#include "llama.h"
#include <cstdio>
#include <cstring>
#include <iostream>
#include <string>
#include <vector>

static void print_usage(int, char ** argv) {
    printf("\nexample usage:\n");
    printf("\n    %s -m model.gguf [-c context_size] [-ngl n_gpu_layers]\n", argv[0]);
    printf("\n");
}

int main(int argc, char ** argv) {
    std::string model_path;
    int ngl = 99;
    int n_ctx = 2048;

    // parse command line arguments
    for (int i = 1; i < argc; i++) {
        try {
            if (strcmp(argv[i], "-m") == 0) {
                if (i + 1 < argc) {
                    model_path = argv[++i];
                } else {
                    print_usage(argc, argv);
                    return 1;
                }
            } else if (strcmp(argv[i], "-c") == 0) {
                if (i + 1 < argc) {
                    n_ctx = std::stoi(argv[++i]);
                } else {
                    print_usage(argc, argv);
                    return 1;
                }
            } else if (strcmp(argv[i], "-ngl") == 0) {
                if (i + 1 < argc) {
                    ngl = std::stoi(argv[++i]);
                } else {
                    print_usage(argc, argv);
                    return 1;
                }
            } else {
                print_usage(argc, argv);
                return 1;
            }
        } catch (std::exception & e) {
            fprintf(stderr, "error: %s\n", e.what());
            print_usage(argc, argv);
            return 1;
        }
    }
    if (model_path.empty()) {
        print_usage(argc, argv);
        return 1;
    }

    // only print errors
    llama_log_set([](enum ggml_log_level level, const char * text, void * /* user_data */) {
        if (level >= GGML_LOG_LEVEL_ERROR) {
            fprintf(stderr, "%s", text);
        }
    }, nullptr);

    // initialize the model
    llama_model_params model_params = llama_model_default_params();
    model_params.n_gpu_layers = ngl;

    llama_model * model = llama_load_model_from_file(model_path.c_str(), model_params);
    if (!model) {
        fprintf(stderr , "%s: error: unable to load model\n" , __func__);
        return 1;
    }

    // initialize the context
    llama_context_params ctx_params = llama_context_default_params();
    ctx_params.n_ctx = n_ctx;
    ctx_params.n_batch = n_ctx;

    llama_context * ctx = llama_new_context_with_model(model, ctx_params);
    if (!ctx) {
        fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
        return 1;
    }

    // initialize the sampler
    llama_sampler * smpl = llama_sampler_chain_init(llama_sampler_chain_default_params());
    llama_sampler_chain_add(smpl, llama_sampler_init_min_p(0.05f, 1));
    llama_sampler_chain_add(smpl, llama_sampler_init_temp(0.8f));
    llama_sampler_chain_add(smpl, llama_sampler_init_dist(LLAMA_DEFAULT_SEED));

    // helper function to evaluate a prompt and generate a response
    auto generate = [&](const std::string & prompt) {
        std::string response;

        // tokenize the prompt
        const int n_prompt_tokens = -llama_tokenize(model, prompt.c_str(), prompt.size(), NULL, 0, true, true);
        std::vector<llama_token> prompt_tokens(n_prompt_tokens);
        if (llama_tokenize(model, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), llama_get_kv_cache_used_cells(ctx) == 0, true) < 0) {
            GGML_ABORT("failed to tokenize the prompt\n");
        }

        // prepare a batch for the prompt
        llama_batch batch = llama_batch_get_one(prompt_tokens.data(), prompt_tokens.size());
        llama_token new_token_id;
        while (true) {
            // check if we have enough space in the context to evaluate this batch
            int n_ctx = llama_n_ctx(ctx);
            int n_ctx_used = llama_get_kv_cache_used_cells(ctx);
            if (n_ctx_used + batch.n_tokens > n_ctx) {
                printf("\033[0m\n");
                fprintf(stderr, "context size exceeded\n");
                exit(0);
            }

            if (llama_decode(ctx, batch)) {
                GGML_ABORT("failed to decode\n");
            }

            // sample the next token
            new_token_id = llama_sampler_sample(smpl, ctx, -1);

            // is it an end of generation?
            if (llama_token_is_eog(model, new_token_id)) {
                break;
            }

            // convert the token to a string, print it and add it to the response
            char buf[256];
            int n = llama_token_to_piece(model, new_token_id, buf, sizeof(buf), 0, true);
            if (n < 0) {
                GGML_ABORT("failed to convert token to piece\n");
            }
            std::string piece(buf, n);
            printf("%s", piece.c_str());
            fflush(stdout);
            response += piece;

            // prepare the next batch with the sampled token
            batch = llama_batch_get_one(&new_token_id, 1);
        }

        return response;
    };

    std::vector<llama_chat_message> messages;
    std::vector<char> formatted(llama_n_ctx(ctx));
    int prev_len = 0;
    while (true) {
        // get user input
        printf("\033[32m> \033[0m");
        std::string user;
        std::getline(std::cin, user);

        if (user.empty()) {
            break;
        }

        // add the user input to the message list and format it
        messages.push_back({"user", strdup(user.c_str())});
        int new_len = llama_chat_apply_template(model, nullptr, messages.data(), messages.size(), true, formatted.data(), formatted.size());
        if (new_len > (int)formatted.size()) {
            formatted.resize(new_len);
            new_len = llama_chat_apply_template(model, nullptr, messages.data(), messages.size(), true, formatted.data(), formatted.size());
        }
        if (new_len < 0) {
            fprintf(stderr, "failed to apply the chat template\n");
            return 1;
        }

        // remove previous messages to obtain the prompt to generate the response
        std::string prompt(formatted.begin() + prev_len, formatted.begin() + new_len);

        // generate a response
        printf("\033[33m");
        std::string response = generate(prompt);
        printf("\n\033[0m");

        // add the response to the messages
        messages.push_back({"assistant", strdup(response.c_str())});
        prev_len = llama_chat_apply_template(model, nullptr, messages.data(), messages.size(), false, nullptr, 0);
        if (prev_len < 0) {
            fprintf(stderr, "failed to apply the chat template\n");
            return 1;
        }
    }

    // free resources
    for (auto & msg : messages) {
        free(const_cast<char *>(msg.content));
    }
    llama_sampler_free(smpl);
    llama_free(ctx);
    llama_free_model(model);

    return 0;
}