#include <locale.h> #include "ggml.h" #include "build-info.h" #include <assert.h> #include <math.h> #include <cstring> #include <cstdio> #include <cinttypes> #include <unordered_map> #include <queue> #include <string.h> #include <cassert> #include <fstream> #include <string> #include <iterator> #include <algorithm> float tensor_sum_elements(struct ggml_tensor * tensor) { float sum = 0; if (tensor->type==GGML_TYPE_F32) { for (int j = 0; j < tensor->ne[1]; j++) { for (int k = 0; k < tensor->ne[0]; k++) { sum += ((float *) tensor->data)[j*tensor->ne[0]+k]; } } } return sum; } /* These are mapping to unknown GGML_TYPE_I8, GGML_TYPE_I16, GGML_TYPE_I32, GGML_TYPE_COUNT, */ #define TENSOR_TYPE_AS_STR(TYPE) TYPE == GGML_TYPE_F32 ? "FP32" : TYPE == GGML_TYPE_F16 ? "FP16" : TYPE == GGML_TYPE_Q4_0 ? "Q4_0" : TYPE == GGML_TYPE_Q4_1 ? "Q4_1" : "UNKNOWN" #define TENSOR_DUMP(TENSOR) printf("%15s: type = %i (%5s) ne = %5d x %5d x %5d, nb = (%5li, %5li, %5li) - ", #TENSOR, \ TENSOR->type,TENSOR_TYPE_AS_STR(TENSOR->type),\ (int) TENSOR->ne[0], (int) TENSOR->ne[1], (int) TENSOR->ne[2], TENSOR->nb[0], TENSOR->nb[1], TENSOR->nb[2]); \ { float sum = tensor_sum_elements(TENSOR); printf("Sum of tensor %s is %6.2f\n",#TENSOR, sum); } struct benchmark_params_struct { int32_t n_threads = 1; int32_t n_iterations = 10; }; void print_usage(int /*argc*/, char ** argv, struct benchmark_params_struct params) { fprintf(stderr, "usage: %s [options]\n", argv[0]); fprintf(stderr, "\n"); fprintf(stderr, "options:\n"); fprintf(stderr, " -h, --help show this help message and exit\n"); fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads); fprintf(stderr, " -i N, --iter N number of iterations to use during computation (default: %d)\n", params.n_iterations); fprintf(stderr, "\n"); } int main(int argc, char ** argv) { struct benchmark_params_struct benchmark_params; bool invalid_param = false; std::string arg; for (int i = 1; i < argc; i++) { arg = argv[i]; if (arg == "-t" || arg == "--threads") { if (++i >= argc) { invalid_param = true; break; } benchmark_params.n_threads = std::stoi(argv[i]); } else if (arg == "-i" || arg == "--iter") { if (++i >= argc) { invalid_param = true; break; } benchmark_params.n_iterations = std::stoi(argv[i]); } else if (arg == "-h" || arg == "--help") { print_usage(argc, argv, benchmark_params); exit(0); } if (invalid_param) { fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str()); print_usage(argc, argv, benchmark_params); exit(1); } } fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT); printf("Starting Test\n"); // create the ggml context struct ggml_context * ctx; //const int sizex = 4096; //const int sizey = 11008; #undef VERBOSE_DEBUGGING #ifndef VERBOSE_DEBUGGING const int sizey = 4096; const int sizex = 11008; const int sizez = 128; #else /* Working - let's increase size */ const int sizey = 1; const int sizex = (8*32); const int sizez = 1; /*const int sizey = 1; const int sizex = 3*(8*32); const int sizez = 1;*/ #endif //printf("Memsize required = %i\n", sizex*sizex); size_t ctx_size = 0; ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32); ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32); ctx_size += sizex*sizez*ggml_type_sizef(GGML_TYPE_F32); ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_Q4_0); ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_Q4_0); ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32); // BLAS ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32); // BLAS ctx_size += 1024*1024*16; printf("Allocating Memory of size %li bytes, %li MB\n",ctx_size, (ctx_size/1024/1024)); struct ggml_init_params params = { /*.mem_size =*/ ctx_size, /*.mem_buffer =*/ NULL, /* no_alloc =*/ 0 }; ctx = ggml_init(params); if (!ctx) { fprintf(stderr, "%s: ggml_init() failed\n", __func__); return 1; } printf("Creating new tensors\n"); // printf("Creating new tensor m1\n"); struct ggml_tensor * m11 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizey); ggml_set_f32(m11, 1.0f); // printf("Creating new tensor m1\n"); struct ggml_tensor * m12 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizey); ggml_set_f32(m12, 1.5f); // printf("Creating new tensor m2\n"); struct ggml_tensor * m2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizez); ggml_set_f32(m2, 2.0f); printf("\n------ Test 1 - Matrix Mult via F32 code ------------------------------------------------------------------------------\n"); // printf("Creating new tensor m11xm2\n"); struct ggml_tensor * m11xm2 = ggml_mul_mat(ctx, m11, m2); // printf("Creating compute graph\n"); struct ggml_cgraph gf = ggml_build_forward(m11xm2); gf.n_threads=benchmark_params.n_threads; printf("cgraph->n_threads=%i\n",gf.n_threads); TENSOR_DUMP(m11); TENSOR_DUMP(m2); ggml_graph_compute(ctx, &gf); TENSOR_DUMP(gf.nodes[0]); printf("\n------ Test 2 - Matrix Mult via Q4_0 code ------------------------------------------------------------------------------\n"); int32_t nelements = sizex*sizey; int32_t ne[2] = { sizex, sizey }; std::vector<int64_t> hist_cur(1 << 4, 0); // Set up a the benchmark matrices // printf("Creating new tensor q11 & Running quantize\n"); struct ggml_tensor * q11 = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, sizex, sizey); ggml_quantize_q4_0((const float *) m11->data, q11->data, nelements, ne[0], hist_cur.data()); // Set up a the compute graph // printf("Creating new tensor q31\n"); struct ggml_tensor * q31 = ggml_mul_mat(ctx, q11, m2); // printf("Creating compute graph\n"); struct ggml_cgraph gf31 = ggml_build_forward(q31); gf31.n_threads=benchmark_params.n_threads; // Set up a second graph computation to make sure we override the CPU cache lines // printf("Creating new tensor q12 & Running quantize\n"); struct ggml_tensor * q12 = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, sizex, sizey); ggml_quantize_q4_0((const float *) m12->data, q12->data, nelements, ne[0], hist_cur.data()); // printf("Creating new tensor q32\n"); struct ggml_tensor * q32 = ggml_mul_mat(ctx, q12, m2); //printf("Creating compute graph\n"); struct ggml_cgraph gf32 = ggml_build_forward(q32); gf32.n_threads=benchmark_params.n_threads; printf("cgraph->n_threads=%i\n",gf31.n_threads); const int dimx = sizex; const int dimy = sizey; const int dimz = sizez; long long int flops_per_dot_product = dimy + dimy; long long int flops_per_matrix = flops_per_dot_product * dimx * dimz; ; printf("Matrix Multiplication of (%i,%i,%i) x (%i,%i,%i) - about %6.2f gFLOPS\n\n", sizex, sizey, 1, sizex, sizez, 1, 1.0f*flops_per_matrix / 1000 / 1000 / 1000); // Let's use the F32 result from above as a reference for the q4_0 multiplication float sum_of_F32_reference = tensor_sum_elements(gf.nodes[0]); printf("Iteration;NThreads; SizeX; SizeY; SizeZ; Required_FLOPS; Elapsed_u_Seconds; FLOPS_per_u_Second\n"); printf("==============================================================================================\n"); for (int i=0;i<benchmark_params.n_iterations ;i++) { long long int start = ggml_time_us(); //printf("Running ggml_graph_compute\n"); ggml_graph_compute(ctx, &gf31); long long int stop = ggml_time_us(); long long int usec = stop-start; float flops_per_usec = (1.0f*flops_per_matrix)/usec; printf("%9i;%8i;%6i;%6i;%6i;%15lli;%18lli;%19.2f\n", i, gf31.n_threads, sizex, sizey, sizez, flops_per_matrix, usec,flops_per_usec); #ifdef VERBOSE_DEBUGGING TENSOR_DUMP("res",gf31.nodes[0]) #endif // Check that the matrix multiplication result is in the right ballpark // We cannot use the exact value from the F32 multiplication because the quantizuation will be slightly different float sum_of_Q4_result = tensor_sum_elements(gf31.nodes[0]); float delta = abs(sum_of_Q4_result - sum_of_F32_reference); float allowed_delta = (sum_of_F32_reference) / 1000 / 1000; // Let's accept an epsilon of 10^-6 if (delta > allowed_delta) { printf("\nABORT - ERROR in Matrix Multiplication result - expected %6.2f, got %6.2f (delta %6.2f > allowed_delta %6.2f)\n", sum_of_F32_reference, sum_of_Q4_result, delta, allowed_delta ); exit(0); } // Running a different graph computation to make sure we override the CPU cache lines ggml_graph_compute(ctx, &gf32); } }