#import "ggml-metal.h" #import "ggml-impl.h" #import "ggml-backend-impl.h" #import #import #undef MIN #undef MAX #define MIN(a, b) ((a) < (b) ? (a) : (b)) #define MAX(a, b) ((a) > (b) ? (a) : (b)) // max memory buffers that can be mapped to the device #define GGML_METAL_MAX_BUFFERS 64 // max number of MTLCommandBuffer used to submit a graph for processing #define GGML_METAL_MAX_COMMAND_BUFFERS 8 #define UNUSED(x) (void)(x) // globals // overload of MTLGPUFamilyMetal3 (not available in some environments) static const NSInteger MTLGPUFamilyMetal3_GGML = 5001; // initialized in ggml_backend_metal_reg static struct ggml_backend_reg g_ggml_backend_metal_reg; static struct ggml_backend_device g_ggml_backend_metal_device; // information about a Metal device // note: assumes single GPU device - the default one // TODO: support multiple GPU devices static struct ggml_backend_metal_device_context { id mtl_device; int mtl_device_ref_count; bool has_simdgroup_reduction; bool has_simdgroup_mm; bool has_bfloat; bool use_bfloat; char name[128]; } g_ggml_ctx_dev_main = { /*.mtl_device =*/ nil, /*.mtl_device_ref_count =*/ 0, /*.has_simdgroup_reduction =*/ false, /*.has_simdgroup_mm =*/ false, /*.has_bfloat =*/ false, /*.use_bfloat =*/ false, /*.name =*/ "", }; // acquire static id ggml_backend_metal_device_acq(struct ggml_backend_metal_device_context * ctx) { assert(ctx != NULL); if (ctx->mtl_device == nil) { ctx->mtl_device = MTLCreateSystemDefaultDevice(); ctx->has_simdgroup_reduction = [ctx->mtl_device supportsFamily:MTLGPUFamilyApple7]; ctx->has_simdgroup_reduction |= [ctx->mtl_device supportsFamily:MTLGPUFamilyMetal3_GGML]; ctx->has_simdgroup_mm = [ctx->mtl_device supportsFamily:MTLGPUFamilyApple7]; ctx->has_bfloat = [ctx->mtl_device supportsFamily:MTLGPUFamilyMetal3_GGML]; ctx->has_bfloat |= [ctx->mtl_device supportsFamily:MTLGPUFamilyApple6]; #if defined(GGML_METAL_USE_BF16) ctx->use_bfloat = ctx->has_bfloat; #else ctx->use_bfloat = false; #endif strncpy(ctx->name, [[ctx->mtl_device name] UTF8String], sizeof(ctx->name) - 1); } ctx->mtl_device_ref_count++; return ctx->mtl_device; } // release static void ggml_backend_metal_device_rel(struct ggml_backend_metal_device_context * ctx) { assert(ctx != NULL); assert(ctx->mtl_device_ref_count > 0); ctx->mtl_device_ref_count--; if (ctx->mtl_device_ref_count == 0) { [ctx->mtl_device release]; ctx->mtl_device = nil; } } // kernels struct ggml_metal_kernel { id pipeline; }; enum ggml_metal_kernel_type { GGML_METAL_KERNEL_TYPE_ADD, GGML_METAL_KERNEL_TYPE_ADD_ROW, GGML_METAL_KERNEL_TYPE_SUB, GGML_METAL_KERNEL_TYPE_SUB_ROW, GGML_METAL_KERNEL_TYPE_MUL, GGML_METAL_KERNEL_TYPE_MUL_ROW, GGML_METAL_KERNEL_TYPE_DIV, GGML_METAL_KERNEL_TYPE_DIV_ROW, GGML_METAL_KERNEL_TYPE_REPEAT_F32, GGML_METAL_KERNEL_TYPE_REPEAT_F16, GGML_METAL_KERNEL_TYPE_REPEAT_I32, GGML_METAL_KERNEL_TYPE_REPEAT_I16, GGML_METAL_KERNEL_TYPE_SCALE, GGML_METAL_KERNEL_TYPE_SCALE_4, GGML_METAL_KERNEL_TYPE_CLAMP, GGML_METAL_KERNEL_TYPE_TANH, GGML_METAL_KERNEL_TYPE_RELU, GGML_METAL_KERNEL_TYPE_SIGMOID, GGML_METAL_KERNEL_TYPE_GELU, GGML_METAL_KERNEL_TYPE_GELU_4, GGML_METAL_KERNEL_TYPE_GELU_QUICK, GGML_METAL_KERNEL_TYPE_GELU_QUICK_4, GGML_METAL_KERNEL_TYPE_SILU, GGML_METAL_KERNEL_TYPE_SILU_4, GGML_METAL_KERNEL_TYPE_SOFT_MAX_F16, GGML_METAL_KERNEL_TYPE_SOFT_MAX_F16_4, GGML_METAL_KERNEL_TYPE_SOFT_MAX_F32, GGML_METAL_KERNEL_TYPE_SOFT_MAX_F32_4, GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF, GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF_8, GGML_METAL_KERNEL_TYPE_GET_ROWS_F32, GGML_METAL_KERNEL_TYPE_GET_ROWS_F16, GGML_METAL_KERNEL_TYPE_GET_ROWS_BF16, GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_0, GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_1, GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_0, GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_1, GGML_METAL_KERNEL_TYPE_GET_ROWS_Q8_0, GGML_METAL_KERNEL_TYPE_GET_ROWS_Q2_K, GGML_METAL_KERNEL_TYPE_GET_ROWS_Q3_K, GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_K, GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_K, GGML_METAL_KERNEL_TYPE_GET_ROWS_Q6_K, GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XXS, GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XS, GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_XXS, GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_S, GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_S, GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_S, GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_M, GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL, GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS, GGML_METAL_KERNEL_TYPE_GET_ROWS_I32, GGML_METAL_KERNEL_TYPE_RMS_NORM, GGML_METAL_KERNEL_TYPE_GROUP_NORM, GGML_METAL_KERNEL_TYPE_NORM, GGML_METAL_KERNEL_TYPE_SSM_CONV_F32, GGML_METAL_KERNEL_TYPE_SSM_SCAN_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_F32_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_1ROW, GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_L4, GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F16, GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_F32_1ROW, GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_F32_L4, GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_BF16, GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_0_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_1_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_0_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_1_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_Q8_0_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_Q2_K_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_Q3_K_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_K_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_K_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_Q6_K_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XXS_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XS_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_XXS_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_S_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_S_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_S_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_M_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_NL_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_XS_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32, //GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32_1ROW, //GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32_L4, //GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F16, GGML_METAL_KERNEL_TYPE_MUL_MV_ID_BF16_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_0_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_1_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_0_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_1_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q8_0_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q2_K_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q3_K_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_K_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_K_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q6_K_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XXS_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XS_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_XXS_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_S_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_S_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_S_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_M_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_NL_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_BF16_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_1_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_0_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_1_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_Q8_0_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_Q2_K_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_Q3_K_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_K_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_K_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_Q6_K_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XXS_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_XXS_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_S_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_S_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_S_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_M_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_BF16_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_1_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_0_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_1_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q8_0_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q2_K_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q3_K_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_K_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_K_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q6_K_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_S_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_S_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_M_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32, GGML_METAL_KERNEL_TYPE_ROPE_NORM_F32, GGML_METAL_KERNEL_TYPE_ROPE_NORM_F16, GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F32, GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F16, GGML_METAL_KERNEL_TYPE_IM2COL_F16, GGML_METAL_KERNEL_TYPE_IM2COL_F32, GGML_METAL_KERNEL_TYPE_IM2COL_EXT_F16, GGML_METAL_KERNEL_TYPE_IM2COL_EXT_F32, GGML_METAL_KERNEL_TYPE_UPSCALE_F32, GGML_METAL_KERNEL_TYPE_PAD_F32, GGML_METAL_KERNEL_TYPE_ARANGE_F32, GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32, GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC, GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC, GGML_METAL_KERNEL_TYPE_LEAKY_RELU_F32, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H64, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H80, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H96, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H112, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H128, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H256, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H64, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H80, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H96, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H112, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H128, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H256, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H64, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H80, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H96, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H112, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H128, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H256, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H64, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H80, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H96, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H112, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H128, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H256, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H64, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H80, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H96, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H112, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H128, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H256, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H64, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H80, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H96, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H112, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H128, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H256, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H64, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H80, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H96, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H112, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H128, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H256, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H128, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_H128, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H128, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_H128, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_H128, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_H128, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H128, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H256, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_H256, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H256, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_H256, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_H256, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_H256, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H256, GGML_METAL_KERNEL_TYPE_CPY_F32_F32, GGML_METAL_KERNEL_TYPE_CPY_F32_F16, GGML_METAL_KERNEL_TYPE_CPY_F32_BF16, GGML_METAL_KERNEL_TYPE_CPY_F16_F16, GGML_METAL_KERNEL_TYPE_CPY_F16_F32, GGML_METAL_KERNEL_TYPE_CPY_BF16_F32, GGML_METAL_KERNEL_TYPE_CPY_BF16_BF16, GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0, GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_0, GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_1, GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_0, GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_1, GGML_METAL_KERNEL_TYPE_CPY_F32_IQ4_NL, GGML_METAL_KERNEL_TYPE_CONCAT, GGML_METAL_KERNEL_TYPE_SQR, GGML_METAL_KERNEL_TYPE_SQRT, GGML_METAL_KERNEL_TYPE_SIN, GGML_METAL_KERNEL_TYPE_COS, GGML_METAL_KERNEL_TYPE_SUM_ROWS, GGML_METAL_KERNEL_TYPE_POOL_2D_AVG_F32, GGML_METAL_KERNEL_TYPE_POOL_2D_MAX_F32, GGML_METAL_KERNEL_TYPE_COUNT }; struct ggml_backend_metal_context { id queue; dispatch_queue_t d_queue; struct ggml_metal_kernel kernels[GGML_METAL_KERNEL_TYPE_COUNT]; // capture state bool capture_next_compute; bool capture_started; id capture_scope; // command buffer state int n_cb; // number of extra threads used to submit the command buffers int n_nodes_0; // number of nodes submitted by the main thread int n_nodes_1; // remaining number of nodes submitted by the n_cb threads int n_nodes_per_cb; struct ggml_cgraph * gf; // the callback given to the thread pool void (^encode_async)(size_t ith); // n_cb command buffers + 1 used by the main thread id command_buffers[GGML_METAL_MAX_COMMAND_BUFFERS + 1]; // abort ggml_metal_graph_compute if callback returns true ggml_abort_callback abort_callback; void * abort_callback_data; }; // MSL code // TODO: move the contents here when ready // for now it is easier to work in a separate file // static NSString * const msl_library_source = @"see metal.metal"; // Here to assist with NSBundle Path Hack @interface GGMLMetalClass : NSObject @end @implementation GGMLMetalClass @end static void * ggml_metal_host_malloc(size_t n) { void * data = NULL; #if TARGET_OS_OSX kern_return_t err = vm_allocate((vm_map_t) mach_task_self(), (void *) &data, n, VM_FLAGS_ANYWHERE); if (err != KERN_SUCCESS) { GGML_LOG_ERROR("%s: error: vm_allocate failed\n", __func__); return NULL; } #else const int result = posix_memalign((void **) &data, sysconf(_SC_PAGESIZE), n); if (result != 0) { GGML_LOG_ERROR("%s: error: posix_memalign failed\n", __func__); return NULL; } #endif return data; } static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t dev) { GGML_LOG_INFO("%s: allocating\n", __func__); #if TARGET_OS_OSX && !GGML_METAL_NDEBUG // Show all the Metal device instances in the system NSArray * devices = MTLCopyAllDevices(); for (id device in devices) { GGML_LOG_INFO("%s: found device: %s\n", __func__, [[device name] UTF8String]); } [devices release]; // since it was created by a *Copy* C method #endif // init context struct ggml_backend_metal_context * ctx = calloc(1, sizeof(struct ggml_backend_metal_context)); struct ggml_backend_metal_device_context * ctx_dev = dev->context; id device = ggml_backend_metal_device_acq(ctx_dev); GGML_LOG_INFO("%s: picking default device: %s\n", __func__, [[device name] UTF8String]); ctx->queue = [device newCommandQueue]; ctx->d_queue = dispatch_queue_create("ggml-metal", DISPATCH_QUEUE_CONCURRENT); id metal_library; // load library // // - first check if the library is embedded // - then check if the library is in the bundle // - if not found, load the source and compile it // - if that fails, return NULL { NSBundle * bundle = nil; #ifdef SWIFT_PACKAGE bundle = SWIFTPM_MODULE_BUNDLE; #else bundle = [NSBundle bundleForClass:[GGMLMetalClass class]]; #endif NSError * error = nil; #if GGML_METAL_EMBED_LIBRARY const bool try_metallib = false; #else const bool try_metallib = true; #endif NSString * path_lib = [bundle pathForResource:@"default" ofType:@"metallib"]; if (try_metallib && path_lib != nil) { // pre-compiled library found NSURL * libURL = [NSURL fileURLWithPath:path_lib]; GGML_LOG_INFO("%s: loading '%s'\n", __func__, [path_lib UTF8String]); metal_library = [device newLibraryWithURL:libURL error:&error]; if (error) { GGML_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]); return NULL; } } else { #if GGML_METAL_EMBED_LIBRARY GGML_LOG_INFO("%s: using embedded metal library\n", __func__); extern const char ggml_metallib_start[]; extern const char ggml_metallib_end[]; NSString * src = [[NSString alloc] initWithBytes:ggml_metallib_start length:(ggml_metallib_end-ggml_metallib_start) encoding:NSUTF8StringEncoding]; #else GGML_LOG_INFO("%s: default.metallib not found, loading from source\n", __func__); NSString * path_source; NSString * path_resource = [[NSProcessInfo processInfo].environment objectForKey:@"GGML_METAL_PATH_RESOURCES"]; GGML_LOG_INFO("%s: GGML_METAL_PATH_RESOURCES = %s\n", __func__, path_resource ? [path_resource UTF8String] : "nil"); if (path_resource) { path_source = [path_resource stringByAppendingPathComponent:@"ggml-metal.metal"]; } else { path_source = [bundle pathForResource:@"ggml-metal" ofType:@"metal"]; } if (path_source == nil) { GGML_LOG_WARN("%s: error: could not use bundle path to find ggml-metal.metal, falling back to trying cwd\n", __func__); path_source = @"ggml-metal.metal"; } GGML_LOG_INFO("%s: loading '%s'\n", __func__, [path_source UTF8String]); NSString * src = [NSString stringWithContentsOfFile:path_source encoding:NSUTF8StringEncoding error:&error]; if (error) { GGML_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]); return NULL; } #endif // GGML_METAL_EMBED_LIBRARY @autoreleasepool { // dictionary of preprocessor macros NSMutableDictionary * prep = [NSMutableDictionary dictionary]; if (ctx_dev->use_bfloat) { [prep setObject:@"1" forKey:@"GGML_METAL_USE_BF16"]; } MTLCompileOptions * options = [MTLCompileOptions new]; options.preprocessorMacros = prep; //[options setFastMathEnabled:false]; metal_library = [device newLibraryWithSource:src options:options error:&error]; if (error) { GGML_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]); return NULL; } #if !__has_feature(objc_arc) [options release]; #endif } #if GGML_METAL_EMBED_LIBRARY [src release]; #endif // GGML_METAL_EMBED_LIBRARY } } // print MTL GPU family: GGML_LOG_INFO("%s: GPU name: %s\n", __func__, [[device name] UTF8String]); // determine max supported GPU family // https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf // https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf { for (int i = MTLGPUFamilyApple1 + 20; i >= MTLGPUFamilyApple1; --i) { if ([device supportsFamily:i]) { GGML_LOG_INFO("%s: GPU family: MTLGPUFamilyApple%d (%d)\n", __func__, i - (int) MTLGPUFamilyApple1 + 1, i); break; } } for (int i = MTLGPUFamilyCommon1 + 5; i >= MTLGPUFamilyCommon1; --i) { if ([device supportsFamily:i]) { GGML_LOG_INFO("%s: GPU family: MTLGPUFamilyCommon%d (%d)\n", __func__, i - (int) MTLGPUFamilyCommon1 + 1, i); break; } } for (int i = MTLGPUFamilyMetal3_GGML + 5; i >= MTLGPUFamilyMetal3_GGML; --i) { if ([device supportsFamily:i]) { GGML_LOG_INFO("%s: GPU family: MTLGPUFamilyMetal%d (%d)\n", __func__, i - (int) MTLGPUFamilyMetal3_GGML + 3, i); break; } } } GGML_LOG_INFO("%s: simdgroup reduction = %s\n", __func__, ctx_dev->has_simdgroup_reduction ? "true" : "false"); GGML_LOG_INFO("%s: simdgroup matrix mul. = %s\n", __func__, ctx_dev->has_simdgroup_mm ? "true" : "false"); GGML_LOG_INFO("%s: has bfloat = %s\n", __func__, ctx_dev->has_bfloat ? "true" : "false"); GGML_LOG_INFO("%s: use bfloat = %s\n", __func__, ctx_dev->use_bfloat ? "true" : "false"); GGML_LOG_INFO("%s: hasUnifiedMemory = %s\n", __func__, ctx_dev->mtl_device.hasUnifiedMemory ? "true" : "false"); ctx->capture_next_compute = false; ctx->capture_started = false; ctx->capture_scope = nil; ctx->gf = nil; ctx->encode_async = nil; for (int i = 0; i < GGML_METAL_MAX_COMMAND_BUFFERS; ++i) { ctx->command_buffers[i] = nil; } #if TARGET_OS_OSX || (TARGET_OS_IOS && __clang_major__ >= 15) if (@available(macOS 10.12, iOS 16.0, *)) { GGML_LOG_INFO("%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, device.recommendedMaxWorkingSetSize / 1e6); } #endif // load kernels { NSError * error = nil; for (int i = 0; i < GGML_METAL_KERNEL_TYPE_COUNT; ++i) { ctx->kernels[i].pipeline = nil; } #define GGML_METAL_ADD_KERNEL(e, name, supported) \ if (supported) { \ struct ggml_metal_kernel * kernel = &ctx->kernels[e]; \ id metal_function = [metal_library newFunctionWithName:@"kernel_"#name]; \ kernel->pipeline = [device newComputePipelineStateWithFunction:metal_function error:&error]; \ GGML_LOG_DEBUG("%s: loaded %-40s %16p | th_max = %4d | th_width = %4d\n", __func__, "kernel_"#name, (void *) kernel->pipeline, \ (int) kernel->pipeline.maxTotalThreadsPerThreadgroup, \ (int) kernel->pipeline.threadExecutionWidth); \ [metal_function release]; \ if (error) { \ GGML_LOG_ERROR("%s: error: load pipeline error: %s\n", __func__, [[error description] UTF8String]); \ [metal_library release]; \ return NULL; \ } \ } else { \ GGML_LOG_WARN("%s: skipping %-40s (not supported)\n", __func__, "kernel_"#name); \ } const bool has_simdgroup_mm = ctx_dev->has_simdgroup_mm; const bool has_simdgroup_reduction = ctx_dev->has_simdgroup_reduction; const bool use_bfloat = ctx_dev->use_bfloat; // simd_sum and simd_max requires MTLGPUFamilyApple7 GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD, add, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_ROW, add_row, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SUB, sub, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SUB_ROW, sub_row, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL, mul, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_ROW, mul_row, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIV, div, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIV_ROW, div_row, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_REPEAT_F32, repeat_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_REPEAT_F16, repeat_f16, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_REPEAT_I32, repeat_i32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_REPEAT_I16, repeat_i16, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SCALE, scale, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SCALE_4, scale_4, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CLAMP, clamp, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_TANH, tanh, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RELU, relu, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SIGMOID, sigmoid, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU, gelu, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_4, gelu_4, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_QUICK, gelu_quick, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_QUICK_4, gelu_quick_4, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SILU, silu, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SILU_4, silu_4, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX_F16, soft_max_f16, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX_F16_4, soft_max_f16_4, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX_F32, soft_max_f32, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX_F32_4, soft_max_f32_4, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF, diag_mask_inf, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF_8, diag_mask_inf_8, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_F32, get_rows_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_F16, get_rows_f16, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_BF16, get_rows_bf16, use_bfloat); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_0, get_rows_q4_0, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_1, get_rows_q4_1, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_0, get_rows_q5_0, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_1, get_rows_q5_1, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q8_0, get_rows_q8_0, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q2_K, get_rows_q2_K, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q3_K, get_rows_q3_K, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_K, get_rows_q4_K, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_K, get_rows_q5_K, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q6_K, get_rows_q6_K, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XXS, get_rows_iq2_xxs, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XS, get_rows_iq2_xs, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_XXS, get_rows_iq3_xxs, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_S, get_rows_iq3_s, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_S, get_rows_iq2_s, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_S, get_rows_iq1_s, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_M, get_rows_iq1_m, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL, get_rows_iq4_nl, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS, get_rows_iq4_xs, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_I32, get_rows_i32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RMS_NORM, rms_norm, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GROUP_NORM, group_norm, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_NORM, norm, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SSM_CONV_F32, ssm_conv_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SSM_SCAN_F32, ssm_scan_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F32_F32, mul_mv_f32_f32, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_F32, mul_mv_bf16_f32, has_simdgroup_reduction && use_bfloat); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_F32_1ROW, mul_mv_bf16_f32_1row, has_simdgroup_reduction && use_bfloat); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_F32_L4, mul_mv_bf16_f32_l4, has_simdgroup_reduction && use_bfloat); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_BF16, mul_mv_bf16_bf16, has_simdgroup_reduction && use_bfloat); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32, mul_mv_f16_f32, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_1ROW, mul_mv_f16_f32_1row, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_L4, mul_mv_f16_f32_l4, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F16, mul_mv_f16_f16, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_0_F32, mul_mv_q4_0_f32, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_1_F32, mul_mv_q4_1_f32, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_0_F32, mul_mv_q5_0_f32, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_1_F32, mul_mv_q5_1_f32, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q8_0_F32, mul_mv_q8_0_f32, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q2_K_F32, mul_mv_q2_K_f32, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q3_K_F32, mul_mv_q3_K_f32, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_K_F32, mul_mv_q4_K_f32, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_K_F32, mul_mv_q5_K_f32, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q6_K_F32, mul_mv_q6_K_f32, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XXS_F32, mul_mv_iq2_xxs_f32, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XS_F32, mul_mv_iq2_xs_f32, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_XXS_F32, mul_mv_iq3_xxs_f32, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_S_F32, mul_mv_iq3_s_f32, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_S_F32, mul_mv_iq2_s_f32, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_S_F32, mul_mv_iq1_s_f32, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_M_F32, mul_mv_iq1_m_f32, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_NL_F32, mul_mv_iq4_nl_f32, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_XS_F32, mul_mv_iq4_xs_f32, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32, mul_mv_id_f32_f32, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32, mul_mv_id_f16_f32, has_simdgroup_reduction); //GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32_1ROW, mul_mv_id_f16_f32_1row, has_simdgroup_reduction); //GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32_L4, mul_mv_id_f16_f32_l4, has_simdgroup_reduction); //GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F16, mul_mv_id_f16_f16, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_BF16_F32, mul_mv_id_bf16_f32, has_simdgroup_reduction && use_bfloat); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_0_F32, mul_mv_id_q4_0_f32, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_1_F32, mul_mv_id_q4_1_f32, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_0_F32, mul_mv_id_q5_0_f32, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_1_F32, mul_mv_id_q5_1_f32, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q8_0_F32, mul_mv_id_q8_0_f32, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q2_K_F32, mul_mv_id_q2_K_f32, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q3_K_F32, mul_mv_id_q3_K_f32, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_K_F32, mul_mv_id_q4_K_f32, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_K_F32, mul_mv_id_q5_K_f32, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q6_K_F32, mul_mv_id_q6_K_f32, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XXS_F32, mul_mv_id_iq2_xxs_f32, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XS_F32, mul_mv_id_iq2_xs_f32, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_XXS_F32, mul_mv_id_iq3_xxs_f32, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_S_F32, mul_mv_id_iq3_s_f32, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_S_F32, mul_mv_id_iq2_s_f32, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_S_F32, mul_mv_id_iq1_s_f32, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_M_F32, mul_mv_id_iq1_m_f32, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_NL_F32, mul_mv_id_iq4_nl_f32, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32, mul_mv_id_iq4_xs_f32, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32, mul_mm_f32_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32, mul_mm_f16_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_BF16_F32, mul_mm_bf16_f32, has_simdgroup_mm && use_bfloat); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F32, mul_mm_q4_0_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_1_F32, mul_mm_q4_1_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_0_F32, mul_mm_q5_0_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_1_F32, mul_mm_q5_1_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q8_0_F32, mul_mm_q8_0_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q2_K_F32, mul_mm_q2_K_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q3_K_F32, mul_mm_q3_K_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_K_F32, mul_mm_q4_K_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_K_F32, mul_mm_q5_K_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q6_K_F32, mul_mm_q6_K_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XXS_F32, mul_mm_iq2_xxs_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32, mul_mm_iq2_xs_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_XXS_F32, mul_mm_iq3_xxs_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_S_F32, mul_mm_iq3_s_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_S_F32, mul_mm_iq2_s_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_S_F32, mul_mm_iq1_s_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_M_F32, mul_mm_iq1_m_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32, mul_mm_iq4_nl_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32, mul_mm_iq4_xs_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32, mul_mm_id_f32_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32, mul_mm_id_f16_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_BF16_F32, mul_mm_id_bf16_f32, has_simdgroup_mm && use_bfloat); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F32, mul_mm_id_q4_0_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_1_F32, mul_mm_id_q4_1_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_0_F32, mul_mm_id_q5_0_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_1_F32, mul_mm_id_q5_1_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q8_0_F32, mul_mm_id_q8_0_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q2_K_F32, mul_mm_id_q2_K_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q3_K_F32, mul_mm_id_q3_K_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_K_F32, mul_mm_id_q4_K_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_K_F32, mul_mm_id_q5_K_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q6_K_F32, mul_mm_id_q6_K_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F32, mul_mm_id_iq2_xxs_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F32, mul_mm_id_iq2_xs_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F32, mul_mm_id_iq3_xxs_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_S_F32, mul_mm_id_iq3_s_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_S_F32, mul_mm_id_iq2_s_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F32, mul_mm_id_iq1_s_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_M_F32, mul_mm_id_iq1_m_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32, mul_mm_id_iq4_nl_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32, mul_mm_id_iq4_xs_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NORM_F32, rope_norm_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NORM_F16, rope_norm_f16, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F32, rope_neox_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F16, rope_neox_f16, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_F16, im2col_f16, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_F32, im2col_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_EXT_F16, im2col_ext_f16, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_EXT_F32, im2col_ext_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_UPSCALE_F32, upscale_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_PAD_F32, pad_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32, timestep_embedding_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARANGE_F32, arange_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC, argsort_f32_i32_asc, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC, argsort_f32_i32_desc, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_LEAKY_RELU_F32, leaky_relu_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H64, flash_attn_ext_f16_h64, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H80, flash_attn_ext_f16_h80, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H96, flash_attn_ext_f16_h96, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H112, flash_attn_ext_f16_h112, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H128, flash_attn_ext_f16_h128, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H256, flash_attn_ext_f16_h256, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H64, flash_attn_ext_bf16_h64, has_simdgroup_mm && use_bfloat); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H80, flash_attn_ext_bf16_h80, has_simdgroup_mm && use_bfloat); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H96, flash_attn_ext_bf16_h96, has_simdgroup_mm && use_bfloat); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H112, flash_attn_ext_bf16_h112, has_simdgroup_mm && use_bfloat); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H128, flash_attn_ext_bf16_h128, has_simdgroup_mm && use_bfloat); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H256, flash_attn_ext_bf16_h256, has_simdgroup_mm && use_bfloat); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H64, flash_attn_ext_q4_0_h64, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H80, flash_attn_ext_q4_0_h80, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H96, flash_attn_ext_q4_0_h96, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H112, flash_attn_ext_q4_0_h112, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H128, flash_attn_ext_q4_0_h128, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H256, flash_attn_ext_q4_0_h256, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H64, flash_attn_ext_q4_1_h64, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H80, flash_attn_ext_q4_1_h80, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H96, flash_attn_ext_q4_1_h96, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H112, flash_attn_ext_q4_1_h112, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H128, flash_attn_ext_q4_1_h128, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H256, flash_attn_ext_q4_1_h256, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H64, flash_attn_ext_q5_0_h64, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H80, flash_attn_ext_q5_0_h80, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H96, flash_attn_ext_q5_0_h96, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H112, flash_attn_ext_q5_0_h112, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H128, flash_attn_ext_q5_0_h128, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H256, flash_attn_ext_q5_0_h256, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H64, flash_attn_ext_q5_1_h64, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H80, flash_attn_ext_q5_1_h80, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H96, flash_attn_ext_q5_1_h96, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H112, flash_attn_ext_q5_1_h112, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H128, flash_attn_ext_q5_1_h128, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H256, flash_attn_ext_q5_1_h256, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H64, flash_attn_ext_q8_0_h64, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H80, flash_attn_ext_q8_0_h80, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H96, flash_attn_ext_q8_0_h96, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H112, flash_attn_ext_q8_0_h112, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H128, flash_attn_ext_q8_0_h128, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H256, flash_attn_ext_q8_0_h256, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H128, flash_attn_ext_vec_f16_h128, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_H128, flash_attn_ext_vec_bf16_h128, has_simdgroup_reduction && use_bfloat); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H128, flash_attn_ext_vec_q4_0_h128, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_H128, flash_attn_ext_vec_q4_1_h128, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_H128, flash_attn_ext_vec_q5_0_h128, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_H128, flash_attn_ext_vec_q5_1_h128, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H128, flash_attn_ext_vec_q8_0_h128, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H256, flash_attn_ext_vec_f16_h256, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_H256, flash_attn_ext_vec_bf16_h256, has_simdgroup_reduction && use_bfloat); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H256, flash_attn_ext_vec_q4_0_h256, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_H256, flash_attn_ext_vec_q4_1_h256, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_H256, flash_attn_ext_vec_q5_0_h256, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_H256, flash_attn_ext_vec_q5_1_h256, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H256, flash_attn_ext_vec_q8_0_h256, has_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_F32, cpy_f32_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_F16, cpy_f32_f16, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_BF16, cpy_f32_bf16, use_bfloat); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F16_F32, cpy_f16_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F16_F16, cpy_f16_f16, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_BF16_F32, cpy_bf16_f32, use_bfloat); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_BF16_BF16, cpy_bf16_bf16, use_bfloat); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0, cpy_f32_q8_0, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_0, cpy_f32_q4_0, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_1, cpy_f32_q4_1, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_0, cpy_f32_q5_0, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_1, cpy_f32_q5_1, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_IQ4_NL, cpy_f32_iq4_nl, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CONCAT, concat, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SQR, sqr, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SQRT, sqrt, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SIN, sin, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_COS, cos, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SUM_ROWS, sum_rows, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_POOL_2D_AVG_F32, pool_2d_avg_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_POOL_2D_MAX_F32, pool_2d_max_f32, true); } [metal_library release]; return ctx; } static void ggml_metal_free(struct ggml_backend_metal_context * ctx) { GGML_LOG_INFO("%s: deallocating\n", __func__); for (int i = 0; i < GGML_METAL_KERNEL_TYPE_COUNT; ++i) { [ctx->kernels[i].pipeline release]; } Block_release(ctx->encode_async); [ctx->queue release]; dispatch_release(ctx->d_queue); free(ctx); } // temporarily defined here for compatibility between ggml-backend and the old API struct ggml_backend_metal_buffer { void * data; size_t size; id metal; }; struct ggml_backend_metal_buffer_context { void * all_data; size_t all_size; bool owned; // multiple buffers are used only to avoid the maximum buffer size limitation when using mmap int n_buffers; struct ggml_backend_metal_buffer buffers[GGML_METAL_MAX_BUFFERS]; }; // finds the Metal buffer that contains the tensor data on the GPU device // the assumption is that there is 1-to-1 mapping between the host and device memory buffers, so we can find the // Metal buffer based on the host memory pointer // static id ggml_metal_get_buffer(struct ggml_tensor * t, size_t * offs) { //GGML_LOG_INFO("%s: data tensor '%16s', offs_data = %8ld, offs_eval = %8ld, offs_cach = %8ld\n", __func__, t->name, offs_data, offs_eval, offs_cach); const int64_t tsize = ggml_nbytes(t); ggml_backend_buffer_t buffer = t->view_src ? t->view_src->buffer : t->buffer; struct ggml_backend_metal_buffer_context * buf_ctx = (struct ggml_backend_metal_buffer_context *) buffer->context; // find the view that contains the tensor fully for (int i = 0; i < buf_ctx->n_buffers; ++i) { const int64_t ioffs = (int64_t) t->data - (int64_t) buf_ctx->buffers[i].data; //GGML_LOG_INFO("ioffs = %10ld, tsize = %10ld, sum = %10ld, buf_ctx->buffers[%d].size = %10ld\n", ioffs, tsize, ioffs + tsize, i, buf_ctx->buffers[i].size); if (ioffs >= 0 && ioffs + tsize <= (int64_t) buf_ctx->buffers[i].size) { *offs = (size_t) ioffs; //GGML_LOG_INFO("%s: tensor '%16s', offs = %8ld\n", __func__, t->name, *offs); return buf_ctx->buffers[i].metal; } } GGML_LOG_ERROR("%s: error: tensor '%s' buffer is nil\n", __func__, t->name); return nil; } static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_context * ctx_dev, const struct ggml_tensor * op) { const bool has_simdgroup_mm = ctx_dev->has_simdgroup_mm; const bool has_simdgroup_reduction = ctx_dev->has_simdgroup_reduction; const bool use_bfloat = ctx_dev->use_bfloat; if (!use_bfloat) { for (size_t i = 0, n = 3; i < n; ++i) { if (op->src[i] != NULL && op->src[i]->type == GGML_TYPE_BF16) { return false; } } } switch (op->op) { case GGML_OP_UNARY: switch (ggml_get_unary_op(op)) { case GGML_UNARY_OP_TANH: case GGML_UNARY_OP_RELU: case GGML_UNARY_OP_SIGMOID: case GGML_UNARY_OP_GELU: case GGML_UNARY_OP_GELU_QUICK: case GGML_UNARY_OP_SILU: return ggml_is_contiguous(op->src[0]); default: return false; } case GGML_OP_NONE: case GGML_OP_RESHAPE: case GGML_OP_VIEW: case GGML_OP_TRANSPOSE: case GGML_OP_PERMUTE: case GGML_OP_CONCAT: case GGML_OP_ADD: case GGML_OP_SUB: case GGML_OP_ACC: case GGML_OP_MUL: case GGML_OP_DIV: case GGML_OP_REPEAT: case GGML_OP_SCALE: case GGML_OP_CLAMP: return true; case GGML_OP_SQR: case GGML_OP_SQRT: case GGML_OP_SIN: case GGML_OP_COS: return ggml_is_contiguous(op->src[0]); case GGML_OP_SUM_ROWS: case GGML_OP_SOFT_MAX: case GGML_OP_RMS_NORM: case GGML_OP_GROUP_NORM: return has_simdgroup_reduction; case GGML_OP_NORM: case GGML_OP_ROPE: return true; case GGML_OP_IM2COL: return op->src[0]->type == GGML_TYPE_F16; case GGML_OP_POOL_1D: return false; case GGML_OP_POOL_2D: case GGML_OP_UPSCALE: case GGML_OP_PAD: case GGML_OP_ARANGE: case GGML_OP_TIMESTEP_EMBEDDING: case GGML_OP_ARGSORT: case GGML_OP_LEAKY_RELU: return true; case GGML_OP_FLASH_ATTN_EXT: if (op->src[1]->type != op->src[2]->type) { return false; } return has_simdgroup_mm; // TODO: over-restricted for vec-kernels case GGML_OP_SSM_CONV: case GGML_OP_SSM_SCAN: return true; case GGML_OP_MUL_MAT: case GGML_OP_MUL_MAT_ID: return has_simdgroup_reduction && (op->src[0]->type != GGML_TYPE_F32 || op->src[1]->type == GGML_TYPE_F32); case GGML_OP_CPY: case GGML_OP_DUP: case GGML_OP_CONT: { switch (op->src[0]->type) { case GGML_TYPE_F32: switch (op->type) { case GGML_TYPE_F32: case GGML_TYPE_F16: case GGML_TYPE_BF16: case GGML_TYPE_Q8_0: case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: case GGML_TYPE_Q5_0: case GGML_TYPE_Q5_1: case GGML_TYPE_IQ4_NL: return true; default: return false; } case GGML_TYPE_F16: switch (op->type) { case GGML_TYPE_F32: case GGML_TYPE_F16: return true; default: return false; } case GGML_TYPE_BF16: switch (op->type) { case GGML_TYPE_F32: case GGML_TYPE_BF16: return true; default: return false; } default: return false; }; } case GGML_OP_DIAG_MASK_INF: case GGML_OP_GET_ROWS: { return op->ne[3] == 1; } default: return false; } } static void ggml_metal_encode_node( ggml_backend_t backend, int idx, id encoder) { struct ggml_backend_metal_context * ctx = backend->context; struct ggml_backend_metal_device_context * ctx_dev = backend->device->context; struct ggml_cgraph * gf = ctx->gf; struct ggml_tensor * node = ggml_graph_node(gf, idx); //GGML_LOG_INFO("%s: encoding node %3d, op = %8s\n", __func__, idx, ggml_op_name(node->op)); struct ggml_tensor * src0 = node->src[0]; struct ggml_tensor * src1 = node->src[1]; struct ggml_tensor * src2 = node->src[2]; struct ggml_tensor * dst = node; if (ggml_is_empty(dst)) { return; } switch (dst->op) { case GGML_OP_NONE: case GGML_OP_RESHAPE: case GGML_OP_VIEW: case GGML_OP_TRANSPOSE: case GGML_OP_PERMUTE: { // noop -> next node } return; default: { } break; } if (!ggml_metal_supports_op(ctx_dev, dst)) { GGML_LOG_ERROR("%s: error: unsupported op '%s'\n", __func__, ggml_op_desc(dst)); GGML_ABORT("unsupported op"); } const int64_t ne00 = src0 ? src0->ne[0] : 0; const int64_t ne01 = src0 ? src0->ne[1] : 0; const int64_t ne02 = src0 ? src0->ne[2] : 0; const int64_t ne03 = src0 ? src0->ne[3] : 0; const uint64_t nb00 = src0 ? src0->nb[0] : 0; const uint64_t nb01 = src0 ? src0->nb[1] : 0; const uint64_t nb02 = src0 ? src0->nb[2] : 0; const uint64_t nb03 = src0 ? src0->nb[3] : 0; const int64_t ne10 = src1 ? src1->ne[0] : 0; const int64_t ne11 = src1 ? src1->ne[1] : 0; const int64_t ne12 = src1 ? src1->ne[2] : 0; const int64_t ne13 = src1 ? src1->ne[3] : 0; const uint64_t nb10 = src1 ? src1->nb[0] : 0; const uint64_t nb11 = src1 ? src1->nb[1] : 0; const uint64_t nb12 = src1 ? src1->nb[2] : 0; const uint64_t nb13 = src1 ? src1->nb[3] : 0; const int64_t ne20 = src2 ? src2->ne[0] : 0; const int64_t ne21 = src2 ? src2->ne[1] : 0; const int64_t ne22 = src2 ? src2->ne[2] : 0; GGML_UNUSED(ne22); const int64_t ne23 = src2 ? src2->ne[3] : 0; GGML_UNUSED(ne23); const uint64_t nb20 = src2 ? src2->nb[0] : 0; GGML_UNUSED(nb20); const uint64_t nb21 = src2 ? src2->nb[1] : 0; const uint64_t nb22 = src2 ? src2->nb[2] : 0; const uint64_t nb23 = src2 ? src2->nb[3] : 0; GGML_UNUSED(nb23); const int64_t ne0 = dst ? dst->ne[0] : 0; const int64_t ne1 = dst ? dst->ne[1] : 0; const int64_t ne2 = dst ? dst->ne[2] : 0; const int64_t ne3 = dst ? dst->ne[3] : 0; const uint64_t nb0 = dst ? dst->nb[0] : 0; const uint64_t nb1 = dst ? dst->nb[1] : 0; const uint64_t nb2 = dst ? dst->nb[2] : 0; const uint64_t nb3 = dst ? dst->nb[3] : 0; const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT; const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT; const enum ggml_type dstt = dst ? dst->type : GGML_TYPE_COUNT; size_t offs_src0 = 0; size_t offs_src1 = 0; size_t offs_src2 = 0; size_t offs_dst = 0; id id_src0 = src0 ? ggml_metal_get_buffer(src0, &offs_src0) : nil; id id_src1 = src1 ? ggml_metal_get_buffer(src1, &offs_src1) : nil; id id_src2 = src2 ? ggml_metal_get_buffer(src2, &offs_src2) : nil; id id_dst = dst ? ggml_metal_get_buffer(dst, &offs_dst) : nil; #if 0 GGML_LOG_INFO("%s: op - %s\n", __func__, ggml_op_name(dst->op)); if (src0) { GGML_LOG_INFO("%s: src0 - %4s [%5lld, %5lld, %5lld, %5lld] [%5lld, %5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src0t), ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ggml_is_contiguous(src0), src0->name); } if (src1) { GGML_LOG_INFO("%s: src1 - %4s [%5lld, %5lld, %5lld, %5lld] [%5lld, %5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src1t), ne10, ne11, ne12, ne13, nb10, nb11, nb12, nb13, ggml_is_contiguous(src1), src1->name); } if (dst) { GGML_LOG_INFO("%s: dst - %4s [%5lld, %5lld, %5lld, %5lld] [%5lld, %5lld, %5lld, %5lld], 1, %s\n", __func__, ggml_type_name(dstt), ne0, ne1, ne2, ne3, nb0, nb1, nb2, nb3, dst->name); } #endif id device = ctx_dev->mtl_device; switch (dst->op) { case GGML_OP_CONCAT: { id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CONCAT].pipeline; const int32_t dim = ((const int32_t *) dst->op_params)[0]; [encoder setComputePipelineState:pipeline]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3]; [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4]; [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5]; [encoder setBytes:&ne03 length:sizeof(ne03) atIndex:6]; [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:7]; [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:8]; [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:9]; [encoder setBytes:&nb03 length:sizeof(nb03) atIndex:10]; [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:11]; [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:12]; [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:13]; [encoder setBytes:&ne13 length:sizeof(ne13) atIndex:14]; [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:15]; [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:16]; [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:17]; [encoder setBytes:&nb13 length:sizeof(nb13) atIndex:18]; [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:19]; [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:20]; [encoder setBytes:&ne2 length:sizeof(ne2) atIndex:21]; [encoder setBytes:&ne3 length:sizeof(ne3) atIndex:22]; [encoder setBytes:&nb0 length:sizeof(nb0) atIndex:23]; [encoder setBytes:&nb1 length:sizeof(nb1) atIndex:24]; [encoder setBytes:&nb2 length:sizeof(nb2) atIndex:25]; [encoder setBytes:&nb3 length:sizeof(nb3) atIndex:26]; [encoder setBytes:&dim length:sizeof(dim) atIndex:27]; const int nth = MIN(1024, ne0); [encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; } break; case GGML_OP_ADD: case GGML_OP_SUB: case GGML_OP_MUL: case GGML_OP_DIV: { GGML_ASSERT(src0t == GGML_TYPE_F32); GGML_ASSERT(src1t == GGML_TYPE_F32); const size_t offs = 0; bool bcast_row = false; int64_t nb = ne00; // used by the "row" kernels id pipeline = nil; if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) { GGML_ASSERT(ggml_is_contiguous(src0)); // src1 is a row GGML_ASSERT(ne11 == 1); nb = ne00 / 4; switch (dst->op) { case GGML_OP_ADD: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_ROW].pipeline; break; case GGML_OP_SUB: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SUB_ROW].pipeline; break; case GGML_OP_MUL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_ROW].pipeline; break; case GGML_OP_DIV: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_DIV_ROW].pipeline; break; default: GGML_ABORT("fatal error"); } bcast_row = true; } else { switch (dst->op) { case GGML_OP_ADD: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD].pipeline; break; case GGML_OP_SUB: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SUB].pipeline; break; case GGML_OP_MUL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL].pipeline; break; case GGML_OP_DIV: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_DIV].pipeline; break; default: GGML_ABORT("fatal error"); } } [encoder setComputePipelineState:pipeline]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3]; [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4]; [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5]; [encoder setBytes:&ne03 length:sizeof(ne03) atIndex:6]; [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:7]; [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:8]; [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:9]; [encoder setBytes:&nb03 length:sizeof(nb03) atIndex:10]; [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:11]; [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:12]; [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:13]; [encoder setBytes:&ne13 length:sizeof(ne13) atIndex:14]; [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:15]; [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:16]; [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:17]; [encoder setBytes:&nb13 length:sizeof(nb13) atIndex:18]; [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:19]; [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:20]; [encoder setBytes:&ne2 length:sizeof(ne2) atIndex:21]; [encoder setBytes:&ne3 length:sizeof(ne3) atIndex:22]; [encoder setBytes:&nb0 length:sizeof(nb0) atIndex:23]; [encoder setBytes:&nb1 length:sizeof(nb1) atIndex:24]; [encoder setBytes:&nb2 length:sizeof(nb2) atIndex:25]; [encoder setBytes:&nb3 length:sizeof(nb3) atIndex:26]; [encoder setBytes:&offs length:sizeof(offs) atIndex:27]; [encoder setBytes:&nb length:sizeof(nb) atIndex:28]; if (bcast_row) { const int64_t n = ggml_nelements(dst)/4; [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } else { const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne0); [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; } } break; case GGML_OP_REPEAT: { id pipeline; switch (src0t) { case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_REPEAT_F32].pipeline; break; case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_REPEAT_F16].pipeline; break; case GGML_TYPE_I32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_REPEAT_I32].pipeline; break; case GGML_TYPE_I16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_REPEAT_I16].pipeline; break; default: GGML_ABORT("fatal error"); } [encoder setComputePipelineState:pipeline]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2]; [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3]; [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4]; [encoder setBytes:&ne03 length:sizeof(ne03) atIndex:5]; [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6]; [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7]; [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8]; [encoder setBytes:&nb03 length:sizeof(nb03) atIndex:9]; [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:10]; [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:11]; [encoder setBytes:&ne2 length:sizeof(ne2) atIndex:12]; [encoder setBytes:&ne3 length:sizeof(ne3) atIndex:13]; [encoder setBytes:&nb0 length:sizeof(nb0) atIndex:14]; [encoder setBytes:&nb1 length:sizeof(nb1) atIndex:15]; [encoder setBytes:&nb2 length:sizeof(nb2) atIndex:16]; [encoder setBytes:&nb3 length:sizeof(nb3) atIndex:17]; const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne0); [encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; } break; case GGML_OP_ACC: { GGML_ASSERT(src0t == GGML_TYPE_F32); GGML_ASSERT(src1t == GGML_TYPE_F32); GGML_ASSERT(dstt == GGML_TYPE_F32); GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(ggml_is_contiguous(src1)); const size_t pnb1 = ((const int32_t *) dst->op_params)[0]; const size_t pnb2 = ((const int32_t *) dst->op_params)[1]; const size_t pnb3 = ((const int32_t *) dst->op_params)[2]; const size_t offs = ((const int32_t *) dst->op_params)[3]; const bool inplace = (bool) ((const int32_t *) dst->op_params)[4]; if (!inplace) { // run a separete kernel to cpy src->dst // not sure how to avoid this // TODO: make a simpler cpy_bytes kernel const id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_F32].pipeline; [encoder setComputePipelineState:pipeline]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3]; [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4]; [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5]; [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6]; [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7]; [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8]; [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9]; [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10]; [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11]; [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12]; [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13]; [encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14]; [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15]; [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16]; [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17]; const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne00); [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; } const id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD].pipeline; [encoder setComputePipelineState:pipeline]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3]; [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4]; [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5]; [encoder setBytes:&ne03 length:sizeof(ne03) atIndex:6]; [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:7]; [encoder setBytes:&pnb1 length:sizeof(pnb1) atIndex:8]; [encoder setBytes:&pnb2 length:sizeof(pnb2) atIndex:9]; [encoder setBytes:&pnb3 length:sizeof(pnb3) atIndex:10]; [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:11]; [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:12]; [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:13]; [encoder setBytes:&ne13 length:sizeof(ne13) atIndex:14]; [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:15]; [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:16]; [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:17]; [encoder setBytes:&nb13 length:sizeof(nb13) atIndex:18]; [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:19]; [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:20]; [encoder setBytes:&ne2 length:sizeof(ne2) atIndex:21]; [encoder setBytes:&ne3 length:sizeof(ne3) atIndex:22]; [encoder setBytes:&nb0 length:sizeof(nb0) atIndex:23]; [encoder setBytes:&pnb1 length:sizeof(pnb1) atIndex:24]; [encoder setBytes:&pnb2 length:sizeof(pnb2) atIndex:25]; [encoder setBytes:&pnb3 length:sizeof(pnb3) atIndex:26]; [encoder setBytes:&offs length:sizeof(offs) atIndex:27]; const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne00); [encoder dispatchThreadgroups:MTLSizeMake(ne11, ne12, ne13) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; } break; case GGML_OP_SCALE: { GGML_ASSERT(ggml_is_contiguous(src0)); float scale; memcpy(&scale, dst->op_params, sizeof(scale)); int64_t n = ggml_nelements(dst); id pipeline = nil; if (n % 4 == 0) { n /= 4; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SCALE_4].pipeline; } else { pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SCALE].pipeline; } [encoder setComputePipelineState:pipeline]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBytes:&scale length:sizeof(scale) atIndex:2]; [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } break; case GGML_OP_CLAMP: { id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CLAMP].pipeline; float min; float max; memcpy(&min, ((const int32_t *) dst->op_params) + 0, sizeof(float)); memcpy(&max, ((const int32_t *) dst->op_params) + 1, sizeof(float)); [encoder setComputePipelineState:pipeline]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBytes:&min length:sizeof(min) atIndex:2]; [encoder setBytes:&max length:sizeof(max) atIndex:3]; const int64_t n = ggml_nelements(dst); [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } break; case GGML_OP_UNARY: switch (ggml_get_unary_op(node)) { // we are not taking into account the strides, so for now require contiguous tensors GGML_ASSERT(ggml_is_contiguous(src0)); case GGML_UNARY_OP_TANH: { id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_TANH].pipeline; [encoder setComputePipelineState:pipeline]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; const int64_t n = ggml_nelements(dst); [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } break; case GGML_UNARY_OP_RELU: { id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_RELU].pipeline; [encoder setComputePipelineState:pipeline]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; const int64_t n = ggml_nelements(dst); [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } break; case GGML_UNARY_OP_SIGMOID: { id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SIGMOID].pipeline; [encoder setComputePipelineState:pipeline]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; const int64_t n = ggml_nelements(dst); [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } break; case GGML_UNARY_OP_GELU: { int64_t n = ggml_nelements(dst); id pipeline = nil; if (n % 4 == 0) { pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU_4].pipeline; n /= 4; } else { pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU].pipeline; } [encoder setComputePipelineState:pipeline]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } break; case GGML_UNARY_OP_GELU_QUICK: { int64_t n = ggml_nelements(dst); id pipeline = nil; if (n % 4 == 0) { pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU_QUICK_4].pipeline; n /= 4; } else { pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU_QUICK].pipeline; } [encoder setComputePipelineState:pipeline]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } break; case GGML_UNARY_OP_SILU: { int64_t n = ggml_nelements(dst); id pipeline = nil; if (n % 4 == 0) { pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SILU_4].pipeline; n /= 4; } else { pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SILU].pipeline; } [encoder setComputePipelineState:pipeline]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } break; default: { GGML_LOG_WARN("%s: node %3d, op = %8s not implemented\n", __func__, idx, ggml_op_name(dst->op)); GGML_ABORT("fatal error"); } } break; case GGML_OP_SQR: { GGML_ASSERT(ggml_is_contiguous(src0)); id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SQR].pipeline; [encoder setComputePipelineState:pipeline]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; const int64_t n = ggml_nelements(dst); [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } break; case GGML_OP_SQRT: { GGML_ASSERT(ggml_is_contiguous(src0)); id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SQRT].pipeline; [encoder setComputePipelineState:pipeline]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; const int64_t n = ggml_nelements(dst); [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } break; case GGML_OP_SIN: { GGML_ASSERT(ggml_is_contiguous(src0)); id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SIN].pipeline; [encoder setComputePipelineState:pipeline]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; const int64_t n = ggml_nelements(dst); [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } break; case GGML_OP_COS: { GGML_ASSERT(ggml_is_contiguous(src0)); id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_COS].pipeline; [encoder setComputePipelineState:pipeline]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; const int64_t n = ggml_nelements(dst); [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } break; case GGML_OP_SUM_ROWS: { GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type)); id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SUM_ROWS].pipeline; [encoder setComputePipelineState:pipeline]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2]; [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3]; [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4]; [encoder setBytes:&ne03 length:sizeof(ne03) atIndex:5]; [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6]; [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7]; [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8]; [encoder setBytes:&nb03 length:sizeof(nb03) atIndex:9]; [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:10]; [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:11]; [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:12]; [encoder setBytes:&ne13 length:sizeof(ne13) atIndex:13]; [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:14]; [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:15]; [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:16]; [encoder setBytes:&nb13 length:sizeof(nb13) atIndex:17]; [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:18]; [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:19]; [encoder setBytes:&ne2 length:sizeof(ne2) atIndex:20]; [encoder setBytes:&ne3 length:sizeof(ne3) atIndex:21]; [encoder setBytes:&nb0 length:sizeof(nb0) atIndex:22]; [encoder setBytes:&nb1 length:sizeof(nb1) atIndex:23]; [encoder setBytes:&nb2 length:sizeof(nb2) atIndex:24]; [encoder setBytes:&nb3 length:sizeof(nb3) atIndex:25]; [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } break; case GGML_OP_SOFT_MAX: { GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F16 || src1->type == GGML_TYPE_F32); int nth = 32; // SIMD width id pipeline = nil; const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16); if (ne00%4 == 0) { while (nth < ne00/4 && nth*ne01*ne02*ne03 < 256) { nth *= 2; } if (use_f16) { pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SOFT_MAX_F16_4].pipeline; } else { pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SOFT_MAX_F32_4].pipeline; } } else { while (nth < ne00 && nth*ne01*ne02*ne03 < 256) { nth *= 2; } if (use_f16) { pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SOFT_MAX_F16].pipeline; } else { pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SOFT_MAX_F32].pipeline; } } float scale; float max_bias; memcpy(&scale, ((const int32_t *) dst->op_params) + 0, sizeof(scale)); memcpy(&max_bias, ((const int32_t *) dst->op_params) + 1, sizeof(max_bias)); const int64_t nrows_x = ggml_nrows(src0); const int64_t nrows_y = src0->ne[1]; const uint32_t n_head = nrows_x/nrows_y; const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head)); const float m0 = powf(2.0f, -(max_bias ) / n_head_log2); const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2); [encoder setComputePipelineState:pipeline]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; if (id_src1) { [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; } else { [encoder setBuffer:id_src0 offset:offs_src0 atIndex:1]; } [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3]; [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4]; [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5]; [encoder setBytes:&scale length:sizeof(scale) atIndex:6]; [encoder setBytes:&max_bias length:sizeof(max_bias) atIndex:7]; [encoder setBytes:&m0 length:sizeof(m0) atIndex:8]; [encoder setBytes:&m1 length:sizeof(m1) atIndex:9]; [encoder setBytes:&n_head_log2 length:sizeof(n_head_log2) atIndex:10]; [encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0]; [encoder dispatchThreadgroups:MTLSizeMake(ne01*ne02*ne03, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; } break; case GGML_OP_DIAG_MASK_INF: { const int n_past = ((const int32_t *)(dst->op_params))[0]; id pipeline = nil; if (ne00%8 == 0) { pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF_8].pipeline; } else { pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF].pipeline; } [encoder setComputePipelineState:pipeline]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2]; [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3]; [encoder setBytes:&n_past length:sizeof(int) atIndex:4]; if (ne00%8 == 0) { [encoder dispatchThreadgroups:MTLSizeMake(ne00*ne01*ne02/8, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } else { [encoder dispatchThreadgroups:MTLSizeMake(ne00, ne01, ne02) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } } break; case GGML_OP_SSM_CONV: { GGML_ASSERT(src0t == GGML_TYPE_F32); GGML_ASSERT(src1t == GGML_TYPE_F32); GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(ggml_is_contiguous(src1)); id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SSM_CONV_F32].pipeline; [encoder setComputePipelineState:pipeline]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3]; [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4]; [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5]; [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6]; [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7]; [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8]; [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:9]; [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:10]; [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:11]; [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:12]; [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:13]; [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:14]; [encoder setBytes:&ne2 length:sizeof(ne2) atIndex:15]; [encoder setBytes:&nb0 length:sizeof(nb0) atIndex:16]; [encoder setBytes:&nb1 length:sizeof(nb1) atIndex:17]; [encoder setBytes:&nb2 length:sizeof(nb2) atIndex:18]; [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne1, ne02) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } break; case GGML_OP_SSM_SCAN: { struct ggml_tensor * src3 = node->src[3]; struct ggml_tensor * src4 = node->src[4]; struct ggml_tensor * src5 = node->src[5]; GGML_ASSERT(src3); GGML_ASSERT(src4); GGML_ASSERT(src5); size_t offs_src3 = 0; size_t offs_src4 = 0; size_t offs_src5 = 0; id id_src3 = src3 ? ggml_metal_get_buffer(src3, &offs_src3) : nil; id id_src4 = src4 ? ggml_metal_get_buffer(src4, &offs_src4) : nil; id id_src5 = src5 ? ggml_metal_get_buffer(src5, &offs_src5) : nil; const int64_t ne30 = src3->ne[0]; GGML_UNUSED(ne30); const int64_t ne31 = src3->ne[1]; GGML_UNUSED(ne31); const uint64_t nb30 = src3->nb[0]; const uint64_t nb31 = src3->nb[1]; const int64_t ne40 = src4->ne[0]; GGML_UNUSED(ne40); const int64_t ne41 = src4->ne[1]; GGML_UNUSED(ne41); const int64_t ne42 = src4->ne[2]; GGML_UNUSED(ne42); const uint64_t nb40 = src4->nb[0]; const uint64_t nb41 = src4->nb[1]; const uint64_t nb42 = src4->nb[2]; const int64_t ne50 = src5->ne[0]; GGML_UNUSED(ne50); const int64_t ne51 = src5->ne[1]; GGML_UNUSED(ne51); const int64_t ne52 = src5->ne[2]; GGML_UNUSED(ne52); const uint64_t nb50 = src5->nb[0]; const uint64_t nb51 = src5->nb[1]; const uint64_t nb52 = src5->nb[2]; const int64_t d_state = ne00; const int64_t d_inner = ne01; const int64_t n_seq_tokens = ne11; const int64_t n_seqs = ne02; id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SSM_SCAN_F32].pipeline; [encoder setComputePipelineState:pipeline]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; [encoder setBuffer:id_src2 offset:offs_src2 atIndex:2]; [encoder setBuffer:id_src3 offset:offs_src3 atIndex:3]; [encoder setBuffer:id_src4 offset:offs_src4 atIndex:4]; [encoder setBuffer:id_src5 offset:offs_src5 atIndex:5]; [encoder setBuffer:id_dst offset:offs_dst atIndex:6]; [encoder setBytes:&d_state length:sizeof(d_state) atIndex:7]; [encoder setBytes:&d_inner length:sizeof(d_inner) atIndex:8]; [encoder setBytes:&n_seq_tokens length:sizeof(n_seq_tokens) atIndex:9]; [encoder setBytes:&n_seqs length:sizeof(n_seqs) atIndex:10]; [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:11]; [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:12]; [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:13]; [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:14]; [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:15]; [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:16]; [encoder setBytes:&nb13 length:sizeof(nb13) atIndex:17]; [encoder setBytes:&nb20 length:sizeof(nb20) atIndex:18]; [encoder setBytes:&nb21 length:sizeof(nb21) atIndex:19]; [encoder setBytes:&nb22 length:sizeof(nb22) atIndex:20]; [encoder setBytes:&nb30 length:sizeof(nb30) atIndex:21]; [encoder setBytes:&nb31 length:sizeof(nb31) atIndex:22]; [encoder setBytes:&nb40 length:sizeof(nb40) atIndex:23]; [encoder setBytes:&nb41 length:sizeof(nb41) atIndex:24]; [encoder setBytes:&nb42 length:sizeof(nb42) atIndex:25]; [encoder setBytes:&nb50 length:sizeof(nb50) atIndex:26]; [encoder setBytes:&nb51 length:sizeof(nb51) atIndex:27]; [encoder setBytes:&nb52 length:sizeof(nb52) atIndex:28]; [encoder dispatchThreadgroups:MTLSizeMake(d_inner, n_seqs, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } break; case GGML_OP_MUL_MAT: { GGML_ASSERT(ne00 == ne10); GGML_ASSERT(ne12 % ne02 == 0); GGML_ASSERT(ne13 % ne03 == 0); const uint r2 = ne12/ne02; const uint r3 = ne13/ne03; // find the break-even point where the matrix-matrix kernel becomes more efficient compared // to the matrix-vector kernel int ne11_mm_min = 1; #if 0 // the numbers below are measured on M2 Ultra for 7B and 13B models // these numbers do not translate to other devices or model sizes // TODO: need to find a better approach if ([device.name isEqualToString:@"Apple M2 Ultra"]) { switch (src0t) { case GGML_TYPE_F16: ne11_mm_min = 2; break; case GGML_TYPE_Q8_0: ne11_mm_min = 7; break; case GGML_TYPE_Q2_K: ne11_mm_min = 15; break; case GGML_TYPE_Q3_K: ne11_mm_min = 7; break; case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: ne11_mm_min = 15; break; case GGML_TYPE_Q4_K: ne11_mm_min = 11; break; case GGML_TYPE_Q5_0: // not tested yet case GGML_TYPE_Q5_1: ne11_mm_min = 13; break; // not tested yet case GGML_TYPE_Q5_K: ne11_mm_min = 7; break; case GGML_TYPE_Q6_K: ne11_mm_min = 7; break; default: ne11_mm_min = 1; break; } } #endif // for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs // AMD GPU and older A-chips will reuse matrix-vector multiplication kernel if ([device supportsFamily:MTLGPUFamilyApple7] && !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1t == GGML_TYPE_F32 && ne00 % 32 == 0 && ne00 >= 64 && (ne11 > ne11_mm_min || (ggml_is_quantized(src0t) && ne12 > 1))) { //printf("matrix: ne00 = %6d, ne01 = %6d, ne02 = %6d, ne11 = %6d, ne12 = %6d\n", ne00, ne01, ne02, ne11, ne12); // some Metal matrix data types require aligned pointers // ref: https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf (Table 2.5) switch (src0->type) { case GGML_TYPE_F32: GGML_ASSERT(nb01 % 16 == 0); break; case GGML_TYPE_F16: GGML_ASSERT(nb01 % 8 == 0); break; case GGML_TYPE_BF16: GGML_ASSERT(nb01 % 8 == 0); break; default: break; } id pipeline = nil; switch (src0->type) { case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32 ].pipeline; break; case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32 ].pipeline; break; case GGML_TYPE_BF16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_BF16_F32 ].pipeline; break; case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F32 ].pipeline; break; case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_1_F32 ].pipeline; break; case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_0_F32 ].pipeline; break; case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_1_F32 ].pipeline; break; case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q8_0_F32 ].pipeline; break; case GGML_TYPE_Q2_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q2_K_F32 ].pipeline; break; case GGML_TYPE_Q3_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q3_K_F32 ].pipeline; break; case GGML_TYPE_Q4_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_K_F32 ].pipeline; break; case GGML_TYPE_Q5_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_K_F32 ].pipeline; break; case GGML_TYPE_Q6_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q6_K_F32 ].pipeline; break; case GGML_TYPE_IQ2_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XXS_F32].pipeline; break; case GGML_TYPE_IQ2_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32 ].pipeline; break; case GGML_TYPE_IQ3_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_XXS_F32].pipeline; break; case GGML_TYPE_IQ3_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_S_F32 ].pipeline; break; case GGML_TYPE_IQ2_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_S_F32 ].pipeline; break; case GGML_TYPE_IQ1_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_S_F32 ].pipeline; break; case GGML_TYPE_IQ1_M: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_M_F32 ].pipeline; break; case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32 ].pipeline; break; case GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32 ].pipeline; break; default: GGML_ABORT("MUL MAT-MAT not implemented"); } [encoder setComputePipelineState:pipeline]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3]; [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4]; [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:5]; [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:6]; [encoder setBytes:&nb03 length:sizeof(nb03) atIndex:7]; [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:8]; [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:9]; [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:10]; [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:11]; [encoder setBytes:&nb13 length:sizeof(nb13) atIndex:12]; [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:13]; [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:14]; [encoder setBytes:&r2 length:sizeof(r2) atIndex:15]; [encoder setBytes:&r3 length:sizeof(r3) atIndex:16]; [encoder setThreadgroupMemoryLength:8192 atIndex:0]; [encoder dispatchThreadgroups:MTLSizeMake( (ne11 + 31)/32, (ne01 + 63)/64, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)]; } else { int nth0 = 32; int nth1 = 1; int nrows = 1; //printf("vector: ne00 = %6d, ne01 = %6d, ne02 = %6d, ne11 = %6d, ne12 = %6d\n", ne00, ne01, ne02, ne11, ne12); id pipeline = nil; // use custom matrix x vector kernel switch (src0t) { case GGML_TYPE_F32: { GGML_ASSERT(src1t == GGML_TYPE_F32); pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F32_F32].pipeline; nrows = 4; } break; case GGML_TYPE_F16: { nth0 = 32; nth1 = 1; if (src1t == GGML_TYPE_F32) { if (ne11 * ne12 < 4) { pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_1ROW].pipeline; } else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) { pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_L4].pipeline; nrows = ne11; } else { pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32].pipeline; nrows = 4; } } else { pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F16].pipeline; nrows = 4; } } break; case GGML_TYPE_BF16: { nth0 = 32; nth1 = 1; if (src1t == GGML_TYPE_F32) { if (ne11 * ne12 < 4) { pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_F32_1ROW].pipeline; } else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) { pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_F32_L4].pipeline; nrows = ne11; } else { pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_F32].pipeline; nrows = 4; } } else { pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_BF16].pipeline; nrows = 4; } } break; case GGML_TYPE_Q4_0: { nth0 = 8; nth1 = 8; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_0_F32].pipeline; } break; case GGML_TYPE_Q4_1: { nth0 = 8; nth1 = 8; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_1_F32].pipeline; } break; case GGML_TYPE_Q5_0: { nth0 = 8; nth1 = 8; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_0_F32].pipeline; } break; case GGML_TYPE_Q5_1: { nth0 = 8; nth1 = 8; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_1_F32].pipeline; } break; case GGML_TYPE_Q8_0: { nth0 = 8; nth1 = 8; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q8_0_F32].pipeline; } break; case GGML_TYPE_Q2_K: { nth0 = 2; nth1 = 32; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q2_K_F32].pipeline; } break; case GGML_TYPE_Q3_K: { nth0 = 2; nth1 = 32; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q3_K_F32].pipeline; } break; case GGML_TYPE_Q4_K: { nth0 = 4; //1; nth1 = 8; //32; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_K_F32].pipeline; } break; case GGML_TYPE_Q5_K: { nth0 = 2; nth1 = 32; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_K_F32].pipeline; } break; case GGML_TYPE_Q6_K: { nth0 = 2; nth1 = 32; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q6_K_F32].pipeline; } break; case GGML_TYPE_IQ2_XXS: { nth0 = 4; nth1 = 16; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XXS_F32].pipeline; } break; case GGML_TYPE_IQ2_XS: { nth0 = 4; nth1 = 16; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XS_F32].pipeline; } break; case GGML_TYPE_IQ3_XXS: { nth0 = 4; nth1 = 16; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_XXS_F32].pipeline; } break; case GGML_TYPE_IQ3_S: { nth0 = 4; nth1 = 16; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_S_F32].pipeline; } break; case GGML_TYPE_IQ2_S: { nth0 = 4; nth1 = 16; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_S_F32].pipeline; } break; case GGML_TYPE_IQ1_S: { nth0 = 4; nth1 = 16; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_S_F32].pipeline; } break; case GGML_TYPE_IQ1_M: { nth0 = 4; nth1 = 16; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_M_F32].pipeline; } break; case GGML_TYPE_IQ4_NL: { nth0 = 4; nth1 = 16; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_NL_F32].pipeline; } break; case GGML_TYPE_IQ4_XS: { nth0 = 4; nth1 = 16; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_XS_F32].pipeline; } break; default: { GGML_LOG_ERROR("Asserting on type %d\n", (int)src0t); GGML_ABORT("not implemented"); } }; [encoder setComputePipelineState:pipeline]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3]; [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4]; [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5]; [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6]; [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7]; [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8]; [encoder setBytes:&nb03 length:sizeof(nb03) atIndex:9]; [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:10]; [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:11]; [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:12]; [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:13]; [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:14]; [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:15]; [encoder setBytes:&nb13 length:sizeof(nb13) atIndex:16]; [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:17]; [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:18]; [encoder setBytes:&r2 length:sizeof(r2) atIndex:19]; [encoder setBytes:&r3 length:sizeof(r3) atIndex:20]; if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 || src0t == GGML_TYPE_Q5_0 || src0t == GGML_TYPE_Q5_1 || src0t == GGML_TYPE_Q8_0 || src0t == GGML_TYPE_Q2_K || src0t == GGML_TYPE_IQ1_S || src0t == GGML_TYPE_IQ1_M || src0t == GGML_TYPE_IQ2_S) { [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } else if (src0t == GGML_TYPE_IQ2_XXS || src0t == GGML_TYPE_IQ2_XS) { const int mem_size = src0t == GGML_TYPE_IQ2_XXS ? 256*8+128 : 512*8+128; [encoder setThreadgroupMemoryLength:mem_size atIndex:0]; [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } else if (src0t == GGML_TYPE_IQ3_XXS || src0t == GGML_TYPE_IQ3_S) { const int mem_size = src0t == GGML_TYPE_IQ3_XXS ? 256*4+128 : 512*4; [encoder setThreadgroupMemoryLength:mem_size atIndex:0]; [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } else if (src0t == GGML_TYPE_IQ4_NL || src0t == GGML_TYPE_IQ4_XS) { const int mem_size = 32*sizeof(float); [encoder setThreadgroupMemoryLength:mem_size atIndex:0]; [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } else if (src0t == GGML_TYPE_Q4_K) { [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } else if (src0t == GGML_TYPE_Q3_K) { [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } else if (src0t == GGML_TYPE_Q5_K) { [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } else if (src0t == GGML_TYPE_Q6_K) { [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } else { const int64_t ny = (ne11 + nrows - 1)/nrows; [encoder dispatchThreadgroups:MTLSizeMake(ne01, ny, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } } } break; case GGML_OP_MUL_MAT_ID: { const int n_as = src0->ne[2]; // src2 = ids const enum ggml_type src2t = src2->type; GGML_UNUSED(src2t); GGML_ASSERT(src2t == GGML_TYPE_I32); GGML_ASSERT(!ggml_is_transposed(src0)); GGML_ASSERT(!ggml_is_transposed(src1)); GGML_ASSERT(src1t == GGML_TYPE_F32); GGML_ASSERT(ne03 == 1); GGML_ASSERT(ne13 == 1); // find the break-even point where the matrix-matrix kernel becomes more efficient compared // to the matrix-vector kernel // ne20 = n_used_experts // ne21 = n_rows const int dst_rows = ne20*ne21; const int dst_rows_min = n_as; const int dst_rows_max = (device.maxThreadgroupMemoryLength - 32 - 8192)/4; // max size of the rowids array in the kernel shared buffer GGML_ASSERT(dst_rows <= dst_rows_max); // for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs // AMD GPU and older A-chips will reuse matrix-vector multiplication kernel // !!! // TODO: for now, always use mat-vec kernels until we figure out how to improve the // indirect matrix multiplication // !!! if ([device supportsFamily:MTLGPUFamilyApple7] && ne00 % 32 == 0 && ne00 >= 64 && dst_rows > dst_rows_min) { // some Metal matrix data types require aligned pointers // ref: https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf (Table 2.5) switch (src0->type) { case GGML_TYPE_F32: GGML_ASSERT(nb01 % 16 == 0); break; case GGML_TYPE_F16: GGML_ASSERT(nb01 % 8 == 0); break; case GGML_TYPE_BF16: GGML_ASSERT(nb01 % 8 == 0); break; default: break; } id pipeline = nil; switch (src0->type) { case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32 ].pipeline; break; case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32 ].pipeline; break; case GGML_TYPE_BF16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_BF16_F32 ].pipeline; break; case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F32 ].pipeline; break; case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_1_F32 ].pipeline; break; case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_0_F32 ].pipeline; break; case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_1_F32 ].pipeline; break; case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q8_0_F32 ].pipeline; break; case GGML_TYPE_Q2_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q2_K_F32 ].pipeline; break; case GGML_TYPE_Q3_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q3_K_F32 ].pipeline; break; case GGML_TYPE_Q4_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_K_F32 ].pipeline; break; case GGML_TYPE_Q5_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_K_F32 ].pipeline; break; case GGML_TYPE_Q6_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q6_K_F32 ].pipeline; break; case GGML_TYPE_IQ2_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F32].pipeline; break; case GGML_TYPE_IQ2_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F32 ].pipeline; break; case GGML_TYPE_IQ3_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F32].pipeline; break; case GGML_TYPE_IQ3_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_S_F32 ].pipeline; break; case GGML_TYPE_IQ2_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_S_F32 ].pipeline; break; case GGML_TYPE_IQ1_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F32 ].pipeline; break; case GGML_TYPE_IQ1_M: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_M_F32 ].pipeline; break; case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32 ].pipeline; break; case GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32 ].pipeline; break; default: GGML_ABORT("MUL_MAT_ID not implemented"); } [encoder setComputePipelineState:pipeline]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; [encoder setBuffer:id_src2 offset:offs_src2 atIndex:3]; [encoder setBytes:&ne20 length:sizeof(ne20) atIndex:4]; [encoder setBytes:&ne21 length:sizeof(ne21) atIndex:5]; [encoder setBytes:&nb21 length:sizeof(nb21) atIndex:6]; [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:7]; [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:8]; [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:9]; [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:10]; [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:11]; [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:12]; [encoder setBytes:&ne13 length:sizeof(ne13) atIndex:13]; [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:14]; [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:15]; [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:16]; [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:17]; [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:18]; [encoder setBytes:&nb1 length:sizeof(nb1) atIndex:19]; [encoder setThreadgroupMemoryLength:GGML_PAD(8192 + dst_rows*4/*sizeof(ushort2)*/, 16) atIndex:0]; [encoder dispatchThreadgroups:MTLSizeMake((ne21 + 31)/32, (ne01 + 63)/64, n_as) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)]; } else { int nth0 = 32; int nth1 = 1; int nrows = 1; //printf("vector: ne00 = %6d, ne01 = %6d, ne02 = %6d, ne11 = %6d, ne12 = %6d\n", ne00, ne01, ne02, ne11, ne12); id pipeline = nil; // use custom matrix x vector kernel switch (src0t) { case GGML_TYPE_F32: { GGML_ASSERT(src1t == GGML_TYPE_F32); pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32].pipeline; } break; case GGML_TYPE_F16: { GGML_ASSERT(src1t == GGML_TYPE_F32); nth0 = 32; nth1 = 1; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32].pipeline; } break; case GGML_TYPE_BF16: { GGML_ASSERT(src1t == GGML_TYPE_F32); nth0 = 32; nth1 = 1; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_BF16_F32].pipeline; } break; case GGML_TYPE_Q4_0: { nth0 = 8; nth1 = 8; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_0_F32].pipeline; } break; case GGML_TYPE_Q4_1: { nth0 = 8; nth1 = 8; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_1_F32].pipeline; } break; case GGML_TYPE_Q5_0: { nth0 = 8; nth1 = 8; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_0_F32].pipeline; } break; case GGML_TYPE_Q5_1: { nth0 = 8; nth1 = 8; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_1_F32].pipeline; } break; case GGML_TYPE_Q8_0: { nth0 = 8; nth1 = 8; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q8_0_F32].pipeline; } break; case GGML_TYPE_Q2_K: { nth0 = 2; nth1 = 32; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q2_K_F32].pipeline; } break; case GGML_TYPE_Q3_K: { nth0 = 2; nth1 = 32; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q3_K_F32].pipeline; } break; case GGML_TYPE_Q4_K: { nth0 = 4; //1; nth1 = 8; //32; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_K_F32].pipeline; } break; case GGML_TYPE_Q5_K: { nth0 = 2; nth1 = 32; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_K_F32].pipeline; } break; case GGML_TYPE_Q6_K: { nth0 = 2; nth1 = 32; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q6_K_F32].pipeline; } break; case GGML_TYPE_IQ2_XXS: { nth0 = 4; nth1 = 16; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XXS_F32].pipeline; } break; case GGML_TYPE_IQ2_XS: { nth0 = 4; nth1 = 16; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XS_F32].pipeline; } break; case GGML_TYPE_IQ3_XXS: { nth0 = 4; nth1 = 16; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_XXS_F32].pipeline; } break; case GGML_TYPE_IQ3_S: { nth0 = 4; nth1 = 16; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_S_F32].pipeline; } break; case GGML_TYPE_IQ2_S: { nth0 = 4; nth1 = 16; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_S_F32].pipeline; } break; case GGML_TYPE_IQ1_S: { nth0 = 4; nth1 = 16; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_S_F32].pipeline; } break; case GGML_TYPE_IQ1_M: { nth0 = 4; nth1 = 16; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_M_F32].pipeline; } break; case GGML_TYPE_IQ4_NL: { nth0 = 4; nth1 = 16; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_NL_F32].pipeline; } break; case GGML_TYPE_IQ4_XS: { nth0 = 4; nth1 = 16; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32].pipeline; } break; default: { GGML_LOG_ERROR("Asserting on type %d\n", (int)src2t); GGML_ABORT("not implemented"); } }; if (ggml_is_quantized(src0t)) { GGML_ASSERT(ne00 >= nth0*nth1); } [encoder setComputePipelineState:pipeline]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; [encoder setBuffer:id_src2 offset:offs_src2 atIndex:3]; [encoder setBytes:&ne20 length:sizeof(ne20) atIndex:4]; [encoder setBytes:&ne21 length:sizeof(ne21) atIndex:5]; [encoder setBytes:&nb21 length:sizeof(nb21) atIndex:6]; [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:7]; [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:8]; [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:9]; [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:10]; [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:11]; [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:12]; [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:13]; [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:14]; [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:15]; [encoder setBytes:&ne13 length:sizeof(ne13) atIndex:16]; [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:17]; [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:18]; [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:19]; [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:20]; [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:21]; [encoder setBytes:&nb1 length:sizeof(nb1) atIndex:22]; const int64_t _ne1 = 1; const int tgz = dst_rows; if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 || src0t == GGML_TYPE_Q5_0 || src0t == GGML_TYPE_Q5_1 || src0t == GGML_TYPE_Q8_0 || src0t == GGML_TYPE_Q2_K || src0t == GGML_TYPE_IQ1_S || src0t == GGML_TYPE_IQ1_M || src0t == GGML_TYPE_IQ2_S) { [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } else if (src0t == GGML_TYPE_IQ2_XXS || src0t == GGML_TYPE_IQ2_XS) { const int mem_size = src0t == GGML_TYPE_IQ2_XXS ? 256*8+128 : 512*8+128; [encoder setThreadgroupMemoryLength:mem_size atIndex:0]; [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } else if (src0t == GGML_TYPE_IQ3_XXS || src0t == GGML_TYPE_IQ3_S) { const int mem_size = src0t == GGML_TYPE_IQ3_XXS ? 256*4+128 : 512*4; [encoder setThreadgroupMemoryLength:mem_size atIndex:0]; [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } else if (src0t == GGML_TYPE_IQ4_NL || src0t == GGML_TYPE_IQ4_XS) { const int mem_size = 32*sizeof(float); [encoder setThreadgroupMemoryLength:mem_size atIndex:0]; [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } else if (src0t == GGML_TYPE_Q4_K) { [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } else if (src0t == GGML_TYPE_Q3_K) { [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } else if (src0t == GGML_TYPE_Q5_K) { [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } else if (src0t == GGML_TYPE_Q6_K) { [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } else { const int64_t ny = (_ne1 + nrows - 1)/nrows; // = _ne1 [encoder dispatchThreadgroups:MTLSizeMake(ne01, ny, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } } } break; case GGML_OP_GET_ROWS: { id pipeline = nil; switch (src0->type) { case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_F32 ].pipeline; break; case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_F16 ].pipeline; break; case GGML_TYPE_BF16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_BF16 ].pipeline; break; case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_0 ].pipeline; break; case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_1 ].pipeline; break; case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_0 ].pipeline; break; case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_1 ].pipeline; break; case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q8_0 ].pipeline; break; case GGML_TYPE_Q2_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q2_K ].pipeline; break; case GGML_TYPE_Q3_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q3_K ].pipeline; break; case GGML_TYPE_Q4_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_K ].pipeline; break; case GGML_TYPE_Q5_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_K ].pipeline; break; case GGML_TYPE_Q6_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q6_K ].pipeline; break; case GGML_TYPE_IQ2_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XXS].pipeline; break; case GGML_TYPE_IQ2_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XS ].pipeline; break; case GGML_TYPE_IQ3_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_XXS].pipeline; break; case GGML_TYPE_IQ3_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_S ].pipeline; break; case GGML_TYPE_IQ2_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_S ].pipeline; break; case GGML_TYPE_IQ1_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_S ].pipeline; break; case GGML_TYPE_IQ1_M: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_M ].pipeline; break; case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL ].pipeline; break; case GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS ].pipeline; break; case GGML_TYPE_I32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_I32 ].pipeline; break; default: GGML_ABORT("not implemented"); } [encoder setComputePipelineState:pipeline]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:3]; [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:4]; [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:5]; [encoder setBytes:&ne10 length:sizeof( int64_t) atIndex:6]; [encoder setBytes:&nb10 length:sizeof( int64_t) atIndex:7]; [encoder setBytes:&nb11 length:sizeof( int64_t) atIndex:8]; [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:9]; [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:10]; [encoder dispatchThreadgroups:MTLSizeMake(ne10, ne11, 1) threadsPerThreadgroup:MTLSizeMake(32, 1, 1)]; } break; case GGML_OP_RMS_NORM: { GGML_ASSERT(ne00 % 4 == 0); GGML_ASSERT(ggml_is_contiguous_1(src0)); float eps; memcpy(&eps, dst->op_params, sizeof(float)); int nth = 32; // SIMD width while (nth < ne00/4 && nth < 1024) { nth *= 2; } id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_RMS_NORM].pipeline; [encoder setComputePipelineState:pipeline]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3]; [encoder setBytes:&eps length:sizeof( float) atIndex:4]; [encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0]; const int64_t nrows = ggml_nrows(src0); [encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; } break; case GGML_OP_GROUP_NORM: { GGML_ASSERT(ne00 % 4 == 0); GGML_ASSERT(ggml_is_contiguous(src0)); float eps; memcpy(&eps, dst->op_params + 1, sizeof(float)); const int32_t n_groups = ((const int32_t *) dst->op_params)[0]; int nth = 32; // SIMD width //while (nth < ne00/4 && nth < 1024) { // nth *= 2; //} id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GROUP_NORM].pipeline; [encoder setComputePipelineState:pipeline]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3]; [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4]; [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:5]; [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:6]; [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:7]; [encoder setBytes:&n_groups length:sizeof( int32_t) atIndex:8]; [encoder setBytes:&eps length:sizeof( float) atIndex:9]; [encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0]; [encoder dispatchThreadgroups:MTLSizeMake(n_groups, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; } break; case GGML_OP_NORM: { GGML_ASSERT(ggml_is_contiguous_1(src0)); float eps; memcpy(&eps, dst->op_params, sizeof(float)); const int nth = MIN(256, ne00); id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_NORM].pipeline; [encoder setComputePipelineState:pipeline]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3]; [encoder setBytes:&eps length:sizeof( float) atIndex:4]; [encoder setThreadgroupMemoryLength:GGML_PAD(nth*sizeof(float), 16) atIndex:0]; const int64_t nrows = ggml_nrows(src0); [encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; } break; case GGML_OP_ROPE: { GGML_ASSERT(ne10 == ne02); const int nth = MIN(1024, ne00); const int n_past = ((const int32_t *) dst->op_params)[0]; const int n_dims = ((const int32_t *) dst->op_params)[1]; const int mode = ((const int32_t *) dst->op_params)[2]; // skip 3, n_ctx, used in GLM RoPE, unimplemented in metal const int n_ctx_orig = ((const int32_t *) dst->op_params)[4]; float freq_base; float freq_scale; float ext_factor; float attn_factor; float beta_fast; float beta_slow; memcpy(&freq_base, (const int32_t *) dst->op_params + 5, sizeof(float)); memcpy(&freq_scale, (const int32_t *) dst->op_params + 6, sizeof(float)); memcpy(&ext_factor, (const int32_t *) dst->op_params + 7, sizeof(float)); memcpy(&attn_factor, (const int32_t *) dst->op_params + 8, sizeof(float)); memcpy(&beta_fast, (const int32_t *) dst->op_params + 9, sizeof(float)); memcpy(&beta_slow, (const int32_t *) dst->op_params + 10, sizeof(float)); const bool is_neox = mode & GGML_ROPE_TYPE_NEOX; id pipeline = nil; if (!is_neox) { switch (src0->type) { case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NORM_F32].pipeline; break; case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NORM_F16].pipeline; break; default: GGML_ABORT("fatal error"); }; } else { switch (src0->type) { case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F32].pipeline; break; case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F16].pipeline; break; default: GGML_ABORT("fatal error"); }; } [encoder setComputePipelineState:pipeline]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; if (id_src2 != nil) { [encoder setBuffer:id_src2 offset:offs_src2 atIndex:2]; } else { [encoder setBuffer:id_src0 offset:offs_src0 atIndex:2]; } [encoder setBuffer:id_dst offset:offs_dst atIndex:3]; [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:4]; [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:5]; [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:6]; [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:7]; [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:8]; [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:9]; [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:10]; [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:11]; [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:12]; [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:13]; [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:14]; [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:15]; [encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:16]; [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:17]; [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:18]; [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:19]; [encoder setBytes:&n_past length:sizeof( int) atIndex:20]; [encoder setBytes:&n_dims length:sizeof( int) atIndex:21]; [encoder setBytes:&n_ctx_orig length:sizeof( int) atIndex:22]; [encoder setBytes:&freq_base length:sizeof( float) atIndex:23]; [encoder setBytes:&freq_scale length:sizeof( float) atIndex:24]; [encoder setBytes:&ext_factor length:sizeof( float) atIndex:25]; [encoder setBytes:&attn_factor length:sizeof( float) atIndex:26]; [encoder setBytes:&beta_fast length:sizeof( float) atIndex:27]; [encoder setBytes:&beta_slow length:sizeof( float) atIndex:28]; [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; } break; case GGML_OP_IM2COL: { GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(ggml_is_contiguous(src1)); GGML_ASSERT(src0->type == GGML_TYPE_F16); GGML_ASSERT(src1->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32); const int32_t s0 = ((const int32_t *)(dst->op_params))[0]; const int32_t s1 = ((const int32_t *)(dst->op_params))[1]; const int32_t p0 = ((const int32_t *)(dst->op_params))[2]; const int32_t p1 = ((const int32_t *)(dst->op_params))[3]; const int32_t d0 = ((const int32_t *)(dst->op_params))[4]; const int32_t d1 = ((const int32_t *)(dst->op_params))[5]; const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1; const int32_t N = src1->ne[is_2D ? 3 : 2]; const int32_t IC = src1->ne[is_2D ? 2 : 1]; const int32_t IH = is_2D ? src1->ne[1] : 1; const int32_t IW = src1->ne[0]; const int32_t KH = is_2D ? src0->ne[1] : 1; const int32_t KW = src0->ne[0]; const int32_t OH = is_2D ? dst->ne[2] : 1; const int32_t OW = dst->ne[1]; const int32_t CHW = IC * KH * KW; const int32_t ofs0 = src1->nb[is_2D ? 3 : 2] / 4; const int32_t ofs1 = src1->nb[is_2D ? 2 : 1] / 4; id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_IM2COL_F32].pipeline; const bool is_gt_mttpt = ((size_t)(N * KH * KW)) > pipeline.maxTotalThreadsPerThreadgroup; switch (dst->type) { case GGML_TYPE_F32: { pipeline = (is_gt_mttpt ? ctx->kernels[GGML_METAL_KERNEL_TYPE_IM2COL_EXT_F32].pipeline : ctx->kernels[GGML_METAL_KERNEL_TYPE_IM2COL_F32].pipeline); } break; case GGML_TYPE_F16: { pipeline = (is_gt_mttpt ? ctx->kernels[GGML_METAL_KERNEL_TYPE_IM2COL_EXT_F16].pipeline : ctx->kernels[GGML_METAL_KERNEL_TYPE_IM2COL_F16].pipeline); } break; default: GGML_ABORT("fatal error"); }; [encoder setComputePipelineState:pipeline]; [encoder setBuffer:id_src1 offset:offs_src1 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBytes:&ofs0 length:sizeof(int32_t) atIndex:2]; [encoder setBytes:&ofs1 length:sizeof(int32_t) atIndex:3]; [encoder setBytes:&IW length:sizeof(int32_t) atIndex:4]; [encoder setBytes:&IH length:sizeof(int32_t) atIndex:5]; [encoder setBytes:&CHW length:sizeof(int32_t) atIndex:6]; [encoder setBytes:&s0 length:sizeof(int32_t) atIndex:7]; [encoder setBytes:&s1 length:sizeof(int32_t) atIndex:8]; [encoder setBytes:&p0 length:sizeof(int32_t) atIndex:9]; [encoder setBytes:&p1 length:sizeof(int32_t) atIndex:10]; [encoder setBytes:&d0 length:sizeof(int32_t) atIndex:11]; [encoder setBytes:&d1 length:sizeof(int32_t) atIndex:12]; if (is_gt_mttpt) { [encoder setBytes:&N length:sizeof(int32_t) atIndex:13]; [encoder setBytes:&KH length:sizeof(int32_t) atIndex:14]; [encoder setBytes:&KW length:sizeof(int32_t) atIndex:15]; const uint64_t n_threads = MIN(pipeline.maxTotalThreadsPerThreadgroup, (uint64_t)N); const int64_t quotient = N / n_threads + (N % n_threads > 0 ? 1 : 0); [encoder dispatchThreadgroups:MTLSizeMake(quotient * CHW, OH, OW) threadsPerThreadgroup:MTLSizeMake(n_threads, 1, 1)]; } else { [encoder dispatchThreadgroups:MTLSizeMake(IC, OH, OW) threadsPerThreadgroup:MTLSizeMake(N, KH, KW)]; } } break; case GGML_OP_UPSCALE: { GGML_ASSERT(src0->type == GGML_TYPE_F32); const float sf0 = (float)ne0/src0->ne[0]; const float sf1 = (float)ne1/src0->ne[1]; const float sf2 = (float)ne2/src0->ne[2]; const float sf3 = (float)ne3/src0->ne[3]; const id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_UPSCALE_F32].pipeline; [encoder setComputePipelineState:pipeline]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2]; [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3]; [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4]; [encoder setBytes:&ne03 length:sizeof(ne03) atIndex:5]; [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6]; [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7]; [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8]; [encoder setBytes:&nb03 length:sizeof(nb03) atIndex:9]; [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:10]; [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:11]; [encoder setBytes:&ne2 length:sizeof(ne2) atIndex:12]; [encoder setBytes:&ne3 length:sizeof(ne3) atIndex:13]; [encoder setBytes:&nb0 length:sizeof(nb0) atIndex:14]; [encoder setBytes:&nb1 length:sizeof(nb1) atIndex:15]; [encoder setBytes:&nb2 length:sizeof(nb2) atIndex:16]; [encoder setBytes:&nb3 length:sizeof(nb3) atIndex:17]; [encoder setBytes:&sf0 length:sizeof(sf0) atIndex:18]; [encoder setBytes:&sf1 length:sizeof(sf1) atIndex:19]; [encoder setBytes:&sf2 length:sizeof(sf2) atIndex:20]; [encoder setBytes:&sf3 length:sizeof(sf3) atIndex:21]; const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne0); [encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; } break; case GGML_OP_PAD: { GGML_ASSERT(src0->type == GGML_TYPE_F32); id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_PAD_F32].pipeline; [encoder setComputePipelineState:pipeline]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2]; [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3]; [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4]; [encoder setBytes:&ne03 length:sizeof(ne03) atIndex:5]; [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6]; [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7]; [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8]; [encoder setBytes:&nb03 length:sizeof(nb03) atIndex:9]; [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:10]; [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:11]; [encoder setBytes:&ne2 length:sizeof(ne2) atIndex:12]; [encoder setBytes:&ne3 length:sizeof(ne3) atIndex:13]; [encoder setBytes:&nb0 length:sizeof(nb0) atIndex:14]; [encoder setBytes:&nb1 length:sizeof(nb1) atIndex:15]; [encoder setBytes:&nb2 length:sizeof(nb2) atIndex:16]; [encoder setBytes:&nb3 length:sizeof(nb3) atIndex:17]; const int nth = MIN(1024, ne0); [encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; } break; case GGML_OP_ARANGE: { GGML_ASSERT(dst->type == GGML_TYPE_F32); float start; float step; memcpy(&start, ((const int32_t *) dst->op_params) + 0, sizeof(float)); memcpy(&step, ((const int32_t *) dst->op_params) + 2, sizeof(float)); id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARANGE_F32].pipeline; [encoder setComputePipelineState:pipeline]; [encoder setBuffer:id_dst offset:offs_dst atIndex:0]; [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:1]; [encoder setBytes:&start length:sizeof(start) atIndex:2]; [encoder setBytes:&step length:sizeof(step) atIndex:3]; const int nth = MIN(1024, ne0); [encoder dispatchThreadgroups:MTLSizeMake(1, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; } break; case GGML_OP_TIMESTEP_EMBEDDING: { GGML_ASSERT(src0->type == GGML_TYPE_F32); const int dim = dst->op_params[0]; const int max_period = dst->op_params[1]; const int half = dim / 2; id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32].pipeline; [encoder setComputePipelineState:pipeline]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBytes:&nb1 length:sizeof(nb1) atIndex:2]; [encoder setBytes:&dim length:sizeof(dim) atIndex:3]; [encoder setBytes:&max_period length:sizeof(max_period) atIndex:4]; const int nth = MIN(1024, half); [encoder dispatchThreadgroups:MTLSizeMake(ne00, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; } break; case GGML_OP_ARGSORT: { GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_I32); const int nrows = ggml_nrows(src0); enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0]; // bitonic sort requires the number of elements to be power of 2 int64_t ne00_padded = 1; while (ne00_padded < ne00) { ne00_padded *= 2; } // Metal kernels require the buffer size to be multiple of 16 bytes // https://developer.apple.com/documentation/metal/mtlcomputecommandencoder/1443142-setthreadgroupmemorylength const int mem_size = GGML_PAD(ne00_padded*sizeof(int32_t), 16); id pipeline = nil; switch (order) { case GGML_SORT_ORDER_ASC: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC].pipeline; break; case GGML_SORT_ORDER_DESC: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC].pipeline; break; default: GGML_ABORT("fatal error"); }; [encoder setComputePipelineState:pipeline]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; [encoder setBytes:&ne00_padded length:sizeof( int64_t) atIndex:3]; [encoder setThreadgroupMemoryLength:mem_size atIndex:0]; [encoder dispatchThreadgroups:MTLSizeMake(1, nrows, 1) threadsPerThreadgroup:MTLSizeMake(ne00_padded, 1, 1)]; } break; case GGML_OP_LEAKY_RELU: { GGML_ASSERT(src0->type == GGML_TYPE_F32); float slope; memcpy(&slope, dst->op_params, sizeof(float)); id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_LEAKY_RELU_F32].pipeline; [encoder setComputePipelineState:pipeline]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBytes:&slope length:sizeof(slope) atIndex:2]; const int64_t n = ggml_nelements(dst); [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } break; case GGML_OP_FLASH_ATTN_EXT: { GGML_ASSERT(ne00 % 4 == 0); GGML_ASSERT(ne11 % 32 == 0); GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT(src1->type == src2->type); GGML_ASSERT(ggml_are_same_shape (src1, src2)); struct ggml_tensor * src3 = node->src[3]; size_t offs_src3 = 0; id id_src3 = src3 ? ggml_metal_get_buffer(src3, &offs_src3) : nil; GGML_ASSERT(!src3 || src3->type == GGML_TYPE_F16); GGML_ASSERT(!src3 || src3->ne[1] >= GGML_PAD(src0->ne[1], 8) && "the Flash-Attention Metal kernel requires the mask to be padded to 8 and at least n_queries big"); const int64_t ne30 = src3 ? src3->ne[0] : 0; GGML_UNUSED(ne30); //const int64_t ne31 = src3 ? src3->ne[1] : 0; const int64_t ne32 = src3 ? src3->ne[2] : 0; GGML_UNUSED(ne32); const int64_t ne33 = src3 ? src3->ne[3] : 0; GGML_UNUSED(ne33); const uint64_t nb30 = src3 ? src3->nb[0] : 0; GGML_UNUSED(nb30); const uint64_t nb31 = src3 ? src3->nb[1] : 0; const uint64_t nb32 = src3 ? src3->nb[2] : 0; GGML_UNUSED(nb32); const uint64_t nb33 = src3 ? src3->nb[3] : 0; GGML_UNUSED(nb33); const enum ggml_type src2t = src2 ? src2->type : GGML_TYPE_COUNT; GGML_UNUSED(src2t); float scale; float max_bias; float logit_softcap; memcpy(&scale, ((const int32_t *) dst->op_params) + 0, sizeof(scale)); memcpy(&max_bias, ((const int32_t *) dst->op_params) + 1, sizeof(max_bias)); memcpy(&logit_softcap, ((const int32_t *) dst->op_params) + 2, sizeof(logit_softcap)); if (logit_softcap != 0.0f) { scale /= logit_softcap; } const uint32_t n_head = src0->ne[2]; const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head)); const float m0 = powf(2.0f, -(max_bias ) / n_head_log2); const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2); id pipeline = nil; bool use_vec_kernel = false; if (ne01 >= 4 || (ne00%128 != 0)) { switch (src1->type) { case GGML_TYPE_F16: { switch (ne00) { case 64: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H64 ].pipeline; break; case 80: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H80 ].pipeline; break; case 96: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H96 ].pipeline; break; case 112: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H112].pipeline; break; case 128: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H128].pipeline; break; case 256: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H256].pipeline; break; default: { GGML_LOG_ERROR("unsupported size: %lld\n", ne00); GGML_LOG_ERROR("add template specialization for this size\n"); GGML_ABORT("add template specialization for this size"); } } } break; case GGML_TYPE_BF16: { switch (ne00) { case 64: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H64 ].pipeline; break; case 80: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H80 ].pipeline; break; case 96: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H96 ].pipeline; break; case 112: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H112].pipeline; break; case 128: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H128].pipeline; break; case 256: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H256].pipeline; break; default: { GGML_LOG_ERROR("unsupported size: %lld\n", ne00); GGML_LOG_ERROR("add template specialization for this size\n"); GGML_ABORT("add template specialization for this size"); } } } break; case GGML_TYPE_Q4_0: { switch (ne00) { case 64: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H64 ].pipeline; break; case 80: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H80 ].pipeline; break; case 96: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H96 ].pipeline; break; case 112: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H112].pipeline; break; case 128: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H128].pipeline; break; case 256: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H256].pipeline; break; default: { GGML_LOG_ERROR("unsupported size: %lld\n", ne00); GGML_LOG_ERROR("add template specialization for this size\n"); GGML_ABORT("add template specialization for this size"); } } } break; case GGML_TYPE_Q4_1: { switch (ne00) { case 64: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H64 ].pipeline; break; case 80: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H80 ].pipeline; break; case 96: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H96 ].pipeline; break; case 112: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H112].pipeline; break; case 128: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H128].pipeline; break; case 256: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H256].pipeline; break; default: { GGML_LOG_ERROR("unsupported size: %lld\n", ne00); GGML_LOG_ERROR("add template specialization for this size\n"); GGML_ABORT("add template specialization for this size"); } } } break; case GGML_TYPE_Q5_0: { switch (ne00) { case 64: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H64 ].pipeline; break; case 80: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H80 ].pipeline; break; case 96: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H96 ].pipeline; break; case 112: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H112].pipeline; break; case 128: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H128].pipeline; break; case 256: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H256].pipeline; break; default: { GGML_LOG_ERROR("unsupported size: %lld\n", ne00); GGML_LOG_ERROR("add template specialization for this size\n"); GGML_ABORT("add template specialization for this size"); } } } break; case GGML_TYPE_Q5_1: { switch (ne00) { case 64: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H64 ].pipeline; break; case 80: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H80 ].pipeline; break; case 96: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H96 ].pipeline; break; case 112: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H112].pipeline; break; case 128: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H128].pipeline; break; case 256: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H256].pipeline; break; default: { GGML_LOG_ERROR("unsupported size: %lld\n", ne00); GGML_LOG_ERROR("add template specialization for this size\n"); GGML_ABORT("add template specialization for this size"); } } } break; case GGML_TYPE_Q8_0: { switch (ne00) { case 64: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H64 ].pipeline; break; case 80: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H80 ].pipeline; break; case 96: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H96 ].pipeline; break; case 112: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H112].pipeline; break; case 128: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H128].pipeline; break; case 256: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H256].pipeline; break; default: { GGML_LOG_ERROR("unsupported size: %lld\n", ne00); GGML_LOG_ERROR("add template specialization for this size\n"); GGML_ABORT("add template specialization for this size"); } } } break; default: { GGML_LOG_ERROR("unsupported type: %d\n", src1->type); GGML_LOG_ERROR("add template specialization for this type\n"); GGML_ABORT("add template specialization for this type"); } } } else { use_vec_kernel = true; switch (ne00) { case 128: { switch (src1->type) { case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H128].pipeline; break; case GGML_TYPE_BF16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_H128].pipeline; break; case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H128].pipeline; break; case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_H128].pipeline; break; case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_H128].pipeline; break; case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_H128].pipeline; break; case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H128].pipeline; break; default: { GGML_LOG_ERROR("unsupported type: %d\n", src1->type); GGML_LOG_ERROR("add template specialization for this type\n"); GGML_ABORT("add template specialization for this type"); } } } break; case 256: { switch (src1->type) { case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H256].pipeline; break; case GGML_TYPE_BF16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_H256].pipeline; break; case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H256].pipeline; break; case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_H256].pipeline; break; case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_H256].pipeline; break; case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_H256].pipeline; break; case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H256].pipeline; break; default: { GGML_LOG_ERROR("unsupported type: %d\n", src1->type); GGML_LOG_ERROR("add template specialization for this type\n"); GGML_ABORT("add template specialization for this type"); } } } break; default: { GGML_LOG_ERROR("unsupported size: %lld\n", ne00); GGML_LOG_ERROR("add template specialization for this size\n"); GGML_ABORT("add template specialization for this size"); } } } [encoder setComputePipelineState:pipeline]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; [encoder setBuffer:id_src2 offset:offs_src2 atIndex:2]; if (id_src3) { [encoder setBuffer:id_src3 offset:offs_src3 atIndex:3]; } else { [encoder setBuffer:id_src0 offset:offs_src0 atIndex:3]; } [encoder setBuffer:id_dst offset:offs_dst atIndex:4]; [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:5]; [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:6]; [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:7]; [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:8]; [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:9]; [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:10]; [encoder setBytes:&ne11 length:sizeof( int64_t) atIndex:11]; [encoder setBytes:&ne12 length:sizeof( int64_t) atIndex:12]; [encoder setBytes:&ne13 length:sizeof( int64_t) atIndex:13]; [encoder setBytes:&nb11 length:sizeof(uint64_t) atIndex:14]; [encoder setBytes:&nb12 length:sizeof(uint64_t) atIndex:15]; [encoder setBytes:&nb13 length:sizeof(uint64_t) atIndex:16]; [encoder setBytes:&nb31 length:sizeof(uint64_t) atIndex:17]; [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:18]; [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:19]; [encoder setBytes:&scale length:sizeof( float) atIndex:20]; [encoder setBytes:&max_bias length:sizeof( float) atIndex:21]; [encoder setBytes:&m0 length:sizeof(m0) atIndex:22]; [encoder setBytes:&m1 length:sizeof(m1) atIndex:23]; [encoder setBytes:&n_head_log2 length:sizeof(n_head_log2) atIndex:24]; [encoder setBytes:&logit_softcap length:sizeof(logit_softcap) atIndex:25]; if (!use_vec_kernel) { // half8x8 kernel const int64_t nqptg = 8; // queries per threadgroup !! sync with kernel template arguments !! const int64_t ncpsg = 32; // cache values per simdgroup !! sync with kernel template arguments !! GGML_ASSERT(nqptg <= 32); GGML_ASSERT(nqptg % 8 == 0); GGML_ASSERT(ncpsg % 32 == 0); // 2*(2*ncpsg + nqptg)*(nsg) // ncpsg soft_max values + ncpsg mask values + a diagonal scaling matrix (in float) // // 16*32*(nsg) // the shared memory needed for the simdgroups to load the KV cache // each thread loads (dequantizes) 16 head elements, there are 32 threads in th SG // #define FATTN_SMEM(nsg) (GGML_PAD((nqptg*(ne00 + 2*(2*ncpsg + nqptg)*(nsg)) + 16*32*(nsg))*(sizeof(float)/2), 16)) int64_t nsgmax = 2; while (true) { const size_t smem = FATTN_SMEM(nsgmax); if (smem > device.maxThreadgroupMemoryLength) { break; } nsgmax *= 2; } nsgmax /= 2; // simdgroups per threadgroup (a.k.a. warps) const int64_t nsg = ne01 <= nqptg ? MAX(4, MIN(nsgmax, MIN(ne11/ncpsg, (int64_t) pipeline.maxTotalThreadsPerThreadgroup/32))) : 4; const size_t smem = FATTN_SMEM(nsg); //printf("smem: %zu, max: %zu, nsg = %d\n", smem, device.maxThreadgroupMemoryLength, (int) nsg); GGML_ASSERT(smem <= device.maxThreadgroupMemoryLength); [encoder setThreadgroupMemoryLength:smem atIndex:0]; #undef FATTN_SMEM [encoder dispatchThreadgroups:MTLSizeMake((ne01 + nqptg - 1)/nqptg, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(32, nsg, 1)]; } else { // half4x4 kernel const int64_t nqptg = 1; // queries per threadgroup !! sync with kernel template arguments !! const int64_t ncpsg = 32; // cache values per simdgroup !! sync with kernel template arguments !! GGML_ASSERT(nqptg <= 32); GGML_ASSERT(nqptg % 1 == 0); GGML_ASSERT(ncpsg % 32 == 0); // ne00 + 2*ncpsg*(nsg) // for each query, we load it as f16 in shared memory (ne00) // and store the soft_max values and the mask // // ne00*(nsg) // each simdgroup has a full f16 head vector in shared mem to accumulate results // #define FATTN_SMEM(nsg) (GGML_PAD((nqptg*(ne00 + 2*ncpsg*(nsg)) + ne00*(nsg))*(sizeof(float)/2), 16)) int64_t nsgmax = 2; while (true) { const size_t smem = FATTN_SMEM(nsgmax); if (smem > device.maxThreadgroupMemoryLength) { break; } nsgmax *= 2; } nsgmax /= 2; // simdgroups per threadgroup (a.k.a. warps) const int64_t nsgt = MAX(2, MIN(nsgmax, MIN(ne11/ncpsg, (int64_t) pipeline.maxTotalThreadsPerThreadgroup/32))); int64_t nsg = 1; while (nsg <= nsgt) { nsg *= 2; } nsg /= 2; const size_t smem = FATTN_SMEM(nsg); //printf("smem: %zu, max: %zu, nsg = %d\n", smem, device.maxThreadgroupMemoryLength, (int) nsg); GGML_ASSERT(smem <= device.maxThreadgroupMemoryLength); [encoder setThreadgroupMemoryLength:smem atIndex:0]; #undef FATTN_SMEM [encoder dispatchThreadgroups:MTLSizeMake((ne01 + nqptg - 1)/nqptg, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(32, nsg, 1)]; } } break; case GGML_OP_DUP: case GGML_OP_CPY: case GGML_OP_CONT: { GGML_ASSERT(ne00 % ggml_blck_size(src0->type) == 0); int nth = MIN(1024, ne00/ggml_blck_size(src0->type)); id pipeline = nil; switch (src0t) { case GGML_TYPE_F32: { GGML_ASSERT(ne0 % ggml_blck_size(dst->type) == 0); switch (dstt) { case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_F32].pipeline; break; case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_F16].pipeline; break; case GGML_TYPE_BF16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_BF16].pipeline; break; case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0].pipeline; break; case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_0].pipeline; break; case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_1].pipeline; break; case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_0].pipeline; break; case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_1].pipeline; break; case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_IQ4_NL].pipeline; break; default: GGML_ABORT("not implemented"); }; } break; case GGML_TYPE_F16: { switch (dstt) { case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F16_F32].pipeline; break; case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F16_F16].pipeline; break; default: GGML_ABORT("not implemented"); }; } break; case GGML_TYPE_BF16: { switch (dstt) { case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_BF16_F32].pipeline; break; case GGML_TYPE_BF16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_BF16_BF16].pipeline; break; default: GGML_ASSERT(false && "not implemented"); }; } break; default: GGML_ABORT("not implemented"); } [encoder setComputePipelineState:pipeline]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3]; [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4]; [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5]; [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6]; [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7]; [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8]; [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9]; [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10]; [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11]; [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12]; [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13]; [encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14]; [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15]; [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16]; [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17]; [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; } break; case GGML_OP_POOL_2D: { GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(src0t == GGML_TYPE_F32 && src0t == dstt); const int32_t * opts = dst->op_params; enum ggml_op_pool op = opts[0]; id pipeline = nil; switch (src0t) { case GGML_TYPE_F32: { switch(op) { case GGML_OP_POOL_AVG: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_POOL_2D_AVG_F32].pipeline; break; case GGML_OP_POOL_MAX: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_POOL_2D_MAX_F32].pipeline; break; default: GGML_ASSERT(false && "not implemented"); } } break; default: GGML_ASSERT(false && "not implemented"); } const int32_t k0 = opts[1]; const int32_t k1 = opts[2]; const int32_t s0 = opts[3]; const int32_t s1 = opts[4]; const int32_t p0 = opts[5]; const int32_t p1 = opts[6]; const int64_t IH = src0->ne[1]; const int64_t IW = src0->ne[0]; const int64_t N = dst->ne[3]; const int64_t OC = dst->ne[2]; const int64_t OH = dst->ne[1]; const int64_t OW = dst->ne[0]; const int64_t parallel_elements = N * OC * OH * OW; const int64_t n_threads = MIN((int64_t)[pipeline maxTotalThreadsPerThreadgroup], parallel_elements); const int64_t n_tg = (parallel_elements + n_threads - 1) / n_threads; [encoder setComputePipelineState:pipeline]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBytes:&k0 length:sizeof(int32_t) atIndex:2]; [encoder setBytes:&k1 length:sizeof(int32_t) atIndex:3]; [encoder setBytes:&s0 length:sizeof(int32_t) atIndex:4]; [encoder setBytes:&s1 length:sizeof(int32_t) atIndex:5]; [encoder setBytes:&p0 length:sizeof(int32_t) atIndex:6]; [encoder setBytes:&p1 length:sizeof(int32_t) atIndex:7]; [encoder setBytes:&IH length:sizeof(int64_t) atIndex:8]; [encoder setBytes:&IW length:sizeof(int64_t) atIndex:9]; [encoder setBytes:&OH length:sizeof(int64_t) atIndex:10]; [encoder setBytes:&OW length:sizeof(int64_t) atIndex:11]; [encoder setBytes:¶llel_elements length:sizeof(int64_t) atIndex:12]; [encoder dispatchThreadgroups:MTLSizeMake(n_tg, 1, 1) threadsPerThreadgroup:MTLSizeMake(n_threads, 1, 1)]; } break; default: { GGML_LOG_ERROR("%s: error: node %3d, op = %8s not implemented\n", __func__, idx, ggml_op_name(dst->op)); GGML_ABORT("fatal error"); } } } static enum ggml_status ggml_metal_graph_compute( ggml_backend_t backend, struct ggml_cgraph * gf) { struct ggml_backend_metal_context * ctx = backend->context; struct ggml_backend_metal_device_context * ctx_dev = backend->device->context; // number of nodes encoded by the main thread (empirically determined) const int n_main = 128; // number of threads in addition to the main thread const int n_cb = ctx->n_cb; // submit the ggml compute graph to the GPU by creating command buffers and encoding the ops in them // the first n_nodes_0 are encoded and submitted for processing directly by the calling thread // while these nodes are processing, we start n_cb threads to enqueue the rest of the nodes // each thread creates it's own command buffer and enqueues the ops in parallel // // tests on M1 Pro and M2 Ultra using LLaMA models, show that optimal values for n_cb are 1 or 2 @autoreleasepool { ctx->gf = gf; ctx->n_nodes_0 = MIN(n_main, gf->n_nodes); ctx->n_nodes_1 = gf->n_nodes - ctx->n_nodes_0; ctx->n_nodes_per_cb = (ctx->n_nodes_1 + ctx->n_cb - 1) / ctx->n_cb; const bool should_capture = ctx->capture_next_compute; if (should_capture) { ctx->capture_next_compute = false; if (!ctx->capture_started) { // create capture scope ctx->capture_scope = [[MTLCaptureManager sharedCaptureManager] newCaptureScopeWithDevice:ctx_dev->mtl_device]; MTLCaptureDescriptor * descriptor = [MTLCaptureDescriptor new]; descriptor.captureObject = ctx->capture_scope; descriptor.destination = MTLCaptureDestinationGPUTraceDocument; descriptor.outputURL = [NSURL fileURLWithPath:[NSString stringWithFormat:@"/tmp/perf-metal.gputrace"]]; NSError * error = nil; if (![[MTLCaptureManager sharedCaptureManager] startCaptureWithDescriptor:descriptor error:&error]) { GGML_LOG_ERROR("%s: error: unable to start capture '%s'\n", __func__, [[error localizedDescription] UTF8String]); } else { [ctx->capture_scope beginScope]; ctx->capture_started = true; } } } // the main thread commits the first few commands immediately // command_buffer[n_cb] { id command_buffer = [ctx->queue commandBufferWithUnretainedReferences]; ctx->command_buffers[n_cb] = command_buffer; [command_buffer enqueue]; ctx->encode_async(n_cb); } // prepare the rest of the command buffers asynchronously // command_buffer[0.. n_cb) for (int cb_idx = 0; cb_idx < n_cb; ++cb_idx) { id command_buffer = [ctx->queue commandBufferWithUnretainedReferences]; ctx->command_buffers[cb_idx] = command_buffer; // always enqueue the first two command buffers // enqueue all of the command buffers if we don't need to abort if (cb_idx < 2 || ctx->abort_callback == NULL) { [command_buffer enqueue]; } } dispatch_apply(n_cb, ctx->d_queue, ctx->encode_async); // wait for completion and check status of each command buffer // needed to detect if the device ran out-of-memory for example (#1881) { id command_buffer = ctx->command_buffers[n_cb]; [command_buffer waitUntilCompleted]; MTLCommandBufferStatus status = [command_buffer status]; if (status != MTLCommandBufferStatusCompleted) { GGML_LOG_INFO("%s: command buffer %d failed with status %lu\n", __func__, n_cb, status); if (status == MTLCommandBufferStatusError) { GGML_LOG_INFO("error: %s\n", [[command_buffer error].localizedDescription UTF8String]); } return GGML_STATUS_FAILED; } } for (int i = 0; i < n_cb; ++i) { id command_buffer = ctx->command_buffers[i]; [command_buffer waitUntilCompleted]; MTLCommandBufferStatus status = [command_buffer status]; if (status != MTLCommandBufferStatusCompleted) { GGML_LOG_INFO("%s: command buffer %d failed with status %lu\n", __func__, i, status); if (status == MTLCommandBufferStatusError) { GGML_LOG_INFO("error: %s\n", [[command_buffer error].localizedDescription UTF8String]); } return GGML_STATUS_FAILED; } id next_buffer = (i + 1 < n_cb ? ctx->command_buffers[i + 1] : nil); if (!next_buffer) { continue; } const bool next_queued = ([next_buffer status] != MTLCommandBufferStatusNotEnqueued); if (next_queued) { continue; } if (ctx->abort_callback && ctx->abort_callback(ctx->abort_callback_data)) { GGML_LOG_INFO("%s: command buffer %d aborted", __func__, i); return GGML_STATUS_ABORTED; } [next_buffer commit]; } if (!should_capture && ctx->capture_started) { [ctx->capture_scope endScope]; [[MTLCaptureManager sharedCaptureManager] stopCapture]; } } return GGML_STATUS_SUCCESS; } //////////////////////////////////////////////////////////////////////////////// // backend interface static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_t buffer) { struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context; for (int i = 0; i < ctx->n_buffers; i++) { [ctx->buffers[i].metal release]; } ggml_backend_metal_device_rel(buffer->buft->device->context); if (ctx->owned) { #if TARGET_OS_OSX vm_deallocate((vm_map_t)mach_task_self(), (vm_address_t)ctx->all_data, ctx->all_size); #else free(ctx->all_data); #endif } free(ctx); } static void * ggml_backend_metal_buffer_get_base(ggml_backend_buffer_t buffer) { struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context; return ctx->all_data; } static void ggml_backend_metal_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { memcpy((char *)tensor->data + offset, data, size); UNUSED(buffer); } static void ggml_backend_metal_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { memcpy(data, (const char *)tensor->data + offset, size); UNUSED(buffer); } static bool ggml_backend_metal_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) { if (ggml_backend_buffer_is_host(src->buffer)) { memcpy(dst->data, src->data, ggml_nbytes(src)); return true; } return false; UNUSED(buffer); } static void ggml_backend_metal_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context; memset(ctx->all_data, value, ctx->all_size); } static struct ggml_backend_buffer_i ggml_backend_metal_buffer_i = { /* .free_buffer = */ ggml_backend_metal_buffer_free_buffer, /* .get_base = */ ggml_backend_metal_buffer_get_base, /* .init_tensor = */ NULL, /* .memset_tensor = */ NULL, /* .set_tensor = */ ggml_backend_metal_buffer_set_tensor, /* .get_tensor = */ ggml_backend_metal_buffer_get_tensor, /* .cpy_tensor = */ ggml_backend_metal_buffer_cpy_tensor, /* .clear = */ ggml_backend_metal_buffer_clear, /* .reset = */ NULL, }; // default buffer type static const char * ggml_backend_metal_buffer_type_get_name(ggml_backend_buffer_type_t buft) { return "Metal"; UNUSED(buft); } static void ggml_backend_metal_log_allocated_size(id device, size_t size_aligned) { #ifndef GGML_METAL_NDEBUG #if TARGET_OS_OSX || (TARGET_OS_IOS && __clang_major__ >= 15) if (@available(macOS 10.12, iOS 16.0, *)) { GGML_LOG_DEBUG("%s: allocated buffer, size = %8.2f MiB, (%8.2f / %8.2f)\n", __func__, size_aligned / 1024.0 / 1024.0, device.currentAllocatedSize / 1024.0 / 1024.0, device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0); if (device.currentAllocatedSize > device.recommendedMaxWorkingSetSize) { GGML_LOG_WARN("%s: warning: current allocated size is greater than the recommended max working set size\n", __func__); } } else { GGML_LOG_INFO("%s: allocated buffer, size = %8.2f MiB, (%8.2f)\n", __func__, size_aligned / 1024.0 / 1024.0, device.currentAllocatedSize / 1024.0 / 1024.0); } #endif #endif UNUSED(device); UNUSED(size_aligned); } static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { struct ggml_backend_metal_buffer_context * ctx = calloc(1, sizeof(struct ggml_backend_metal_buffer_context)); const size_t size_page = sysconf(_SC_PAGESIZE); size_t size_aligned = size; if ((size_aligned % size_page) != 0) { size_aligned += (size_page - (size_aligned % size_page)); } id device = ggml_backend_metal_device_acq(buft->device->context); ctx->all_data = ggml_metal_host_malloc(size_aligned); ctx->all_size = size_aligned; ctx->owned = true; ctx->n_buffers = 1; if (ctx->all_data != NULL) { ctx->buffers[0].data = ctx->all_data; ctx->buffers[0].size = size; ctx->buffers[0].metal = nil; if (size_aligned > 0) { ctx->buffers[0].metal = [device newBufferWithBytesNoCopy:ctx->all_data length:size_aligned options:MTLResourceStorageModeShared deallocator:nil]; } } if (size_aligned > 0 && (ctx->all_data == NULL || ctx->buffers[0].metal == nil)) { GGML_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f MiB\n", __func__, size_aligned / 1024.0 / 1024.0); free(ctx); ggml_backend_metal_device_rel(buft->device->context); return NULL; } //ggml_backend_metal_log_allocated_size(device, size_aligned); return ggml_backend_buffer_init(buft, ggml_backend_metal_buffer_i, ctx, size); } static size_t ggml_backend_metal_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { return 32; UNUSED(buft); } static size_t ggml_backend_metal_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) { id device = ggml_backend_metal_device_acq(buft->device->context); const size_t max_size = device.maxBufferLength; ggml_backend_metal_device_rel(buft->device->context); return max_size; UNUSED(buft); } static bool ggml_backend_metal_buffer_type_is_host(ggml_backend_buffer_type_t buft) { return true; UNUSED(buft); } ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void) { static struct ggml_backend_buffer_type ggml_backend_buffer_type_metal = { /* .iface = */ { /* .get_name = */ ggml_backend_metal_buffer_type_get_name, /* .alloc_buffer = */ ggml_backend_metal_buffer_type_alloc_buffer, /* .get_alignment = */ ggml_backend_metal_buffer_type_get_alignment, /* .get_max_size = */ ggml_backend_metal_buffer_type_get_max_size, /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes /* .is_host = */ ggml_backend_metal_buffer_type_is_host, }, /* .device = */ &g_ggml_backend_metal_device, /* .context = */ NULL, }; return &ggml_backend_buffer_type_metal; } static const char * ggml_backend_metal_buffer_from_ptr_type_get_name(ggml_backend_buffer_type_t buft) { return "Metal_Mapped"; UNUSED(buft); } static ggml_backend_buffer_type_t ggml_backend_metal_buffer_from_ptr_type(void) { static struct ggml_backend_buffer_type ggml_backend_buffer_from_ptr_type_metal = { /* .iface = */ { /* .get_name = */ ggml_backend_metal_buffer_from_ptr_type_get_name, /* .alloc_buffer = */ ggml_backend_metal_buffer_type_alloc_buffer, /* .get_alignment = */ ggml_backend_metal_buffer_type_get_alignment, /* .get_max_size = */ ggml_backend_metal_buffer_type_get_max_size, /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes /* .is_host = */ ggml_backend_metal_buffer_type_is_host, }, /* .device = */ &g_ggml_backend_metal_device, /* .context = */ NULL, }; return &ggml_backend_buffer_from_ptr_type_metal; } // TODO: obsoleted by ggml_backend_metal_device_buffer_from_ptr ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t size, size_t max_size) { struct ggml_backend_metal_buffer_context * ctx = calloc(1, sizeof(struct ggml_backend_metal_buffer_context)); ctx->all_data = data; ctx->all_size = size; ctx->owned = false; ctx->n_buffers = 0; const size_t size_page = sysconf(_SC_PAGESIZE); // page-align the data ptr { const uintptr_t offs = (uintptr_t) data % size_page; data = (void *) ((char *) data - offs); size += offs; } size_t size_aligned = size; if ((size_aligned % size_page) != 0) { size_aligned += (size_page - (size_aligned % size_page)); } id device = ggml_backend_metal_device_acq(&g_ggml_ctx_dev_main); // the buffer fits into the max buffer size allowed by the device if (size_aligned <= device.maxBufferLength) { ctx->buffers[ctx->n_buffers].data = data; ctx->buffers[ctx->n_buffers].size = size; ctx->buffers[ctx->n_buffers].metal = nil; if (size_aligned > 0) { ctx->buffers[ctx->n_buffers].metal = [device newBufferWithBytesNoCopy:data length:size_aligned options:MTLResourceStorageModeShared deallocator:nil]; if (ctx->buffers[ctx->n_buffers].metal == nil) { GGML_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f MiB\n", __func__, size_aligned / 1024.0 / 1024.0); return false; } } ggml_backend_metal_log_allocated_size(device, size_aligned); ++ctx->n_buffers; } else { // this overlap between the views will guarantee that the tensor with the maximum size will fully fit into // one of the views const size_t size_ovlp = ((max_size + size_page - 1) / size_page + 1) * size_page; // round-up 2 pages just in case const size_t size_step = device.maxBufferLength - size_ovlp; const size_t size_view = device.maxBufferLength; for (size_t i = 0; i < size; i += size_step) { const size_t size_step_aligned = (i + size_view <= size) ? size_view : (size_aligned - i); ctx->buffers[ctx->n_buffers].data = (void *) ((uint8_t *) data + i); ctx->buffers[ctx->n_buffers].size = size_step_aligned; ctx->buffers[ctx->n_buffers].metal = nil; if (size_step_aligned > 0) { ctx->buffers[ctx->n_buffers].metal = [device newBufferWithBytesNoCopy:(void *) ((uint8_t *) data + i) length:size_step_aligned options:MTLResourceStorageModeShared deallocator:nil]; if (ctx->buffers[ctx->n_buffers].metal == nil) { GGML_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f MiB\n", __func__, size_step_aligned / 1024.0 / 1024.0); return false; } } ggml_backend_metal_log_allocated_size(device, size_step_aligned); if (i + size_step < size) { GGML_LOG_INFO("\n"); } ++ctx->n_buffers; } } return ggml_backend_buffer_init(ggml_backend_metal_buffer_from_ptr_type(), ggml_backend_metal_buffer_i, ctx, size); } // backend static const char * ggml_backend_metal_name(ggml_backend_t backend) { return "Metal"; UNUSED(backend); } static void ggml_backend_metal_free(ggml_backend_t backend) { struct ggml_backend_metal_context * ctx = backend->context; struct ggml_backend_metal_device_context * ctx_dev = backend->device->context; ggml_backend_metal_device_rel(ctx_dev); ggml_metal_free(ctx); free(backend); } static enum ggml_status ggml_backend_metal_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) { return ggml_metal_graph_compute(backend, cgraph); } static void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb) { GGML_ASSERT(ggml_backend_is_metal(backend)); struct ggml_backend_metal_context * ctx = (struct ggml_backend_metal_context *)backend->context; if (ctx->n_cb != n_cb) { ctx->n_cb = MIN(n_cb, GGML_METAL_MAX_COMMAND_BUFFERS); if (ctx->n_cb > 2) { GGML_LOG_WARN("%s: n_cb = %d, using n_cb > 2 is not recommended and can degrade the performance in some cases\n", __func__, n_cb); } } if (ctx->encode_async) { Block_release(ctx->encode_async); } ctx->encode_async = Block_copy(^(size_t iter) { const int cb_idx = iter; const int n_cb_l = ctx->n_cb; const int n_nodes_0 = ctx->n_nodes_0; const int n_nodes_1 = ctx->n_nodes_1; const int n_nodes_per_cb = ctx->n_nodes_per_cb; id command_buffer = ctx->command_buffers[cb_idx]; id encoder = [command_buffer computeCommandEncoder]; int node_start = 0; int node_end = n_nodes_0; if (cb_idx < n_cb_l) { node_start = n_nodes_0 + ( (cb_idx + 0) * n_nodes_per_cb); node_end = n_nodes_0 + (MIN((cb_idx == n_cb_l - 1) ? n_nodes_1 : (cb_idx + 1) * n_nodes_per_cb, n_nodes_1)); } const bool should_capture = ctx->capture_next_compute; for (int idx = node_start; idx < node_end; ++idx) { if (should_capture) { [encoder pushDebugGroup:[NSString stringWithCString:ggml_op_desc(ggml_graph_node(ctx->gf, idx)) encoding:NSUTF8StringEncoding]]; } ggml_metal_encode_node(backend, idx, encoder); if (should_capture) { [encoder popDebugGroup]; } } [encoder endEncoding]; if (cb_idx < 2 || ctx->abort_callback == NULL) { [command_buffer commit]; } }); } static struct ggml_backend_i ggml_backend_metal_i = { /* .get_name = */ ggml_backend_metal_name, /* .free = */ ggml_backend_metal_free, /* .set_tensor_async = */ NULL, /* .get_tensor_async = */ NULL, /* .cpy_tensor_async = */ NULL, /* .synchronize = */ NULL, /* .graph_plan_create = */ NULL, /* .graph_plan_free = */ NULL, /* .graph_plan_update = */ NULL, /* .graph_plan_compute = */ NULL, /* .graph_compute = */ ggml_backend_metal_graph_compute, /* .event_record = */ NULL, /* .event_wait = */ NULL, }; static ggml_guid_t ggml_backend_metal_guid(void) { static ggml_guid guid = { 0x81, 0xa1, 0x8b, 0x1e, 0x71, 0xec, 0x79, 0xed, 0x2b, 0x85, 0xdc, 0x8a, 0x61, 0x98, 0x30, 0xe6 }; return &guid; } // TODO: remove in the future ggml_backend_t ggml_backend_metal_init(void) { ggml_backend_dev_t dev = ggml_backend_reg_dev_get(ggml_backend_metal_reg(), 0); struct ggml_backend_metal_context * ctx = ggml_metal_init(dev); if (ctx == NULL) { GGML_LOG_ERROR("%s: error: failed to allocate context\n", __func__); return NULL; } ggml_backend_t backend = malloc(sizeof(struct ggml_backend)); *backend = (struct ggml_backend) { /* .guid = */ ggml_backend_metal_guid(), /* .interface = */ ggml_backend_metal_i, /* .device = */ dev, /* .context = */ ctx, }; ggml_backend_metal_set_n_cb(backend, 1); return backend; } bool ggml_backend_is_metal(ggml_backend_t backend) { return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_metal_guid()); } void ggml_backend_metal_set_abort_callback(ggml_backend_t backend, ggml_abort_callback abort_callback, void * user_data) { GGML_ASSERT(ggml_backend_is_metal(backend)); struct ggml_backend_metal_context * ctx = (struct ggml_backend_metal_context *)backend->context; ctx->abort_callback = abort_callback; ctx->abort_callback_data = user_data; } bool ggml_backend_metal_supports_family(ggml_backend_t backend, int family) { GGML_ASSERT(ggml_backend_is_metal(backend)); struct ggml_backend_metal_device_context * ctx_dev = backend->device->context; return [ctx_dev->mtl_device supportsFamily:(MTLGPUFamilyApple1 + family - 1)]; } void ggml_backend_metal_capture_next_compute(ggml_backend_t backend) { GGML_ASSERT(ggml_backend_is_metal(backend)); struct ggml_backend_metal_context * ctx = (struct ggml_backend_metal_context *)backend->context; ctx->capture_next_compute = true; } // backend device static const char * ggml_backend_metal_device_get_name(ggml_backend_dev_t dev) { return "Metal"; GGML_UNUSED(dev); } static const char * ggml_backend_metal_device_get_description(ggml_backend_dev_t dev) { // acq/rel just to populate ctx->name in case it hasn't been done yet struct ggml_backend_metal_device_context * ctx_dev = (struct ggml_backend_metal_device_context *)dev->context; ggml_backend_metal_device_acq(ctx_dev); ggml_backend_metal_device_rel(ctx_dev); return ctx_dev->name; } static void ggml_backend_metal_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) { if (@available(macOS 10.12, iOS 16.0, *)) { struct ggml_backend_metal_device_context * ctx_dev = (struct ggml_backend_metal_device_context *)dev->context; id device = ggml_backend_metal_device_acq(ctx_dev); *total = device.recommendedMaxWorkingSetSize; *free = *total - device.currentAllocatedSize; ggml_backend_metal_device_rel(ctx_dev); } else { *free = 1; *total = 1; } } static enum ggml_backend_dev_type ggml_backend_metal_device_get_type(ggml_backend_dev_t dev) { return GGML_BACKEND_DEVICE_TYPE_GPU; GGML_UNUSED(dev); } static void ggml_backend_metal_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) { props->name = ggml_backend_metal_device_get_name(dev); props->description = ggml_backend_metal_device_get_description(dev); props->type = ggml_backend_metal_device_get_type(dev); ggml_backend_metal_device_get_memory(dev, &props->memory_free, &props->memory_total); props->caps = (struct ggml_backend_dev_caps) { /* .async = */ false, /* .host_buffer = */ false, /* .buffer_from_host_ptr = */ true, /* .events = */ false, }; } static ggml_backend_t ggml_backend_metal_device_init(ggml_backend_dev_t dev, const char * params) { struct ggml_backend_metal_context * ctx = ggml_metal_init(dev); if (ctx == NULL) { GGML_LOG_ERROR("%s: error: failed to allocate context\n", __func__); return NULL; } ggml_backend_t backend = malloc(sizeof(struct ggml_backend)); *backend = (struct ggml_backend) { /* .guid = */ ggml_backend_metal_guid(), /* .interface = */ ggml_backend_metal_i, /* .device = */ dev, /* .context = */ ctx, }; ggml_backend_metal_set_n_cb(backend, 1); return backend; GGML_UNUSED(params); } static ggml_backend_buffer_type_t ggml_backend_metal_device_get_buffer_type(ggml_backend_dev_t dev) { return ggml_backend_metal_buffer_type(); GGML_UNUSED(dev); } static ggml_backend_buffer_t ggml_backend_metal_device_buffer_from_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) { struct ggml_backend_metal_buffer_context * ctx = calloc(1, sizeof(struct ggml_backend_metal_buffer_context)); ctx->all_data = ptr; ctx->all_size = size; ctx->owned = false; ctx->n_buffers = 0; const size_t size_page = sysconf(_SC_PAGESIZE); // page-align the data ptr { const uintptr_t offs = (uintptr_t) ptr % size_page; ptr = (void *) ((char *) ptr - offs); size += offs; } size_t size_aligned = size; if ((size_aligned % size_page) != 0) { size_aligned += (size_page - (size_aligned % size_page)); } struct ggml_backend_metal_device_context * ctx_dev = (struct ggml_backend_metal_device_context *)dev->context; id device = ggml_backend_metal_device_acq(ctx_dev); // the buffer fits into the max buffer size allowed by the device if (size_aligned <= device.maxBufferLength) { ctx->buffers[ctx->n_buffers].data = ptr; ctx->buffers[ctx->n_buffers].size = size; ctx->buffers[ctx->n_buffers].metal = nil; if (size_aligned > 0) { ctx->buffers[ctx->n_buffers].metal = [device newBufferWithBytesNoCopy:ptr length:size_aligned options:MTLResourceStorageModeShared deallocator:nil]; if (ctx->buffers[ctx->n_buffers].metal == nil) { GGML_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f MiB\n", __func__, size_aligned / 1024.0 / 1024.0); return false; } } ggml_backend_metal_log_allocated_size(device, size_aligned); ++ctx->n_buffers; } else { // this overlap between the views will guarantee that the tensor with the maximum size will fully fit into // one of the views const size_t size_ovlp = ((max_tensor_size + size_page - 1) / size_page + 1) * size_page; // round-up 2 pages just in case const size_t size_step = device.maxBufferLength - size_ovlp; const size_t size_view = device.maxBufferLength; for (size_t i = 0; i < size; i += size_step) { const size_t size_step_aligned = (i + size_view <= size) ? size_view : (size_aligned - i); ctx->buffers[ctx->n_buffers].data = (void *) ((uint8_t *) ptr + i); ctx->buffers[ctx->n_buffers].size = size_step_aligned; ctx->buffers[ctx->n_buffers].metal = nil; if (size_step_aligned > 0) { ctx->buffers[ctx->n_buffers].metal = [device newBufferWithBytesNoCopy:(void *) ((uint8_t *) ptr + i) length:size_step_aligned options:MTLResourceStorageModeShared deallocator:nil]; if (ctx->buffers[ctx->n_buffers].metal == nil) { GGML_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f MiB\n", __func__, size_step_aligned / 1024.0 / 1024.0); return false; } } ggml_backend_metal_log_allocated_size(device, size_step_aligned); if (i + size_step < size) { GGML_LOG_INFO("\n"); } ++ctx->n_buffers; } } return ggml_backend_buffer_init(ggml_backend_metal_buffer_from_ptr_type(), ggml_backend_metal_buffer_i, ctx, size); } static bool ggml_backend_metal_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) { struct ggml_backend_metal_device_context * ctx_dev = dev->context; return ggml_metal_supports_op(ctx_dev, op); } static bool ggml_backend_metal_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) { return buft->iface.get_name == ggml_backend_metal_buffer_type_get_name || buft->iface.get_name == ggml_backend_metal_buffer_from_ptr_type_get_name; UNUSED(dev); } static bool ggml_backend_metal_device_offload_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) { return false; GGML_UNUSED(dev); GGML_UNUSED(op); } static struct ggml_backend_device_i ggml_backend_metal_device_i = { /* .get_name = */ ggml_backend_metal_device_get_name, /* .get_description = */ ggml_backend_metal_device_get_description, /* .get_memory = */ ggml_backend_metal_device_get_memory, /* .get_type = */ ggml_backend_metal_device_get_type, /* .get_props = */ ggml_backend_metal_device_get_props, /* .init_backend = */ ggml_backend_metal_device_init, /* .get_buffer_type = */ ggml_backend_metal_device_get_buffer_type, /* .get_host_buffer_type = */ NULL, /* .buffer_from_host_ptr = */ ggml_backend_metal_device_buffer_from_ptr, /* .supports_op = */ ggml_backend_metal_device_supports_op, /* .supports_buft = */ ggml_backend_metal_device_supports_buft, /* .offload_op = */ ggml_backend_metal_device_offload_op, /* .event_new = */ NULL, /* .event_free = */ NULL, /* .event_synchronize = */ NULL, }; // backend registry static const char * ggml_backend_metal_reg_get_name(ggml_backend_reg_t reg) { return "Metal"; GGML_UNUSED(reg); } static size_t ggml_backend_metal_reg_device_count(ggml_backend_reg_t reg) { return 1; GGML_UNUSED(reg); } static ggml_backend_dev_t ggml_backend_metal_reg_device_get(ggml_backend_reg_t reg, size_t index) { GGML_ASSERT(index == 0); return &g_ggml_backend_metal_device; GGML_UNUSED(reg); GGML_UNUSED(index); } static struct ggml_backend_reg_i ggml_backend_metal_reg_i = { /* .get_name = */ ggml_backend_metal_reg_get_name, /* .device_count = */ ggml_backend_metal_reg_device_count, /* .device_get = */ ggml_backend_metal_reg_device_get, /* .get_proc_address = */ NULL, }; ggml_backend_reg_t ggml_backend_metal_reg(void) { // TODO: make this thread-safe somehow? { g_ggml_backend_metal_reg = (struct ggml_backend_reg) { /* .iface = */ ggml_backend_metal_reg_i, /* .context = */ NULL, }; g_ggml_backend_metal_device = (struct ggml_backend_device) { /* .iface = */ ggml_backend_metal_device_i, /* .reg = */ &g_ggml_backend_metal_reg, /* .context = */ &g_ggml_ctx_dev_main, }; } return &g_ggml_backend_metal_reg; }