#include "common.h" #include "llama.h" #include <vector> #include <cstdio> #include <chrono> int main(int argc, char ** argv) { gpt_params params; params.prompt = "The quick brown fox"; if (!gpt_params_parse(argc, argv, params)) { return 1; } print_build_info(); if (params.n_predict < 0) { params.n_predict = 16; } auto n_past = 0; std::string result0; std::string result1; // init llama_model * model; llama_context * ctx; std::tie(model, ctx) = llama_init_from_gpt_params(params); if (model == nullptr || ctx == nullptr) { fprintf(stderr, "%s : failed to init\n", __func__); return 1; } // tokenize prompt auto tokens = llama_tokenize(ctx, params.prompt, true); // evaluate prompt llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size(), n_past, 0)); n_past += tokens.size(); // save state (rng, logits, embedding and kv_cache) to file { std::vector<uint8_t> state_mem(llama_get_state_size(ctx)); const size_t written = llama_copy_state_data(ctx, state_mem.data()); FILE *fp_write = fopen("dump_state.bin", "wb"); fwrite(state_mem.data(), 1, written, fp_write); fclose(fp_write); fprintf(stderr, "%s : serialized state into %zd out of a maximum of %zd bytes\n", __func__, written, state_mem.size()); } // save state (last tokens) const auto n_past_saved = n_past; // first run printf("\nfirst run: %s", params.prompt.c_str()); for (auto i = 0; i < params.n_predict; i++) { auto * logits = llama_get_logits(ctx); auto n_vocab = llama_n_vocab(model); std::vector<llama_token_data> candidates; candidates.reserve(n_vocab); for (llama_token token_id = 0; token_id < n_vocab; token_id++) { candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f}); } llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; auto next_token = llama_sample_token(ctx, &candidates_p); auto next_token_str = llama_token_to_piece(ctx, next_token); printf("%s", next_token_str.c_str()); result0 += next_token_str; if (llama_decode(ctx, llama_batch_get_one(&next_token, 1, n_past, 0))) { fprintf(stderr, "\n%s : failed to evaluate\n", __func__); llama_free(ctx); llama_free_model(model); return 1; } n_past += 1; } printf("\n\n"); // free old context llama_free(ctx); // make new context auto * ctx2 = llama_new_context_with_model(model, llama_context_params_from_gpt_params(params)); printf("\nsecond run: %s", params.prompt.c_str()); // load state (rng, logits, embedding and kv_cache) from file { std::vector<uint8_t> state_mem(llama_get_state_size(ctx2)); FILE * fp_read = fopen("dump_state.bin", "rb"); const size_t read = fread(state_mem.data(), 1, state_mem.size(), fp_read); fclose(fp_read); if (read != llama_set_state_data(ctx2, state_mem.data())) { fprintf(stderr, "\n%s : failed to read state\n", __func__); llama_free(ctx2); llama_free_model(model); return 1; } fprintf(stderr, "%s : deserialized state from %zd out of a maximum of %zd bytes\n", __func__, read, state_mem.size()); } // restore state (last tokens) n_past = n_past_saved; // second run for (auto i = 0; i < params.n_predict; i++) { auto * logits = llama_get_logits(ctx2); auto n_vocab = llama_n_vocab(model); std::vector<llama_token_data> candidates; candidates.reserve(n_vocab); for (llama_token token_id = 0; token_id < n_vocab; token_id++) { candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f}); } llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; auto next_token = llama_sample_token(ctx2, &candidates_p); auto next_token_str = llama_token_to_piece(ctx2, next_token); printf("%s", next_token_str.c_str()); result1 += next_token_str; if (llama_decode(ctx2, llama_batch_get_one(&next_token, 1, n_past, 0))) { fprintf(stderr, "\n%s : failed to evaluate\n", __func__); llama_free(ctx2); llama_free_model(model); return 1; } n_past += 1; } printf("\n"); llama_free(ctx2); llama_free_model(model); if (result0 != result1) { fprintf(stderr, "\n%s : error : the 2 generations are different\n", __func__); return 1; } fprintf(stderr, "\n%s : success\n", __func__); return 0; }