#include "quantize.cuh" #include static __global__ void quantize_q8_1(const float * __restrict__ x, void * __restrict__ vy, const int64_t kx, const int64_t kx0_padded) { const int64_t ix0 = (int64_t)blockDim.x*blockIdx.x + threadIdx.x; if (ix0 >= kx0_padded) { return; } const int64_t ix1 = blockIdx.y; const int64_t i_padded = ix1*kx0_padded + ix0; block_q8_1 * y = (block_q8_1 *) vy; const int64_t ib = i_padded / QK8_1; // block index const int64_t iqs = i_padded % QK8_1; // quant index const float xi = ix0 < kx ? x[ix1*kx + ix0] : 0.0f; float amax = fabsf(xi); float sum = xi; amax = warp_reduce_max(amax); sum = warp_reduce_sum(sum); const float d = amax / 127; const int8_t q = amax == 0.0f ? 0 : roundf(xi / d); y[ib].qs[iqs] = q; if (iqs > 0) { return; } reinterpret_cast(y[ib].ds.x) = d; reinterpret_cast(y[ib].ds.y) = sum; } template static __global__ void quantize_mmq_q8_1( const float * __restrict__ x, void * __restrict__ vy, const int64_t kx0, const int64_t kx1, const int64_t kx0_padded) { const int64_t ix0 = (int64_t)blockDim.x*blockIdx.x + threadIdx.x; if (ix0 >= kx0_padded) { return; } const int64_t ix1 = kx1*blockIdx.z + blockIdx.y; block_q8_1_mmq * y = (block_q8_1_mmq *) vy; const int64_t ib0 = blockIdx.z*(gridDim.y*gridDim.x*blockDim.x/(4*QK8_1)); // first block of channel const int64_t ib = ib0 + (ix0 / (4*QK8_1))*kx1 + blockIdx.y; // block index in channel const int64_t iqs = ix0 % (4*QK8_1); // quant index in block const float xi = ix0 < kx0 ? x[ix1*kx0 + ix0] : 0.0f; float amax = fabsf(xi); amax = warp_reduce_max(amax); float sum; if (need_sum) { sum = warp_reduce_sum(xi); } const float d = amax / 127; const int8_t q = amax == 0.0f ? 0 : roundf(xi / d); y[ib].qs[iqs] = q; if (iqs % QK8_1 != 0) { return; } if (need_sum) { y[ib].ds[iqs/QK8_1] = make_half2(d, sum); } else { ((float *) y[ib].ds)[iqs/QK8_1] = d; } } void quantize_row_q8_1_cuda( const float * x, void * vy, const int64_t kx0, const int64_t kx1, const int64_t channels, const int64_t kx0_padded, const ggml_type type_x, cudaStream_t stream) { GGML_ASSERT(kx0_padded % QK8_1 == 0); const int64_t block_num_x = (kx0_padded + CUDA_QUANTIZE_BLOCK_SIZE - 1) / CUDA_QUANTIZE_BLOCK_SIZE; const dim3 num_blocks(block_num_x, kx1*channels, 1); const dim3 block_size(CUDA_QUANTIZE_BLOCK_SIZE, 1, 1); quantize_q8_1<<>>(x, vy, kx0, kx0_padded); GGML_UNUSED(type_x); } void quantize_mmq_q8_1_cuda( const float * x, void * vy, const int64_t kx0, const int64_t kx1, const int64_t channels, const int64_t kx0_padded, const ggml_type type_x, cudaStream_t stream) { GGML_ASSERT(kx0_padded % (4*QK8_1) == 0); const int64_t block_num_x = (kx0_padded + CUDA_QUANTIZE_BLOCK_SIZE - 1) / CUDA_QUANTIZE_BLOCK_SIZE; const dim3 num_blocks(block_num_x, kx1, channels); const dim3 block_size(CUDA_QUANTIZE_BLOCK_SIZE, 1, 1); if (mmq_need_sum(type_x)) { quantize_mmq_q8_1<<>>(x, vy, kx0, kx1, kx0_padded); } else { quantize_mmq_q8_1<<>>(x, vy, kx0, kx1, kx0_padded); } }