#include "ggml.h" #include "gguf.h" #include <cstdio> #include <string> #include <sstream> #include <vector> #undef MIN #undef MAX #define MIN(a, b) ((a) < (b) ? (a) : (b)) #define MAX(a, b) ((a) > (b) ? (a) : (b)) template <typename T> static std::string to_string(const T & val) { std::stringstream ss; ss << val; return ss.str(); } static bool gguf_ex_write(const std::string & fname) { struct gguf_context * ctx = gguf_init_empty(); gguf_set_val_u8 (ctx, "some.parameter.uint8", 0x12); gguf_set_val_i8 (ctx, "some.parameter.int8", -0x13); gguf_set_val_u16 (ctx, "some.parameter.uint16", 0x1234); gguf_set_val_i16 (ctx, "some.parameter.int16", -0x1235); gguf_set_val_u32 (ctx, "some.parameter.uint32", 0x12345678); gguf_set_val_i32 (ctx, "some.parameter.int32", -0x12345679); gguf_set_val_f32 (ctx, "some.parameter.float32", 0.123456789f); gguf_set_val_u64 (ctx, "some.parameter.uint64", 0x123456789abcdef0ull); gguf_set_val_i64 (ctx, "some.parameter.int64", -0x123456789abcdef1ll); gguf_set_val_f64 (ctx, "some.parameter.float64", 0.1234567890123456789); gguf_set_val_bool(ctx, "some.parameter.bool", true); gguf_set_val_str (ctx, "some.parameter.string", "hello world"); gguf_set_arr_data(ctx, "some.parameter.arr.i16", GGUF_TYPE_INT16, std::vector<int16_t>{ 1, 2, 3, 4, }.data(), 4); gguf_set_arr_data(ctx, "some.parameter.arr.f32", GGUF_TYPE_FLOAT32, std::vector<float>{ 3.145f, 2.718f, 1.414f, }.data(), 3); gguf_set_arr_str (ctx, "some.parameter.arr.str", std::vector<const char *>{ "hello", "world", "!" }.data(), 3); struct ggml_init_params params = { /*.mem_size =*/ 128ull*1024ull*1024ull, /*.mem_buffer =*/ NULL, /*.no_alloc =*/ false, }; struct ggml_context * ctx_data = ggml_init(params); const int n_tensors = 10; // tensor infos for (int i = 0; i < n_tensors; ++i) { const std::string name = "tensor_" + to_string(i); int64_t ne[GGML_MAX_DIMS] = { 1 }; int32_t n_dims = rand() % GGML_MAX_DIMS + 1; for (int j = 0; j < n_dims; ++j) { ne[j] = rand() % 10 + 1; } struct ggml_tensor * cur = ggml_new_tensor(ctx_data, GGML_TYPE_F32, n_dims, ne); ggml_set_name(cur, name.c_str()); { float * data = (float *) cur->data; for (int j = 0; j < ggml_nelements(cur); ++j) { data[j] = 100 + i; } } gguf_add_tensor(ctx, cur); } gguf_write_to_file(ctx, fname.c_str(), false); printf("%s: wrote file '%s;\n", __func__, fname.c_str()); ggml_free(ctx_data); gguf_free(ctx); return true; } // just read tensor info static bool gguf_ex_read_0(const std::string & fname) { struct gguf_init_params params = { /*.no_alloc = */ false, /*.ctx = */ NULL, }; struct gguf_context * ctx = gguf_init_from_file(fname.c_str(), params); if (!ctx) { fprintf(stderr, "%s: failed to load '%s'\n", __func__, fname.c_str()); return false; } printf("%s: version: %d\n", __func__, gguf_get_version(ctx)); printf("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx)); printf("%s: data offset: %zu\n", __func__, gguf_get_data_offset(ctx)); // kv { const int n_kv = gguf_get_n_kv(ctx); printf("%s: n_kv: %d\n", __func__, n_kv); for (int i = 0; i < n_kv; ++i) { const char * key = gguf_get_key(ctx, i); printf("%s: kv[%d]: key = %s\n", __func__, i, key); } } // find kv string { const char * findkey = "some.parameter.string"; const int keyidx = gguf_find_key(ctx, findkey); if (keyidx == -1) { printf("%s: find key: %s not found.\n", __func__, findkey); } else { const char * key_value = gguf_get_val_str(ctx, keyidx); printf("%s: find key: %s found, kv[%d] value = %s\n", __func__, findkey, keyidx, key_value); } } // tensor info { const int n_tensors = gguf_get_n_tensors(ctx); printf("%s: n_tensors: %d\n", __func__, n_tensors); for (int i = 0; i < n_tensors; ++i) { const char * name = gguf_get_tensor_name (ctx, i); const size_t size = gguf_get_tensor_size (ctx, i); const size_t offset = gguf_get_tensor_offset(ctx, i); printf("%s: tensor[%d]: name = %s, size = %zu, offset = %zu\n", __func__, i, name, size, offset); } } gguf_free(ctx); return true; } // read and create ggml_context containing the tensors and their data static bool gguf_ex_read_1(const std::string & fname, bool check_data) { struct ggml_context * ctx_data = NULL; struct gguf_init_params params = { /*.no_alloc = */ false, /*.ctx = */ &ctx_data, }; struct gguf_context * ctx = gguf_init_from_file(fname.c_str(), params); printf("%s: version: %d\n", __func__, gguf_get_version(ctx)); printf("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx)); printf("%s: data offset: %zu\n", __func__, gguf_get_data_offset(ctx)); // kv { const int n_kv = gguf_get_n_kv(ctx); printf("%s: n_kv: %d\n", __func__, n_kv); for (int i = 0; i < n_kv; ++i) { const char * key = gguf_get_key(ctx, i); printf("%s: kv[%d]: key = %s\n", __func__, i, key); } } // tensor info { const int n_tensors = gguf_get_n_tensors(ctx); printf("%s: n_tensors: %d\n", __func__, n_tensors); for (int i = 0; i < n_tensors; ++i) { const char * name = gguf_get_tensor_name (ctx, i); const size_t size = gguf_get_tensor_size (ctx, i); const size_t offset = gguf_get_tensor_offset(ctx, i); printf("%s: tensor[%d]: name = %s, size = %zu, offset = %zu\n", __func__, i, name, size, offset); } } // data { const int n_tensors = gguf_get_n_tensors(ctx); for (int i = 0; i < n_tensors; ++i) { printf("%s: reading tensor %d data\n", __func__, i); const char * name = gguf_get_tensor_name(ctx, i); struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name); printf("%s: tensor[%d]: n_dims = %d, ne = (%d, %d, %d, %d), name = %s, data = %p\n", __func__, i, ggml_n_dims(cur), int(cur->ne[0]), int(cur->ne[1]), int(cur->ne[2]), int(cur->ne[3]), cur->name, cur->data); // print first 10 elements const float * data = (const float *) cur->data; printf("%s data[:10] : ", name); for (int j = 0; j < MIN(10, ggml_nelements(cur)); ++j) { printf("%f ", data[j]); } printf("\n\n"); // check data if (check_data) { const float * data = (const float *) cur->data; for (int j = 0; j < ggml_nelements(cur); ++j) { if (data[j] != 100 + i) { fprintf(stderr, "%s: tensor[%d], data[%d]: found %f, expected %f\n", __func__, i, j, data[j], float(100 + i)); gguf_free(ctx); return false; } } } } } printf("%s: ctx_data size: %zu\n", __func__, ggml_get_mem_size(ctx_data)); ggml_free(ctx_data); gguf_free(ctx); return true; } int main(int argc, char ** argv) { if (argc < 3) { printf("usage: %s data.gguf r|w [n]\n", argv[0]); printf("r: read data.gguf file\n"); printf("w: write data.gguf file\n"); printf("n: no check of tensor data\n"); return -1; } bool check_data = true; if (argc == 4) { check_data = false; } srand(123456); const std::string fname(argv[1]); const std::string mode (argv[2]); GGML_ASSERT((mode == "r" || mode == "w") && "mode must be r or w"); if (mode == "w") { GGML_ASSERT(gguf_ex_write(fname) && "failed to write gguf file"); } else if (mode == "r") { GGML_ASSERT(gguf_ex_read_0(fname) && "failed to read gguf file"); GGML_ASSERT(gguf_ex_read_1(fname, check_data) && "failed to read gguf file"); } return 0; }