#include "common.h" #include "llama.h" #include #include #include #include int main(int argc, char ** argv) { gpt_params params; if (argc == 1 || argv[1][0] == '-') { printf("usage: %s MODEL_PATH [PROMPT]\n" , argv[0]); return 1 ; } if (argc >= 2) { params.model = argv[1]; } if (argc >= 3) { params.prompt = argv[2]; } if (params.prompt.empty()) { params.prompt = "Hello my name is"; } // total length of the sequence including the prompt const int n_len = 32; // init LLM llama_backend_init(params.numa); llama_context_params ctx_params = llama_context_default_params(); ctx_params.seed = 1234; ctx_params.n_ctx = 2048; llama_model * model = llama_load_model_from_file(params.model.c_str(), ctx_params); if (model == NULL) { fprintf(stderr , "%s: error: unable to load model\n" , __func__); return 1; } llama_context * ctx = llama_new_context_with_model(model, ctx_params); if (ctx == NULL) { fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__); return 1; } // tokenize the prompt std::vector tokens_list; tokens_list = ::llama_tokenize(ctx, params.prompt, true); const int n_ctx = llama_n_ctx(ctx); const int n_kv_req = tokens_list.size() + (n_len - tokens_list.size()); LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_kv_req = %d\n", __func__, n_len, n_ctx, n_kv_req); // make sure the KV cache is big enough to hold all the prompt and generated tokens if (n_kv_req > n_ctx) { LOG_TEE("%s: error: n_kv_req > n_ctx, the required KV cache size is not big enough\n", __func__); LOG_TEE("%s: either reduce n_parallel or increase n_ctx\n", __func__); return 1; } // print the prompt token-by-token fprintf(stderr, "\n"); for (auto id : tokens_list) { fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str()); } fflush(stderr); // create a llama_batch with size 512 // we use this object to submit token data for decoding llama_batch batch = llama_batch_init(512, 0); // evaluate the initial prompt batch.n_tokens = tokens_list.size(); for (int32_t i = 0; i < batch.n_tokens; i++) { batch.token[i] = tokens_list[i]; batch.pos[i] = i; batch.seq_id[i] = 0; batch.logits[i] = false; } // llama_decode will output logits only for the last token of the prompt batch.logits[batch.n_tokens - 1] = true; if (llama_decode(ctx, batch, params.n_threads) != 0) { LOG_TEE("%s: llama_decode() failed\n", __func__); return 1; } // main loop int n_cur = batch.n_tokens; int n_decode = 0; const auto t_main_start = ggml_time_us(); while (n_cur <= n_len) { // evaluate the current batch with the transformer model if (llama_decode(ctx, batch, params.n_threads)) { fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1); return 1; } // sample the next token { auto n_vocab = llama_n_vocab(ctx); auto logits = llama_get_logits_ith(ctx, batch.n_tokens - 1); std::vector candidates; candidates.reserve(n_vocab); for (llama_token token_id = 0; token_id < n_vocab; token_id++) { candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f }); } llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; // sample the most likely token const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p); // is it an end of stream? if (new_token_id == llama_token_eos(ctx) || n_cur == n_len) { LOG_TEE("\n"); break; } LOG_TEE("%s", llama_token_to_piece(ctx, new_token_id).c_str()); fflush(stdout); // prepare the next batch batch.n_tokens = 0; // push this new token for next evaluation batch.token [batch.n_tokens] = new_token_id; batch.pos [batch.n_tokens] = n_cur; batch.seq_id[batch.n_tokens] = 0; batch.logits[batch.n_tokens] = true; batch.n_tokens += 1; n_decode += 1; } n_cur += 1; } LOG_TEE("\n"); const auto t_main_end = ggml_time_us(); LOG_TEE("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n", __func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f)); llama_print_timings(ctx); fprintf(stderr, "\n"); llama_batch_free(batch); llama_free(ctx); llama_free_model(model); llama_backend_free(); return 0; }