#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA) && CUDART_VERSION >= 11700 #define USE_CUB #endif // !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA) && CUDART_VERSION >= 11700 #ifdef USE_CUB #include using namespace cub; #endif // USE_CUB #include "sumrows.cuh" #include "sum.cuh" #include void sum_f32_cuda(ggml_cuda_pool & pool, const float * x, float * dst, const int64_t ne, cudaStream_t stream) { #ifdef USE_CUB size_t tmp_size = 0; DeviceReduce::Sum(nullptr, tmp_size, x, dst, ne, stream); ggml_cuda_pool_alloc tmp_alloc(pool, tmp_size); DeviceReduce::Sum(tmp_alloc.ptr, tmp_size, x, dst, ne, stream); #else // Use (inefficient) sum_rows implementation as a fallback. // For AMD there is rocPRIM which could be used as a drop-in replacement via hipcub but this would require C++11 -> C++14. sum_rows_f32_cuda(x, dst, ne, 1, stream); GGML_UNUSED(pool); #endif // USE_CUB } void ggml_cuda_op_sum(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); GGML_ASSERT(ggml_is_contiguous(src0)); const float * src0_d = (const float *) src0->data; float * dst_d = (float *) dst->data; const int64_t ne = ggml_nelements(src0); ggml_cuda_pool & pool = ctx.pool(); cudaStream_t stream = ctx.stream(); sum_f32_cuda(pool, src0_d, dst_d, ne, stream); }