocab = model_plus.vocab model = model_plus.model model = convert_model_names(model, params) ftype = pick_output_type(model, args.outtype) model = convert_to_output_type(model, ftype) outfile = args.outfile or default_output_file(model_plus.paths, ftype) params.ftype = ftype print(f"Writing {outfile}, format {ftype}") OutputFile.write_all( outfile, ftype, params, model, vocab, special_vocab, concurrency=args.concurrency, endianess=endianess, pad_vocab=args.pad_vocab, ) print(f"Wrote {outfile}") if __name__ == "__main__": main(sys.argv[1:]) # Exclude the first element (script name) from sys.argv