#include "norm.cuh" template static __global__ void norm_f32(const float * x, float * dst, const int ncols, const float eps) { const int row = blockIdx.x*blockDim.y + threadIdx.y; const int tid = threadIdx.x; float2 mean_var = make_float2(0.f, 0.f); for (int col = tid; col < ncols; col += block_size) { const float xi = x[row*ncols + col]; mean_var.x += xi; mean_var.y += xi * xi; } // sum up partial sums mean_var = warp_reduce_sum(mean_var); if (block_size > WARP_SIZE) { __shared__ float2 s_sum[32]; int warp_id = threadIdx.x / WARP_SIZE; int lane_id = threadIdx.x % WARP_SIZE; if (lane_id == 0) { s_sum[warp_id] = mean_var; } __syncthreads(); mean_var = s_sum[lane_id]; mean_var = warp_reduce_sum(mean_var); } const float mean = mean_var.x / ncols; const float var = mean_var.y / ncols - mean * mean; const float inv_std = rsqrtf(var + eps); for (int col = tid; col < ncols; col += block_size) { dst[row*ncols + col] = (x[row*ncols + col] - mean) * inv_std; } } template static __global__ void group_norm_f32(const float * x, float * dst, const int group_size, const int ne_elements, const float eps) { // blockIdx.x: num_groups idx // threadIdx.x: block_size idx int start = blockIdx.x * group_size; int end = start + group_size; start += threadIdx.x; if (end >= ne_elements) { end = ne_elements; } float tmp = 0.0f; // partial sum for thread in warp for (int j = start; j < end; j += block_size) { tmp += x[j]; } tmp = warp_reduce_sum(tmp); if (block_size > WARP_SIZE) { __shared__ float s_sum[32]; int warp_id = threadIdx.x / WARP_SIZE; int lane_id = threadIdx.x % WARP_SIZE; if (lane_id == 0) { s_sum[warp_id] = tmp; } __syncthreads(); tmp = s_sum[lane_id]; tmp = warp_reduce_sum(tmp); } float mean = tmp / group_size; tmp = 0.0f; for (int j = start; j < end; j += block_size) { float xi = x[j] - mean; dst[j] = xi; tmp += xi * xi; } tmp = warp_reduce_sum(tmp); if (block_size > WARP_SIZE) { __shared__ float s_sum[32]; int warp_id = threadIdx.x / WARP_SIZE; int lane_id = threadIdx.x % WARP_SIZE; if (lane_id == 0) { s_sum[warp_id] = tmp; } __syncthreads(); tmp = s_sum[lane_id]; tmp = warp_reduce_sum(tmp); } float variance = tmp / group_size; float scale = rsqrtf(variance + eps); for (int j = start; j < end; j += block_size) { dst[j] *= scale; } } template static __global__ void rms_norm_f32(const float * x, float * dst, const int ncols, const float eps) { const int row = blockIdx.x*blockDim.y + threadIdx.y; const int tid = threadIdx.x; float tmp = 0.0f; // partial sum for thread in warp for (int col = tid; col < ncols; col += block_size) { const float xi = x[row*ncols + col]; tmp += xi * xi; } // sum up partial sums tmp = warp_reduce_sum(tmp); if (block_size > WARP_SIZE) { __shared__ float s_sum[32]; int warp_id = threadIdx.x / WARP_SIZE; int lane_id = threadIdx.x % WARP_SIZE; if (lane_id == 0) { s_sum[warp_id] = tmp; } __syncthreads(); tmp = s_sum[lane_id]; tmp = warp_reduce_sum(tmp); } const float mean = tmp / ncols; const float scale = rsqrtf(mean + eps); for (int col = tid; col < ncols; col += block_size) { dst[row*ncols + col] = scale * x[row*ncols + col]; } } static void norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) { GGML_ASSERT(ncols % WARP_SIZE == 0); if (ncols < 1024) { const dim3 block_dims(WARP_SIZE, 1, 1); norm_f32<<>>(x, dst, ncols, eps); } else { const dim3 block_dims(1024, 1, 1); norm_f32<1024><<>>(x, dst, ncols, eps); } } static void group_norm_f32_cuda(const float * x, float * dst, const int num_groups, const int group_size, const int ne_elements, cudaStream_t stream) { static const float eps = 1e-6f; if (group_size < 1024) { const dim3 block_dims(WARP_SIZE, 1, 1); group_norm_f32<<>>(x, dst, group_size, ne_elements, eps); } else { const dim3 block_dims(1024, 1, 1); group_norm_f32<1024><<>>(x, dst, group_size, ne_elements, eps); } } static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) { GGML_ASSERT(ncols % WARP_SIZE == 0); if (ncols < 1024) { const dim3 block_dims(WARP_SIZE, 1, 1); rms_norm_f32<<>>(x, dst, ncols, eps); } else { const dim3 block_dims(1024, 1, 1); rms_norm_f32<1024><<>>(x, dst, ncols, eps); } } void ggml_cuda_op_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const float * src0_d = (const float *)src0->data; float * dst_d = (float *)dst->data; cudaStream_t stream = ctx.stream(); GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); const int64_t ne00 = src0->ne[0]; const int64_t nrows = ggml_nrows(src0); float eps; memcpy(&eps, dst->op_params, sizeof(float)); norm_f32_cuda(src0_d, dst_d, ne00, nrows, eps, stream); } void ggml_cuda_op_group_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const float * src0_d = (const float *)src0->data; float * dst_d = (float *)dst->data; cudaStream_t stream = ctx.stream(); GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); int num_groups = dst->op_params[0]; int group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups); group_norm_f32_cuda(src0_d, dst_d, num_groups * src0->ne[3], group_size, ggml_nelements(src0), stream); } void ggml_cuda_op_rms_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const float * src0_d = (const float *)src0->data; float * dst_d = (float *)dst->data; cudaStream_t stream = ctx.stream(); GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); const int64_t ne00 = src0->ne[0]; const int64_t nrows = ggml_nrows(src0); float eps; memcpy(&eps, dst->op_params, sizeof(float)); rms_norm_f32_cuda(src0_d, dst_d, ne00, nrows, eps, stream); }