#include "common.h" #include "llama.h" #include #include #include #include // a function that can be called for every computed node during graph evaluation // the user can choose to whether to observe the data of the node depending on the tensor parameters static bool observe_compute(struct ggml_tensor * t, bool ask, void * user_data) { GGML_UNUSED(user_data); // the scheduler is asking us if we want to observe this node if (ask) { // check if name contains soft_max (customize to your needs) return strstr(t->name, "soft_max") != 0; } // print the node info printf("%s: t->name = %32s, t->op = %12s, [%5d, %5d, %5d, %5d]\n", __func__, t->name, ggml_op_name(t->op), (int) t->ne[0], (int) t->ne[1], (int) t->ne[2], (int) t->ne[3]); // this will copy the data to host memory (if needed) static std::vector t_data; const bool is_host = ggml_backend_buffer_is_host(t->buffer); if (!is_host || !ggml_is_contiguous(t)) { t_data.resize(ggml_nelements(t)); ggml_backend_tensor_get(t, t_data.data(), 0, ggml_nbytes(t)); } const float * data = is_host ? (const float *) t->data : t_data.data(); // print first row for (int i = 0; i < t->ne[0]; i++) { printf("%8.4f ", data[i]); } printf("\n"); return true; } int main(int argc, char ** argv) { gpt_params params; bool observe = false; if (argc == 1 || argv[1][0] == '-') { printf("usage: %s MODEL_PATH [PROMPT] [OBSERV]\n" , argv[0]); return 1 ; } if (argc >= 2) { params.model = argv[1]; } if (argc >= 3) { params.prompt = argv[2]; } if (argc >= 4) { observe = atoi(argv[3]); } if (params.prompt.empty()) { params.prompt = "Hello my name is"; } // total length of the sequence including the prompt const int n_len = 32; // init LLM llama_backend_init(params.numa); // initialize the model llama_model_params model_params = llama_model_default_params(); model_params.n_gpu_layers = 99; // offload all layers to the GPU llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params); if (model == NULL) { fprintf(stderr , "%s: error: unable to load model\n" , __func__); return 1; } // initialize the context llama_context_params ctx_params = llama_context_default_params(); ctx_params.seed = 1234; ctx_params.n_ctx = 2048; ctx_params.n_threads = params.n_threads; ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch; ctx_params.cb_eval = observe ? observe_compute : NULL; ctx_params.cb_eval_user_data = NULL; llama_context * ctx = llama_new_context_with_model(model, ctx_params); if (ctx == NULL) { fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__); return 1; } // tokenize the prompt std::vector tokens_list; tokens_list = ::llama_tokenize(ctx, params.prompt, true); const int n_ctx = llama_n_ctx(ctx); const int n_kv_req = tokens_list.size() + (n_len - tokens_list.size()); LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_kv_req = %d\n", __func__, n_len, n_ctx, n_kv_req); // make sure the KV cache is big enough to hold all the prompt and generated tokens if (n_kv_req > n_ctx) { LOG_TEE("%s: error: n_kv_req > n_ctx, the required KV cache size is not big enough\n", __func__); LOG_TEE("%s: either reduce n_len or increase n_ctx\n", __func__); return 1; } // print the prompt token-by-token fprintf(stderr, "\n"); for (auto id : tokens_list) { fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str()); } fflush(stderr); // create a llama_batch with size 512 // we use this object to submit token data for decoding llama_batch batch = llama_batch_init(512, 0, 1); // evaluate the initial prompt for (size_t i = 0; i < tokens_list.size(); i++) { llama_batch_add(batch, tokens_list[i], i, { 0 }, false); } // llama_decode will output logits only for the last token of the prompt batch.logits[batch.n_tokens - 1] = true; if (llama_decode(ctx, batch) != 0) { LOG_TEE("%s: llama_decode() failed\n", __func__); return 1; } // main loop int n_cur = batch.n_tokens; int n_decode = 0; const auto t_main_start = ggml_time_us(); while (n_cur <= n_len) { // sample the next token { auto n_vocab = llama_n_vocab(model); auto * logits = llama_get_logits_ith(ctx, batch.n_tokens - 1); std::vector candidates; candidates.reserve(n_vocab); for (llama_token token_id = 0; token_id < n_vocab; token_id++) { candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f }); } llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; // sample the most likely token const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p); // is it an end of stream? if (new_token_id == llama_token_eos(model) || n_cur == n_len) { LOG_TEE("\n"); break; } LOG_TEE("%s", llama_token_to_piece(ctx, new_token_id).c_str()); fflush(stdout); // prepare the next batch llama_batch_clear(batch); // push this new token for next evaluation llama_batch_add(batch, new_token_id, n_cur, { 0 }, true); n_decode += 1; } n_cur += 1; // evaluate the current batch with the transformer model if (llama_decode(ctx, batch)) { fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1); return 1; } } LOG_TEE("\n"); const auto t_main_end = ggml_time_us(); LOG_TEE("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n", __func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f)); llama_print_timings(ctx); fprintf(stderr, "\n"); llama_batch_free(batch); llama_free(ctx); llama_free_model(model); llama_backend_free(); return 0; }