#!/usr/bin/env python3 # finetune checkpoint --> gguf conversion import argparse import gguf import struct import numpy as np from pathlib import Path # gguf constants LLM_KV_OPTIMIZER_TYPE = "optimizer.type" LLM_KV_OPTIMIZER_TYPE_ADAM = "adam" LLM_KV_OPTIMIZER_TYPE_LBFGS = "lbfgs" LLM_KV_OPTIMIZER_FILE_VERSION = "optimizer.file_version" LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT = "optimizer.convergence_past_count" LLM_KV_OPTIMIZER_PARAMETER_COUNT = "optimizer.parameter_count" LLM_KV_OPTIMIZER_ITERATION_COUNT = "optimizer.iteration_count" LLM_KV_OPTIMIZER_JUST_INITIALIZED = "optimizer.just_initialized" LLM_KV_OPTIMIZER_ADAM_BEST_LOSS = "optimizer.adam.best_loss" LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS = "optimizer.adam.previous_loss" LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT = "optimizer.adam.no_improvement_count" LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT = "optimizer.lbfgs.approx_hessian_count" LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS = "optimizer.lbfgs.best_loss" LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP = "optimizer.lbfgs.line_search_step" LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J = "optimizer.lbfgs.line_search_j" LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K = "optimizer.lbfgs.line_search_k" LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END = "optimizer.lbfgs.line_search_end" LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT = "optimizer.lbfgs.no_improvement_count" LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS = "optimizer.adam.first_moments" LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS = "optimizer.adam.second_moments" LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES = "optimizer.adam.past_loss_values" LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS = "optimizer.lbfgs.current_parameters" LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS = "optimizer.lbfgs.previous_parameters" LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS = "optimizer.lbfgs.current_gradients" LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS = "optimizer.lbfgs.previous_gradients" LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION = "optimizer.lbfgs.search_direction" LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES = "optimizer.lbfgs.past_loss_values" LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA = "optimizer.lbfgs.memory_alpha" LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS = "optimizer.lbfgs.memory_ys" LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S = "optimizer.lbfgs.memory_s" LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y = "optimizer.lbfgs.memory_y" LLM_KV_TRAINING_TYPE_TRAIN_MODEL = "train_model" LLM_KV_TRAINING_TYPE_FINETUNE_LORA = "finetune_lora" LLM_KV_TRAINING_TYPE = "training.type" LLM_KV_TRAINING_FILE_VERSION = "training.file_version" LLM_KV_TRAINING_ITERATION_COUNT = "training.iteration_count" LLM_KV_TRAINING_SAMPLE_COUNT = "training.sample_count" LLM_KV_TRAINING_TOKEN_COUNT = "training.token_count" LLM_KV_TRAINING_LORA_RANK_TOKEN_EMBD = "training.lora.rank.token_embd" LLM_KV_TRAINING_LORA_RANK_OUTPUT_NORM = "training.lora.rank.output_norm" LLM_KV_TRAINING_LORA_RANK_OUTPUT = "training.lora.rank.output" LLM_KV_TRAINING_LORA_RANK_ATTN_NORM = "training.lora.rank.attn_norm" LLM_KV_TRAINING_LORA_RANK_ATTN_Q = "training.lora.rank.attn_q" LLM_KV_TRAINING_LORA_RANK_ATTN_K = "training.lora.rank.attn_k" LLM_KV_TRAINING_LORA_RANK_ATTN_V = "training.lora.rank.attn_v" LLM_KV_TRAINING_LORA_RANK_ATTN_OUT = "training.lora.rank.attn_output" LLM_KV_TRAINING_LORA_RANK_FFN_NORM = "training.lora.rank.ffn_norm" LLM_KV_TRAINING_LORA_RANK_FFN_GATE = "training.lora.rank.ffn_gate" LLM_KV_TRAINING_LORA_RANK_FFN_DOWN = "training.lora.rank.ffn_down" LLM_KV_TRAINING_LORA_RANK_FFN_UP = "training.lora.rank.ffn_up" class Tensor: def __init__(self, dtype='f', ne=None): if ne is None: ne = [] self.dtype = dtype self.ne = ne self.nbytes = 0 if self.dtype == 'f': if len(self.ne) == 0: self.nbytes = 0 else: self.nbytes = int(np.product(self.ne)) * 4 else: raise ValueError(f"Unhandled data type '{self.dtype}'") def load(self, data, offset): nd = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4 namelen = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4 dtype = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4 assert(nd == len(self.ne)) ne = [] for d in range(nd): n = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4 ne.append(n) if tuple(ne) != tuple(self.ne): raise ValueError(f"Tensor.load: Expected number of elements {str(self.ne)} does not match what is read from file {str(ne)}") if self.dtype == 'f': assert(dtype == 0) else: raise ValueError(f"Unhandled data type '{self.dtype}'") self.name = bytes(data[offset:offset+namelen]); offset += namelen # 32-byte alignment offset += (0 - offset) & 31 self.data = data[offset:offset+self.nbytes] offset += self.nbytes return offset def max_storage_size(self): result = 0 result += 4 # nd result += 4 # namelen result += 4 # dtype result += len(self.ne)*8 # ne result += 48 # name (maximum as of commit 3b5515bbe0e2224425986ba24f1f5d84aa38dce9) result += 31 # 32-byte alignment result += self.nbytes return result def save_gguf(self, gguf_writer, name): gguf_writer.add_tensor( name=name, tensor=self.data, raw_shape=np.array(list(reversed(self.ne))), raw_dtype=gguf.GGMLQuantizationType.F32) class OptimizationContext: def __init__(self): pass def load(self, data, offset): self.version = struct.unpack('<I', bytes(data[offset:offset + 4]))[0] offset += 4 if self.version != 1: raise ValueError('Invalid version of optimization context in checkpoint file') self.past = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4 self.lbfgs_m = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4 self.nx = struct.unpack('N', bytes(data[offset:offset + 8]))[0]; offset += 8 self.iter = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4 self.just_initialized = bool(struct.unpack('<i', bytes(data[offset:offset + 4]))[0]); offset += 4 self.adam_m = Tensor('f', [self.nx]) self.adam_v = Tensor('f', [self.nx]) self.adam_pf = Tensor('f', [self.past] if self.past > 0 else []) self.lbfgs_x = Tensor('f', [self.nx]) self.lbfgs_xp = Tensor('f', [self.nx]) self.lbfgs_g = Tensor('f', [self.nx]) self.lbfgs_gp = Tensor('f', [self.nx]) self.lbfgs_d = Tensor('f', [self.nx]) self.lbfgs_pf = Tensor('f', [self.past] if self.past > 0 else []) self.lbfgs_lmal = Tensor('f', [self.lbfgs_m]) self.lbfgs_lmys = Tensor('f', [self.lbfgs_m]) self.lbfgs_lms = Tensor('f', [self.nx, self.lbfgs_m]) self.lbfgs_lmy = Tensor('f', [self.nx, self.lbfgs_m]) # forgot to save type in version 1: # guess self.type from number of remaining bytes size_type_0 = 12 + sum([t.max_storage_size() for t in [self.adam_m, self.adam_v] +([self.adam_pf] if (self.past > 0) else [])]) size_type_1 = 24 + sum([t.max_storage_size() for t in [self.lbfgs_x, self.lbfgs_xp, self.lbfgs_g, self.lbfgs_gp, self.lbfgs_d, self.lbfgs_pf, self.lbfgs_lmal, self.lbfgs_lmys, self.lbfgs_lms, self.lbfgs_lmy] +([self.lbfgs_pf] if (self.past > 0) else [])]) # due to alignment padding the size might not by exact # but the difference in size for both types is significant, # so we can just use whichever is closest remaining = len(data) - offset if abs(remaining - size_type_0) < abs(remaining - size_type_1): self.type = 0 else: self.type = 1 if self.type == 0: offset = self.adam_m.load(data, offset) offset = self.adam_v.load(data, offset) offset = self.adam_pf.load(data,offset) self.adam_fx_best = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4 self.adam_fx_prev = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4 self.adam_n_no_improvement = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4 elif self.type == 1: offset = self.lbfgs_x.load(data, offset) offset = self.lbfgs_xp.load(data, offset) offset = self.lbfgs_g.load(data, offset) offset = self.lbfgs_gp.load(data, offset) offset = self.lbfgs_d.load(data, offset) offset = self.lbfgs_pf.load(data, offset) offset = self.lbfgs_lmal.load(data, offset) offset = self.lbfgs_lmys.load(data, offset) offset = self.lbfgs_lms.load(data, offset) offset = self.lbfgs_lmy.load(data, offset) self.lbfgs_fx_best = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4 self.lbfgs_step = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4 self.lbfgs_j = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4 self.lbfgs_k = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4 self.lbfgs_end = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4 self.lbfgs_n_no_improvement = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4 else: raise ValueError(f"Invalid optimizer type '{self.type}'") return offset def save_gguf(self, gguf_writer): gguf_writer.add_uint32(LLM_KV_OPTIMIZER_FILE_VERSION, 0) gguf_writer.add_uint32(LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT, self.past) gguf_writer.add_uint64(LLM_KV_OPTIMIZER_PARAMETER_COUNT, self.nx) gguf_writer.add_uint32(LLM_KV_OPTIMIZER_ITERATION_COUNT, self.iter) gguf_writer.add_bool(LLM_KV_OPTIMIZER_JUST_INITIALIZED, self.just_initialized) if self.type == 0: gguf_writer.add_string(LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_ADAM) gguf_writer.add_float32(LLM_KV_OPTIMIZER_ADAM_BEST_LOSS, self.adam_fx_best) gguf_writer.add_float32(LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS, self.adam_fx_prev) gguf_writer.add_uint32(LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT, self.adam_n_no_improvement) self.adam_m.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS) self.adam_v.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS) if self.past > 0: self.adam_pf.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES) elif self.type == 1: gguf_writer.add_string(LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_LBFGS) gguf_writer.add_uint32(LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT, self.lbfgs_m) gguf_writer.add_float32(LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS, self.lbfgs_fx_best) gguf_writer.add_float32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP, self.lbfgs_step) gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J, self.lbfgs_j) gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K, self.lbfgs_k) gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END, self.lbfgs_end) gguf_writer.add_uint32(LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT, self.lbfgs_n_no_improvement) self.lbfgs_x.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS) self.lbfgs_xp.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS) self.lbfgs_g.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS) self.lbfgs_gp.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS) self.lbfgs_d.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION) if self.past > 0: self.lbfgs_pf.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES) self.lbfgs_lmal.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA) self.lbfgs_lmys.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS) self.lbfgs_lms.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S) self.lbfgs_lmy.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y) else: raise ValueError('Unknown optimizer type') class LoraParams: def __init__(self): pass def load(self, data, offset): self.n_rank_attention_norm = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4 self.n_rank_wq = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4 self.n_rank_wk = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4 self.n_rank_wv = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4 self.n_rank_wo = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4 self.n_rank_ffn_norm = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4 self.n_rank_w1 = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4 self.n_rank_w2 = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4 self.n_rank_w3 = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4 self.n_rank_tok_embeddings = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4 self.n_rank_norm = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4 self.n_rank_output = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4 return offset def save_gguf(self, gguf_writer): gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_TOKEN_EMBD, self.n_rank_tok_embeddings) gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_OUTPUT_NORM, self.n_rank_norm) gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_OUTPUT, self.n_rank_output) gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_ATTN_NORM, self.n_rank_attention_norm) gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_ATTN_Q, self.n_rank_wq) gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_ATTN_K, self.n_rank_wk) gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_ATTN_V, self.n_rank_wv) gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_ATTN_OUT, self.n_rank_wo) gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_FFN_NORM, self.n_rank_ffn_norm) gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_FFN_GATE, self.n_rank_w1) gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_FFN_DOWN, self.n_rank_w2) gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_FFN_UP, self.n_rank_w3) class ModelParams: def __init__(self, n_ff = None): self.n_ff = n_ff def load(self, data, offset): self.n_vocab = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4 self.n_embd = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4 self.n_mult = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4 self.n_head = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4 self.n_layer = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4 self.n_rot = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4 return offset def get_n_ff(self): if self.n_ff is None: # struct my_llama_model::get_n_ff in train-text-from-scratch.cpp commit 3b5515bbe0e2224425986ba24f1f5d84aa38dce9 return ((2*(4*self.n_embd)//3 + self.n_mult - 1)//self.n_mult)*self.n_mult else: return self.n_ff def save_gguf(self, gguf_writer): # self.n_vocab not saved gguf_writer.add_embedding_length(self.n_embd) gguf_writer.add_head_count(self.n_head) gguf_writer.add_block_count(self.n_layer) gguf_writer.add_rope_dimension_count(self.n_rot) gguf_writer.add_feed_forward_length(self.get_n_ff()) def tensor_name(key, bid=None, suffix=".weight"): return gguf.TENSOR_NAMES[key].format(bid=bid) + suffix class Layer: def __init__(self, params, lora_params, bid): self.bid = bid self.att_norm_a = Tensor('f', [lora_params.n_rank_attention_norm, params.n_embd]) self.att_norm_b = Tensor('f', [lora_params.n_rank_attention_norm, 1]) self.wq_a = Tensor('f', [lora_params.n_rank_wq, params.n_embd]) self.wq_b = Tensor('f', [lora_params.n_rank_wq, params.n_embd]) self.wk_a = Tensor('f', [lora_params.n_rank_wk, params.n_embd]) self.wk_b = Tensor('f', [lora_params.n_rank_wk, params.n_embd]) self.wv_a = Tensor('f', [lora_params.n_rank_wv, params.n_embd]) self.wv_b = Tensor('f', [lora_params.n_rank_wv, params.n_embd]) self.wo_a = Tensor('f', [lora_params.n_rank_wo, params.n_embd]) self.wo_b = Tensor('f', [lora_params.n_rank_wo, params.n_embd]) self.ffn_norm_a = Tensor('f', [lora_params.n_rank_ffn_norm, params.n_embd]) self.ffn_norm_b = Tensor('f', [lora_params.n_rank_ffn_norm, 1]) self.w1_a = Tensor('f', [lora_params.n_rank_w1, params.n_embd]) self.w1_b = Tensor('f', [lora_params.n_rank_w1, params.get_n_ff()]) self.w2_a = Tensor('f', [lora_params.n_rank_w2, params.get_n_ff()]) self.w2_b = Tensor('f', [lora_params.n_rank_w2, params.n_embd]) self.w3_a = Tensor('f', [lora_params.n_rank_w3, params.n_embd]) self.w3_b = Tensor('f', [lora_params.n_rank_w3, params.get_n_ff()]) def load(self, data, offset): offset = self.att_norm_a.load(data, offset) offset = self.att_norm_b.load(data, offset) offset = self.wq_a.load(data, offset) offset = self.wq_b.load(data, offset) offset = self.wk_a.load(data, offset) offset = self.wk_b.load(data, offset) offset = self.wv_a.load(data, offset) offset = self.wv_b.load(data, offset) offset = self.wo_a.load(data, offset) offset = self.wo_b.load(data, offset) offset = self.ffn_norm_a.load(data, offset) offset = self.ffn_norm_b.load(data, offset) offset = self.w1_a.load(data, offset) offset = self.w1_b.load(data, offset) offset = self.w2_a.load(data, offset) offset = self.w2_b.load(data, offset) offset = self.w3_a.load(data, offset) offset = self.w3_b.load(data, offset) return offset def save_gguf(self, gguf_writer): self.att_norm_a.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_NORM, self.bid, ".weight.lora_a")) self.att_norm_b.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_NORM, self.bid, ".weight.lora_b")) self.wq_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_Q, self.bid, ".weight.lora_a")) self.wq_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_Q, self.bid, ".weight.lora_b")) self.wk_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_K, self.bid, ".weight.lora_a")) self.wk_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_K, self.bid, ".weight.lora_b")) self.wv_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_V, self.bid, ".weight.lora_a")) self.wv_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_V, self.bid, ".weight.lora_b")) self.wo_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, self.bid, ".weight.lora_a")) self.wo_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, self.bid, ".weight.lora_b")) self.ffn_norm_a.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_NORM, self.bid, ".weight.lora_a")) self.ffn_norm_b.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_NORM, self.bid, ".weight.lora_b")) self.w1_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_GATE, self.bid, ".weight.lora_a")) self.w1_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_GATE, self.bid, ".weight.lora_b")) self.w2_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, self.bid, ".weight.lora_a")) self.w2_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, self.bid, ".weight.lora_b")) self.w3_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_UP, self.bid, ".weight.lora_a")) self.w3_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_UP, self.bid, ".weight.lora_b")) class LoraModel: def __init__(self, n_ff = None): self.params = ModelParams(n_ff = n_ff) self.lora_params = LoraParams() self.layers = [] def load(self, data, offset): offset = self.params.load(data, offset) offset = self.lora_params.load(data, offset) self.tok_embd_a = Tensor('f', [self.lora_params.n_rank_tok_embeddings, self.params.n_embd]) self.tok_embd_b = Tensor('f', [self.lora_params.n_rank_tok_embeddings, self.params.n_vocab]) self.norm_a = Tensor('f', [self.lora_params.n_rank_norm, self.params.n_embd]) self.norm_b = Tensor('f', [self.lora_params.n_rank_norm, 1]) self.output_a = Tensor('f', [self.lora_params.n_rank_output, self.params.n_embd]) self.output_b = Tensor('f', [self.lora_params.n_rank_output, self.params.n_vocab]) offset = self.tok_embd_a.load(data, offset) offset = self.tok_embd_b.load(data, offset) offset = self.norm_a.load(data, offset) offset = self.norm_b.load(data, offset) offset = self.output_a.load(data, offset) offset = self.output_b.load(data, offset) self.layers.clear() for bid in range(self.params.n_layer): layer = Layer(self.params, self.lora_params, bid) offset = layer.load(data, offset) self.layers.append(layer) return offset def save_gguf(self, gguf_writer): self.params.save_gguf(gguf_writer) self.lora_params.save_gguf(gguf_writer) self.tok_embd_a.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD, suffix=".weight.lora_a")) self.tok_embd_b.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD, suffix=".weight.lora_b")) self.norm_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.OUTPUT_NORM, suffix=".weight.lora_a")) self.norm_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.OUTPUT_NORM, suffix=".weight.lora_b")) self.output_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.OUTPUT, suffix=".weight.lora_a")) self.output_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.OUTPUT, suffix=".weight.lora_b")) for layer in self.layers: layer.save_gguf(gguf_writer) class LoraCheckpoint: def __init__(self, n_ff = None): self.model = LoraModel(n_ff = n_ff) self.opt_ctx = OptimizationContext() def load(self, data, offset): magic = bytes(reversed(data[offset:offset + 4])); offset += 4 if magic != b'ggcl': raise ValueError(f"File header magic indicates, that this is no finetune-lora checkpoint file. Expected 'ggcl', Got '{str(magic)}'") self.version = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4 if self.version != 0: raise ValueError('Invalid version of checkpoint file') self.train_its = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4 self.train_samples = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4 self.train_tokens = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4 offset = self.model.load(data, offset) offset = self.opt_ctx.load(data, offset) return offset def save_gguf(self, gguf_writer): gguf_writer.add_file_type(gguf.GGMLQuantizationType.F32) gguf_writer.add_layer_norm_rms_eps(1e-5) gguf_writer.add_uint32(LLM_KV_TRAINING_FILE_VERSION, 0) gguf_writer.add_string(LLM_KV_TRAINING_TYPE, LLM_KV_TRAINING_TYPE_FINETUNE_LORA) gguf_writer.add_uint32(LLM_KV_TRAINING_ITERATION_COUNT, self.train_its) gguf_writer.add_uint32(LLM_KV_TRAINING_SAMPLE_COUNT, self.train_samples) gguf_writer.add_uint32(LLM_KV_TRAINING_TOKEN_COUNT, self.train_tokens) self.model.save_gguf(gguf_writer) self.opt_ctx.save_gguf(gguf_writer) def handle_args(): parser = argparse.ArgumentParser(description = 'Convert finetune checkpoints to GGUF') parser.add_argument('--input', '-i', type = Path, help = 'Input finetune checkpoint filename', required=True) parser.add_argument('--output', '-o', type = Path, help = 'Output GGUF filename', required=True) parser.add_argument('--ff', type = int, help = "Feedforward size, if not provided compute from n_mult. Provide this if you get 'ValueError: Tensor.load: Expected number of elements does not match what is read from file'", required=False) return parser.parse_args() def main(): cfg = handle_args() print(cfg) data = np.memmap(cfg.input, mode = 'r') chk = LoraCheckpoint(n_ff = cfg.ff) offset = 0 offset = chk.load(data, offset) # we should have read all available data assert(offset == len(data)) gguf_writer = gguf.GGUFWriter(cfg.output, gguf.MODEL_ARCH_NAMES[gguf.MODEL_ARCH.LLAMA], use_temp_file = False) chk.save_gguf(gguf_writer) print(" gguf: write header") gguf_writer.write_header_to_file() print(" gguf: write metadata") gguf_writer.write_kv_data_to_file() print(" gguf: write tensors") gguf_writer.write_tensors_to_file() gguf_writer.close() if __name__ == '__main__': main()