#pragma once #include "llama.h" #include <array> // bump if necessary #define LLAMA_MAX_LAYERS 512 #define LLAMA_MAX_EXPERTS 256 // DeepSeekV3 enum llama_expert_gating_func_type { LLAMA_EXPERT_GATING_FUNC_TYPE_NONE = 0, LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX = 1, LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID = 2, }; struct llama_hparams_posnet { uint32_t n_embd; uint32_t n_layer; }; struct llama_hparams_convnext { uint32_t n_embd; uint32_t n_layer; }; struct llama_hparams { bool vocab_only; bool rope_finetuned; bool use_par_res; bool swin_norm; uint32_t n_ctx_train; // context size the model was trained on uint32_t n_embd; uint32_t n_embd_features = 0; uint32_t n_layer; uint32_t n_rot; uint32_t n_swa = 0; // sliding window attention (SWA) uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head uint32_t n_expert = 0; uint32_t n_expert_used = 0; uint32_t n_rel_attn_bkts = 0; // for WavTokenizer struct llama_hparams_posnet posnet; struct llama_hparams_convnext convnext; std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_arr; std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_kv_arr; std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr; uint32_t n_layer_dense_lead = 0; uint32_t n_lora_q = 0; uint32_t n_lora_kv = 0; uint32_t n_ff_exp = 0; uint32_t n_ff_shexp = 0; uint32_t n_expert_shared = 0; uint32_t n_norm_groups = 0; float expert_weights_scale = 0.0; bool expert_weights_norm = false; uint32_t expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_NONE; float f_norm_eps; float f_norm_rms_eps; float f_norm_group_eps; float f_attn_logit_softcapping = 50.0f; float f_final_logit_softcapping = 30.0f; // for RWKV uint32_t rescale_every_n_layers = 0; uint32_t time_mix_extra_dim = 0; uint32_t time_decay_extra_dim = 0; uint32_t wkv_head_size = 0; uint32_t token_shift_count = 2; float rope_attn_factor = 1.0f; float rope_freq_base_train; float rope_freq_scale_train; uint32_t n_ctx_orig_yarn; float rope_yarn_log_mul; std::array<int, 4> rope_sections; // for State Space Models uint32_t ssm_d_conv = 0; uint32_t ssm_d_inner = 0; uint32_t ssm_d_state = 0; uint32_t ssm_dt_rank = 0; bool ssm_dt_b_c_rms = false; float f_clamp_kqv = 0.0f; float f_max_alibi_bias = 0.0f; float f_logit_scale = 0.0f; // Additional scale factors (Granite/Granite MoE) float f_residual_scale = 0.0f; float f_embedding_scale = 0.0f; float f_attention_scale = 0.0f; bool causal_attn = true; bool use_alibi = false; bool attn_soft_cap = false; // needed by encoder-decoder models (e.g. T5, FLAN-T5) // ref: https://github.com/ggerganov/llama.cpp/pull/8141 llama_token dec_start_token_id = LLAMA_TOKEN_NULL; enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE; enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE; enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE; uint32_t n_head(uint32_t il = 0) const; uint32_t n_head_kv(uint32_t il = 0) const; uint32_t n_ff(uint32_t il = 0) const; uint32_t n_gqa(uint32_t il = 0) const; // dimension of key embeddings across all k-v heads uint32_t n_embd_k_gqa(uint32_t il = 0) const; // dimension of value embeddings across all k-v heads uint32_t n_embd_v_gqa(uint32_t il = 0) const; // dimension of the rolling state embeddings // corresponds to Mamba's conv_states size or RWKV's token_shift states size uint32_t n_embd_k_s() const; // dimension of the recurrent state embeddings uint32_t n_embd_v_s() const; }; static_assert(std::is_trivially_copyable<llama_hparams>::value, "llama_hparams must be trivially copyable");