#include "ggml.h" #include "common.h" #include "llama.h" #include "log.h" #include "ngram-cache.h" #include <cmath> #include <cstdint> #include <cstdio> #include <fstream> #include <string> #include <vector> #include <unordered_map> int main(int argc, char ** argv){ gpt_params params; if (!gpt_params_parse(argc, argv, params)) { gpt_params_print_usage(argc, argv, params); return 1; } const int n_draft = params.n_draft; // init llama.cpp llama_backend_init(); llama_numa_init(params.numa); llama_model * model = NULL; llama_context * ctx = NULL; // load the model std::tie(model, ctx) = llama_init_from_gpt_params(params); GGML_ASSERT(llama_n_vocab(model) < (1 << 16)); // tokenize the prompt std::vector<llama_token> inp; inp = ::llama_tokenize(ctx, params.prompt, true, true); llama_ngram_cache ngram_cache_context; llama_ngram_cache ngram_cache_dynamic; llama_ngram_cache ngram_cache_static; int64_t t_draft_flat_us = 0; int64_t t_draft_us = 0; { const int64_t t_start_draft_us = ggml_time_us(); if (!params.lookup_cache_static.empty()) { try { ngram_cache_static = llama_ngram_cache_load(params.lookup_cache_static); } catch (std::ifstream::failure const &) { fprintf(stderr, "error: failed to open static lookup cache: %s", params.lookup_cache_static.c_str()); exit(1); } } if (!params.lookup_cache_dynamic.empty()) { try { ngram_cache_dynamic = llama_ngram_cache_load(params.lookup_cache_dynamic); } catch (std::ifstream::failure const &) {} // if the file does not exist it will simply be created at the end of the program } t_draft_flat_us += ggml_time_us() - t_start_draft_us; } const int n_input = inp.size(); const int n_ctx = params.n_ctx; int n_drafted = 0; int n_accept = 0; const int64_t t_start_ms = ggml_time_ms(); // Iterate over input tokens in chunks of size n_ctx. // Each chunk is treated as if a sequential generation but with pre-determined tokens to ensure reproducibility. for (int i_start = 0; i_start + n_ctx < n_input; i_start += n_ctx) { const std::vector<llama_token> inp_slice(inp.begin() + i_start, inp.begin() + i_start + n_ctx); std::vector<llama_token> pseudo_output; pseudo_output.push_back(inp_slice[0]); while ((int) pseudo_output.size() < n_ctx) { // Simulate drafting and decoding from draft: std::vector<llama_token> draft; draft.push_back(pseudo_output.back()); { const int64_t t_start_draft_us = ggml_time_us(); llama_ngram_cache_draft(pseudo_output, draft, n_draft, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, ngram_cache_context, ngram_cache_dynamic, ngram_cache_static); t_draft_us += ggml_time_us() - t_start_draft_us; } n_drafted += draft.size() - 1; for (size_t j = 1; j < draft.size() && (int) pseudo_output.size() < n_ctx; ++j) { const llama_token ground_truth = inp_slice[pseudo_output.size()]; const llama_token drafted = draft[j]; if (ground_truth != drafted) { break; } ++n_accept; pseudo_output.push_back(ground_truth); { const int64_t t_start_draft_us = ggml_time_us(); llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, pseudo_output, 1, false); t_draft_us += ggml_time_us() - t_start_draft_us; } } // After each simulated batch decoding simulate the sampling of a single token: if ((int) pseudo_output.size() < n_ctx) { pseudo_output.push_back(inp_slice[pseudo_output.size()]); { const int64_t t_start_draft_us = ggml_time_us(); llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, pseudo_output, 1, false); t_draft_us += ggml_time_us() - t_start_draft_us; } } draft.erase(draft.begin()); } if (i_start > 0 && i_start / 100000 != (i_start - n_ctx) / 100000) { const int64_t t_now_ms = ggml_time_ms(); const int64_t eta_ms = (n_input - i_start) * (t_now_ms - t_start_ms) / i_start; const int64_t eta_min = eta_ms / (60*1000); const int64_t eta_s = (eta_ms - 60*1000*eta_min) / 1000; LOG_TEE("lookup-stats: %d/%d done, ETA: %02" PRId64 ":%02" PRId64 "\n", i_start, n_input, eta_min, eta_s); } // After each chunk, update the dynamic ngram cache with the context ngram cache: llama_ngram_cache_merge(ngram_cache_dynamic, ngram_cache_context); ngram_cache_context.clear(); } LOG_TEE("\n"); LOG_TEE("\n"); LOG_TEE("n_draft = %d\n", n_draft); LOG_TEE("n_predict = %d\n", n_input - n_input % n_ctx); LOG_TEE("n_drafted = %d\n", n_drafted); LOG_TEE("t_draft_flat = %.2f ms\n", t_draft_flat_us*1e-3); LOG_TEE("t_draft = %.2f ms, %.2f us per token, %.2f tokens per second\n", t_draft_us*1e-3, 1.0f*t_draft_us/n_drafted, n_drafted/(1e-6*t_draft_us)); LOG_TEE("n_accept = %d\n", n_accept); LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted); llama_free(ctx); llama_free_model(model); llama_backend_free(); fprintf(stderr, "\n\n"); return 0; }