#include <ggml.h> #include <ggml-alloc.h> #include <ggml-backend.h> #include <ggml-backend-impl.h> #include <algorithm> #include <array> #include <cfloat> #include <cstring> #include <functional> #include <memory> #include <random> #include <stdio.h> #include <stdlib.h> #include <string> #include <thread> #include <vector> static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) { // static RNG initialization (revisit if n_threads stops being constant) static const size_t n_threads = std::thread::hardware_concurrency(); static std::vector<std::default_random_engine> generators = []() { std::random_device rd; std::vector<std::default_random_engine> vec; vec.reserve(n_threads); //for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(1234 + i); } // fixed seed for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(rd()); } return vec; }(); size_t size = ggml_nelements(tensor); std::vector<float> data(size); auto init_thread = [&](size_t ith, size_t start, size_t end) { std::uniform_real_distribution<float> distribution(min, max); for (size_t i = start; i < end; i++) { data[i] = distribution(generators[ith]); } }; std::vector<std::thread> threads; threads.reserve(n_threads); for (size_t i = 0; i < n_threads; i++) { size_t start = i*size/n_threads; size_t end = (i+1)*size/n_threads; threads.emplace_back(init_thread, i, start, end); } for (auto & t : threads) { t.join(); } if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) { ggml_backend_tensor_set(tensor, data.data(), 0, size * sizeof(float)); } else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16) { GGML_ASSERT(size % ggml_blck_size(tensor->type) == 0); std::vector<uint8_t> dataq(ggml_row_size(tensor->type, size)); int64_t hist[16]; std::vector<float> imatrix(tensor->ne[0], 1.0f); // dummy importance matrix const float * im = imatrix.data(); if (!ggml_quantize_requires_imatrix(tensor->type)) { // when the imatrix is optional, we want to test both quantization with and without imatrix // use one of the random numbers to decide if (data[0] > 0.5f*(min + max)) { im = nullptr; } } ggml_quantize_chunk(tensor->type, data.data(), dataq.data(), 0, size/tensor->ne[0], tensor->ne[0], hist, im); ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size()); } else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) { // This is going to create some weird integers though. ggml_backend_tensor_set(tensor, data.data(), 0, ggml_nbytes(tensor)); } else { GGML_ASSERT(false); } } static std::vector<float> tensor_to_float(const ggml_tensor * t) { std::vector<float> tv; tv.reserve(ggml_nelements(t)); std::vector<uint8_t> buf(ggml_nbytes(t)); ggml_backend_tensor_get(t, buf.data(), 0, ggml_nbytes(t)); ggml_type_traits_t tt = ggml_internal_get_type_traits(t->type); size_t bs = ggml_blck_size(t->type); std::vector<float> vq(ggml_blck_size(t->type)); bool quantized = ggml_is_quantized(t->type); // access elements by index to avoid gaps in views for (int64_t i3 = 0; i3 < t->ne[3]; i3++) { for (int64_t i2 = 0; i2 < t->ne[2]; i2++) { for (int64_t i1 = 0; i1 < t->ne[1]; i1++) { for (int64_t i0 = 0; i0 < t->ne[0]; i0 += bs) { size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0/bs*t->nb[0]; if (t->type == GGML_TYPE_F16) { tv.push_back(ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i])); } else if (t->type == GGML_TYPE_F32) { tv.push_back(*(float *) &buf[i]); } else if (t->type == GGML_TYPE_I32) { tv.push_back((float)*(int32_t *) &buf[i]); } else if (t->type == GGML_TYPE_I16) { tv.push_back((float)*(int16_t *) &buf[i]); } else if (t->type == GGML_TYPE_I8) { tv.push_back((float)*(int8_t *) &buf[i]); } else if (quantized) { tt.to_float(&buf[i], vq.data(), ggml_blck_size(t->type)); tv.insert(tv.end(), vq.begin(), vq.end()); } else { GGML_ASSERT(false); } } } } } return tv; } /* static double cosine_similarity(const float * v1, const float * v2, size_t n) { double dot = 0.0; double mag1 = 0.0; double mag2 = 0.0; for (size_t i = 0; i < n; i++) { if (std::isnan(v1[i]) || std::isnan(v2[i])) { return -1.0f; } if (std::isinf(v1[i]) && std::isinf(v2[i])) { continue; } dot += v1[i]*v2[i]; mag1 += v1[i]*v1[i]; mag2 += v2[i]*v2[i]; } return dot/sqrt(mag1*mag2); } static float distance(const float * v1, const float * v2, size_t n) { double d = 0.0; for (size_t i = 0; i < n; i++) { if (std::isnan(v1[i]) || std::isnan(v2[i])) { return INFINITY; } if (std::isinf(v1[i]) && std::isinf(v2[i])) { continue; } d += (v1[i] - v2[i])*(v1[i] - v2[i]); } return sqrt(d); } static float vec_len(const float * v, size_t n) { double d = 0.0; for (size_t i = 0; i < n; i++) { if (std::isnan(v[i])) { return INFINITY; } if (std::isinf(v[i])) { continue; } d += v[i]*v[i]; } return sqrt(d); } */ // normalized mean squared error = mse(a, b) / mse(a, 0) static double nmse(const float * a, const float * b, size_t n) { double mse_a_b = 0.0; double mse_a_0 = 0.0; for (size_t i = 0; i < n; i++) { float a_i = a[i]; float b_i = b[i]; mse_a_b += (a_i - b_i) * (a_i - b_i); mse_a_0 += a_i * a_i; } return mse_a_b / mse_a_0; } // utils for printing the variables of the test cases #define VAR_TO_STR(x) (#x "=" + var_to_str(x)) template<typename T> static std::string var_to_str(const T & x) { return std::to_string(x); } template<typename T, size_t N> static std::string var_to_str(const T (&x)[N]) { std::string s = "["; for (size_t i = 0; i < N; i++) { if (i > 0) { s += ","; } s += var_to_str(x[i]); } s += "]"; return s; } template<typename T, size_t N> static std::string var_to_str(const std::array<T, N> & x) { std::string s = "["; for (size_t i = 0; i < N; i++) { if (i > 0) { s += ","; } s += var_to_str(x[i]); } s += "]"; return s; } //static std::string var_to_str(ggml_unary_op unary_op) { // return ggml_unary_op_name(unary_op); //} static std::string var_to_str(ggml_type type) { return ggml_type_name(type); } static std::string var_to_str(ggml_op_pool pool) { switch (pool) { case GGML_OP_POOL_AVG: return "avg"; case GGML_OP_POOL_MAX: return "max"; default: return std::to_string(pool); } } #define VARS_TO_STR1(a) VAR_TO_STR(a) #define VARS_TO_STR2(a, b) VAR_TO_STR(a) + "," + VAR_TO_STR(b) #define VARS_TO_STR3(a, b, c) VAR_TO_STR(a) + "," + VARS_TO_STR2(b, c) #define VARS_TO_STR4(a, b, c, d) VAR_TO_STR(a) + "," + VARS_TO_STR3(b, c, d) #define VARS_TO_STR5(a, b, c, d, e) VAR_TO_STR(a) + "," + VARS_TO_STR4(b, c, d, e) #define VARS_TO_STR6(a, b, c, d, e, f) VAR_TO_STR(a) + "," + VARS_TO_STR5(b, c, d, e, f) #define VARS_TO_STR7(a, b, c, d, e, f, g) VAR_TO_STR(a) + "," + VARS_TO_STR6(b, c, d, e, f, g) #define VARS_TO_STR8(a, b, c, d, e, f, g, h) VAR_TO_STR(a) + "," + VARS_TO_STR7(b, c, d, e, f, g, h) #define VARS_TO_STR9(a, b, c, d, e, f, g, h, i) VAR_TO_STR(a) + "," + VARS_TO_STR8(b, c, d, e, f, g, h, i) #define VARS_TO_STR10(a, b, c, d, e, f, g, h, i, j) VAR_TO_STR(a) + "," + VARS_TO_STR9(b, c, d, e, f, g, h, i, j) #define VARS_TO_STR11(a, b, c, d, e, f, g, h, i, j, k) VAR_TO_STR(a) + "," + VARS_TO_STR10(b, c, d, e, f, g, h, i, j, k) #define VARS_TO_STR12(a, b, c, d, e, f, g, h, i, j, k, l) VAR_TO_STR(a) + "," + VARS_TO_STR11(b, c, d, e, f, g, h, i, j, k, l) #ifdef GGML_USE_SYCL static bool inline _isinf(float f) { return (*(uint32_t *)&f & 0x7fffffff) == 0x7f800000; } #else static bool inline _isinf(float f) { return std::isinf(f); } #endif // accept FLT_MAX as infinity static bool isinf_or_max(float f) { return _isinf(f) || f == FLT_MAX || f == -FLT_MAX; } static bool ggml_is_view_op(enum ggml_op op) { return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE; } enum test_mode { MODE_TEST, MODE_PERF, }; struct test_case { virtual ~test_case() {} virtual std::string op_desc(ggml_tensor * t) { return ggml_op_desc(t); } virtual std::string vars() { return ""; } virtual ggml_tensor * build_graph(ggml_context * ctx) = 0; virtual double max_nmse_err() { return 1e-7; } virtual void initialize_tensors(ggml_context * ctx) { for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) { init_tensor_uniform(t); } } virtual size_t op_size(ggml_tensor * t) { size_t size = ggml_nbytes(t); // add source tensors for (int i = 0; i < GGML_MAX_SRC; i++) { if (t->src[i] != NULL) { size += ggml_nbytes(t->src[i]); } } return size; } ggml_cgraph * gf = nullptr; static const int sentinel_size = 1024; test_mode mode; std::vector<ggml_tensor *> sentinels; void add_sentinel(ggml_context * ctx) { if (mode == MODE_PERF) { return; } ggml_tensor * sentinel = ::ggml_new_tensor_1d(ctx, GGML_TYPE_F32, sentinel_size); ggml_format_name(sentinel, "sent_%zu", sentinels.size()); sentinels.push_back(sentinel); } // hijack ggml_new_tensor to add sentinels after each tensor to check for overflows in the backend ggml_tensor * ggml_new_tensor(ggml_context * ctx, ggml_type type, int n_dims, const int64_t * ne) { ggml_tensor * t = ::ggml_new_tensor(ctx, type, n_dims, ne); add_sentinel(ctx); return t; } ggml_tensor * ggml_new_tensor_1d(ggml_context * ctx, ggml_type type, int64_t ne0) { ggml_tensor * t = ::ggml_new_tensor_1d(ctx, type, ne0); add_sentinel(ctx); return t; } ggml_tensor * ggml_new_tensor_2d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1) { ggml_tensor * t = ::ggml_new_tensor_2d(ctx, type, ne0, ne1); add_sentinel(ctx); return t; } ggml_tensor * ggml_new_tensor_3d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2) { ggml_tensor * t = ::ggml_new_tensor_3d(ctx, type, ne0, ne1, ne2); add_sentinel(ctx); return t; } ggml_tensor * ggml_new_tensor_4d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) { ggml_tensor * t = ::ggml_new_tensor_4d(ctx, type, ne0, ne1, ne2, ne3); add_sentinel(ctx); return t; } bool eval(ggml_backend_t backend1, ggml_backend_t backend2, const char * op_name) { mode = MODE_TEST; ggml_init_params params = { /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(), /* .mem_base = */ NULL, /* .no_alloc = */ true, }; ggml_context * ctx = ggml_init(params); gf = ggml_new_graph(ctx); // pre-graph sentinel add_sentinel(ctx); ggml_tensor * out = build_graph(ctx); if (op_name != nullptr && op_desc(out) != op_name) { //printf(" %s: skipping\n", op_desc(out).c_str()); ggml_free(ctx); return true; } printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str()); fflush(stdout); // check if the backends support the ops bool supported = true; for (ggml_backend_t backend : {backend1, backend2}) { for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { if (!ggml_backend_supports_op(backend, t)) { printf("not supported [%s] ", ggml_backend_name(backend)); supported = false; break; } } } if (!supported) { printf("\n"); ggml_free(ctx); return true; } // post-graph sentinel add_sentinel(ctx); // allocate ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1); if (buf == NULL) { printf("failed to allocate tensors [%s] ", ggml_backend_name(backend1)); ggml_free(ctx); return false; } // build graph ggml_build_forward_expand(gf, out); // add sentinels as graph nodes so that they are checked in the callback for (ggml_tensor * sentinel : sentinels) { gf->nodes[gf->n_nodes++] = sentinel; } // randomize tensors initialize_tensors(ctx); // compare struct callback_userdata { bool ok; double max_err; ggml_backend_t backend1; ggml_backend_t backend2; }; callback_userdata ud { true, max_nmse_err(), backend1, backend2 }; auto callback = [](int index, ggml_tensor * t1, ggml_tensor * t2, void * user_data) -> bool { callback_userdata * ud = (callback_userdata *) user_data; const char * bn1 = ggml_backend_name(ud->backend1); const char * bn2 = ggml_backend_name(ud->backend2); if (t1->op == GGML_OP_NONE) { // sentinels must be unchanged std::vector<uint8_t> t1_data(ggml_nbytes(t1)); std::vector<uint8_t> t2_data(ggml_nbytes(t2)); ggml_backend_tensor_get(t1, t1_data.data(), 0, ggml_nbytes(t1)); ggml_backend_tensor_get(t2, t2_data.data(), 0, ggml_nbytes(t2)); if (memcmp(t1_data.data(), t2_data.data(), ggml_nbytes(t1)) != 0) { printf("sentinel mismatch: %s ", t1->name); ud->ok = false; return true; } } std::vector<float> f1 = tensor_to_float(t1); std::vector<float> f2 = tensor_to_float(t2); for (size_t i = 0; i < f1.size(); i++) { // check for nans if (std::isnan(f1[i]) || std::isnan(f2[i])) { printf("[%s] NaN at index %zu (%s=%f %s=%f) ", ggml_op_desc(t1), i, bn1, f1[i], bn2, f2[i]); ud->ok = false; return true; } // check for infs: both must be inf of the same sign, or both must be finite if (isinf_or_max(f1[i]) || isinf_or_max(f2[i])) { if (isinf_or_max(f1[i]) && isinf_or_max(f2[i])) { if (std::signbit(f1[i]) != std::signbit(f2[i])) { printf("[%s] inf sign mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]); ud->ok = false; return true; } } else { printf("[%s] inf mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]); ud->ok = false; return true; } } } double err = nmse(f1.data(), f2.data(), f1.size()); if (err > ud->max_err) { printf("[%s] NMSE = %.9f > %.9f ", ggml_op_desc(t1), err, ud->max_err); //for (int i = 0; i < (int) f1.size(); i++) { // printf("%5d %9.6f %9.6f, diff = %9.6f\n", i, f1[i], f2[i], f1[i] - f2[i]); //} //printf("\n"); //exit(1); ud->ok = false; } return true; GGML_UNUSED(index); }; const bool cmp_ok = ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud); if (!cmp_ok) { printf("compare failed "); } ggml_backend_buffer_free(buf); ggml_free(ctx); if (ud.ok && cmp_ok) { printf("\033[1;32mOK\033[0m\n"); return true; } printf("\033[1;31mFAIL\033[0m\n"); return false; } bool eval_perf(ggml_backend_t backend, const char * op_name) { mode = MODE_PERF; static const size_t graph_nodes = 8192; ggml_init_params params = { /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false), /* .mem_base = */ NULL, /* .no_alloc = */ true, }; ggml_context * ctx = ggml_init(params); ggml_tensor * out = build_graph(ctx); if (op_name != nullptr && op_desc(out) != op_name) { //printf(" %s: skipping\n", op_desc(out).c_str()); ggml_free(ctx); return true; } int len = printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str()); fflush(stdout); // check if backends support op if (!ggml_backend_supports_op(backend, out)) { printf("not supported\n"); ggml_free(ctx); return true; } // align while also leaving some margin for variations in parameters int align = 20; int last = (len + align - 1) / align * align; if (last - len < 5) { last += align; } last = std::max(last, 60); printf("%*s", last - len, ""); // allocate ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend); if (buf == NULL) { printf("failed to allocate tensors\n"); ggml_free(ctx); return false; } // randomize tensors initialize_tensors(ctx); // build graph ggml_cgraph * gf = ggml_new_graph_custom(ctx, graph_nodes, false); ggml_build_forward_expand(gf, out); // warmup run ggml_backend_graph_compute(backend, gf); // duplicate the op size_t target_size = ggml_backend_is_cpu(backend) ? 1ULL << 33 : 1ULL << 35; // 8 GB CPU, 32 GB GPU int n_runs = std::min((size_t)gf->size - gf->n_nodes, target_size / op_size(out)) + 1; for (int i = 1; i < n_runs; i++) { gf->nodes[gf->n_nodes++] = out; } // calculate memory size_t mem = n_runs * op_size(out); auto tensor_op_size = [](ggml_tensor * t) { size_t size = ggml_nbytes(t); // add source tensors for (int i = 0; i < GGML_MAX_SRC; i++) { if (t->src[i] != NULL) { size += ggml_nbytes(t->src[i]); } } return size; }; for (int i = 0; i < gf->n_nodes; i++) { if (ggml_is_view_op(gf->nodes[i]->op) || gf->nodes[i] == out) { continue; } mem += tensor_op_size(gf->nodes[i]); } // run ggml_backend_synchronize(backend); int64_t start_time = ggml_time_us(); ggml_backend_graph_compute(backend, gf); ggml_backend_synchronize(backend); int64_t end_time = ggml_time_us(); double time_us = end_time - start_time; printf(" %5d runs - %8.2f us/run - %8zu kB/run - \033[1;34m%7.2f GB/s\033[0m\n", n_runs, time_us / n_runs, op_size(out) / 1024, mem / (time_us/1e6) / 1024.0 / 1024.0 / 1024.0); ggml_backend_buffer_free(buf); ggml_free(ctx); return true; } }; // GGML_OP_UNARY struct test_unary : public test_case { const ggml_unary_op op; const ggml_type type; const std::array<int64_t, 4> ne; std::string vars() override { return VARS_TO_STR2(type, ne); } test_unary(ggml_unary_op op, ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne = {128, 10, 10, 10}) : op(op), type(type), ne(ne) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * in = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_tensor * out = ggml_unary(ctx, in, op); return out; } void initialize_tensors(ggml_context * ctx) override { for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { // test extended range of values to check for NaNs in GELU init_tensor_uniform(t, -150.f, 150.f); } } }; // GGML_OP_GET_ROWS struct test_get_rows : public test_case { const ggml_type type; const int n; // cols const int m; // rows const int r; // rows to get const int b; // batch size const bool v; // view (non-contiguous src1) std::string vars() override { return VARS_TO_STR6(type, n, m, r, b, v); } test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false) : type(type), n(n), m(m), r(r), b(b), v(v) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * in = ggml_new_tensor_3d(ctx, type, n, m, b); ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b); if (v) { rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0); } ggml_tensor * out = ggml_get_rows(ctx, in, rows); return out; } void initialize_tensors(ggml_context * ctx) override { for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { if (t->type == GGML_TYPE_I32) { if (ggml_is_view_op(t->op)) { continue; } // rows std::vector<int> data(r*b); for (int i = 0; i < r*b; i++) { data[i] = rand() % m; } ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int)); } else { init_tensor_uniform(t); } } } }; // GGML_OP_REPEAT struct test_repeat : public test_case { const ggml_type type; const std::array<int64_t, 4> ne; const std::array<int, 4> nr; std::string vars() override { return VARS_TO_STR3(type, ne, nr); } size_t op_size(ggml_tensor * t) override { return ggml_nbytes(t) * 2; } test_repeat(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne = {10, 10, 10, 10}, std::array<int, 4> nr = {2, 2, 2, 2}) : type(type), ne(ne), nr(nr) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * target = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]); ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_tensor * out = ggml_repeat(ctx, src, target); return out; } }; // GGML_OP_DUP struct test_dup : public test_case { const ggml_type type; const std::array<int64_t, 4> ne; const std::array<int64_t, 4> permute; bool _use_permute; std::string vars() override { std::string v = VARS_TO_STR2(type, ne); if (_use_permute) v += "," + VAR_TO_STR(permute); return v; } test_dup(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne = {10, 10, 10, 1}, std::array<int64_t, 4> permute = {0, 0, 0, 0}) : type(type), ne(ne), permute(permute), _use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data()); if (_use_permute) { src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]); } ggml_tensor * out = ggml_dup(ctx, src); return out; } }; // GGML_OP_CPY struct test_cpy : public test_case { const ggml_type type_src; const ggml_type type_dst; const std::array<int64_t, 4> ne; std::string vars() override { return VARS_TO_STR3(type_src, type_dst, ne); } size_t op_size(ggml_tensor * t) override { return ggml_nbytes(t) + ggml_nbytes(t->src[0]); } test_cpy(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32, std::array<int64_t, 4> ne = {10, 10, 10, 1}) : type_src(type_src), type_dst(type_dst), ne(ne) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data()); ggml_tensor * dst = ggml_new_tensor(ctx, type_dst, 4, ne.data()); ggml_tensor * out = ggml_cpy(ctx, src, dst); return out; } }; // GGML_OP_CONT struct test_cont : public test_case { const ggml_type type; const std::array<int64_t, 4> ne; std::string vars() override { return VARS_TO_STR2(type, ne); } test_cont(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne = {10, 10, 10, 1}) : type(type), ne(ne) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data()); src = ggml_transpose(ctx, src); ggml_tensor * out = ggml_cont(ctx, src); return out; } }; // GGML_OP_ADD // GGML_OP_MUL // GGML_OP_DIV struct test_bin_bcast : public test_case { using op_t = ggml_tensor * (*) (ggml_context *, ggml_tensor *, ggml_tensor *); op_t op; const ggml_type type; const std::array<int64_t, 4> ne; const std::array<int, 4> nr; std::string vars() override { return VARS_TO_STR3(type, ne, nr); } size_t op_size(ggml_tensor * t) override { return ggml_nbytes(t) * 3; } test_bin_bcast(op_t op, ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne = {10, 10, 1, 1}, std::array<int, 4> nr = {1, 2, 1, 1}) : op(op), type(type), ne(ne), nr(nr) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]); ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_tensor * out = op(ctx, a, b); return out; } void initialize_tensors(ggml_context * ctx) override { for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { if (op == ggml_div) { // avoid division by zero init_tensor_uniform(t, 1.0f, 2.0f); } else { init_tensor_uniform(t); } } } }; // GGML_OP_SCALE struct test_scale : public test_case { const ggml_type type; const std::array<int64_t, 4> ne; float scale; std::string vars() override { return VARS_TO_STR3(type, ne, scale); } test_scale(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne = {10, 10, 10, 10}, float scale = 2.0f) : type(type), ne(ne), scale(scale) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_tensor * out = ggml_scale(ctx, a, scale); return out; } }; // GGML_OP_NORM struct test_norm : public test_case { const ggml_type type; const std::array<int64_t, 4> ne; float eps; std::string vars() override { return VARS_TO_STR3(type, ne, eps); } test_norm(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne = {64, 10, 10, 10}, float eps = 1e-6f) : type(type), ne(ne), eps(eps) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_tensor * out = ggml_norm(ctx, a, eps); return out; } }; // GGML_OP_RMS_NORM struct test_rms_norm : public test_case { const ggml_type type; const std::array<int64_t, 4> ne; float eps; std::string vars() override { return VARS_TO_STR3(type, ne, eps); } test_rms_norm(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne = {64, 10, 10, 10}, float eps = 1e-6f) : type(type), ne(ne), eps(eps) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_tensor * out = ggml_rms_norm(ctx, a, eps); return out; } }; // GGML_OP_MUL_MAT struct test_mul_mat : public test_case { const ggml_type type_a; const ggml_type type_b; const int64_t m; const int64_t n; const int64_t k; const std::array<int64_t, 2> bs; // dims 3 and 4 const std::array<int64_t, 2> nr; // repeat in dims 3 and 4 std::string vars() override { return VARS_TO_STR7(type_a, type_b, m, n, k, bs, nr); } double max_nmse_err() override { return 5e-4; } size_t op_size(ggml_tensor * t) override { size_t a = ggml_nbytes(t->src[0]) * n * nr[0] * nr[1]; size_t b = ggml_nbytes(t->src[1]) * m; size_t c = ggml_nbytes(t); return a + b + c; GGML_UNUSED(t); } test_mul_mat(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32, int64_t m = 32, int64_t n = 32, int64_t k = 32, std::array<int64_t, 2> bs = {10, 10}, std::array<int64_t, 2> nr = {2, 2}) : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr) {} ggml_tensor * build_graph(ggml_context * ctx) override { // C^T = A * B^T: (k, m) * (k, n) => (m, n) ggml_tensor * a = ggml_new_tensor_4d(ctx, type_a, k, m, bs[0] , bs[1]); ggml_tensor * b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]); ggml_tensor * out = ggml_mul_mat(ctx, a, b); return out; } }; // GGML_OP_MUL_MAT_ID struct test_mul_mat_id : public test_case { const ggml_type type_a; const ggml_type type_b; const int n_mats; const int id; const int64_t m; const int64_t n; const int64_t k; const bool v; // view (non-contiguous ids) std::string vars() override { return VARS_TO_STR8(type_a, type_b, n_mats, id, m, n, k, v); } double max_nmse_err() override { return 5e-4; } size_t op_size(ggml_tensor * t) override { size_t a = ggml_nbytes(t->src[2]) * n; size_t b = ggml_nbytes(t->src[1]) * m; size_t c = ggml_nbytes(t); return a + b + c; GGML_UNUSED(t); } test_mul_mat_id(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32, int n_mats = 2, int id = 0, int64_t m = 32, int64_t n = 32, int64_t k = 32, bool v = false) : type_a(type_a), type_b(type_b), n_mats(n_mats), id(id), m(m), n(n), k(k), v(v) {} ggml_tensor * build_graph(ggml_context * ctx) override { // C^T = A * B^T: (k, m) * (k, n) => (m, n) std::vector<ggml_tensor *> mats; for (int i = 0; i < n_mats; i++) { ggml_tensor * a = ggml_new_tensor_2d(ctx, type_a, k, m); mats.push_back(a); } ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n); if (v) { ids = ggml_view_2d(ctx, ids, n_mats/2, ids->ne[1], ids->nb[1], 0); } ggml_tensor * b = ggml_new_tensor_2d(ctx, type_b, k, n); ggml_tensor * out = ggml_mul_mat_id(ctx, mats.data(), n_mats, ids, v ? id/2 : id, b); return out; } void initialize_tensors(ggml_context * ctx) override { std::random_device rd; std::default_random_engine rng(rd()); for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { if (t->type == GGML_TYPE_I32) { if (ggml_is_view_op(t->op)) { continue; } // ids for (int64_t r = 0; r < ggml_nrows(t); r++) { std::vector<int32_t> data(t->ne[0]); for (int i = 0; i < t->ne[0]; i++) { data[i] = i % n_mats; } std::shuffle(data.begin(), data.end(), rng); ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t)); } } else { init_tensor_uniform(t); } } } }; // GGML_OP_SQR struct test_sqr : public test_case { const ggml_type type; const std::array<int64_t, 4> ne; std::string vars() override { return VARS_TO_STR2(type, ne); } test_sqr(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne = {10, 10, 10, 10}) : type(type), ne(ne) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_tensor * out = ggml_sqr(ctx, a); return out; } }; // GGML_OP_CLAMP struct test_clamp : public test_case { const ggml_type type; const std::array<int64_t, 4> ne; float min; float max; std::string vars() override { return VARS_TO_STR4(type, ne, min, max); } test_clamp(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne = {10, 10, 10, 10}, float min = -0.5f, float max = 0.5f) : type(type), ne(ne), min(min), max(max) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_tensor * out = ggml_clamp(ctx, a, min, max); return out; } }; // GGML_OP_DIAG_MASK_INF struct test_diag_mask_inf : public test_case { const ggml_type type; const std::array<int64_t, 4> ne; const int n_past; std::string vars() override { return VARS_TO_STR3(type, ne, n_past); } test_diag_mask_inf(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne = {10, 10, 10, 10}, int n_past = 5) : type(type), ne(ne), n_past(n_past) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_tensor * out = ggml_diag_mask_inf(ctx, a, n_past); return out; } }; // GGML_OP_SOFT_MAX struct test_soft_max : public test_case { const ggml_type type; const std::array<int64_t, 4> ne; const bool mask; const float scale; const float max_bias; std::string vars() override { return VARS_TO_STR5(type, ne, mask, scale, max_bias); } test_soft_max(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne = {10, 10, 10, 10}, bool mask = false, float scale = 1.0f, float max_bias = 0.0f) : type(type), ne(ne), mask(mask), scale(scale), max_bias(max_bias) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_tensor * mask = nullptr; if (this->mask) { mask = ggml_new_tensor_2d(ctx, type, ne[0], ne[1]); } ggml_tensor * pos = nullptr; if (max_bias > 0.0f) { pos = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ne[0]); } ggml_tensor * out = ggml_soft_max_ext(ctx, a, mask, pos, scale, max_bias); return out; } }; // GGML_OP_ROPE struct test_rope : public test_case { const ggml_type type; const std::array<int64_t, 4> ne; int n_dims; int mode; int n_ctx; std::string vars() override { return VARS_TO_STR5(type, ne, n_dims, mode, n_ctx); } test_rope(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne = {10, 10, 10, 1}, int n_dims = 10, int mode = 0, int n_ctx = 512) : type(type), ne(ne), n_dims(n_dims), mode(mode), n_ctx(n_ctx) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_tensor * pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne[2]); ggml_tensor * out = ggml_rope(ctx, a, pos, n_dims, mode, n_ctx); return out; } void initialize_tensors(ggml_context * ctx) override { for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { if (t->type == GGML_TYPE_I32) { // pos std::vector<int> data(ne[2]); for (int i = 0; i < ne[2]; i++) { data[i] = rand() % n_ctx; } ggml_backend_tensor_set(t, data.data(), 0, ne[2] * sizeof(int)); } else { init_tensor_uniform(t); } } } }; // GGML_OP_POOL2D struct test_pool2d : public test_case { enum ggml_op_pool pool_type; const ggml_type type_input; const std::array<int64_t, 4> ne_input; // kernel size const int k0; const int k1; // stride const int s0; const int s1; // padding const int p0; const int p1; std::string vars() override { return VARS_TO_STR9(pool_type, type_input, ne_input, k0, k1, s0, s1, p0, p1); } test_pool2d(ggml_op_pool pool_type = GGML_OP_POOL_AVG, ggml_type type_input = GGML_TYPE_F32, std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1] int k0 = 3, int k1 = 3, int s0 = 1, int s1 = 1, int p0 = 1, int p1 = 1) : pool_type(pool_type), type_input(type_input), ne_input(ne_input), k0(k0), k1(k1), s0(s0), s1(s1), p0(p0), p1(p1) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data()); ggml_tensor * out = ggml_pool_2d(ctx, input, pool_type, k0, k1, s0, s1, p0, p1); return out; } }; // GGML_OP_IM2COL struct test_im2col : public test_case { const ggml_type type_input; const ggml_type type_kernel; const ggml_type dst_type; const std::array<int64_t, 4> ne_input; const std::array<int64_t, 4> ne_kernel; // stride const int s0; const int s1; // padding const int p0; const int p1; // dilatation const int d0; const int d1; // mode const bool is_2D; std::string vars() override { return VARS_TO_STR12(type_input, type_kernel, dst_type, ne_input, ne_kernel, s0, s1, p0, p1, d0, d1, is_2D); } test_im2col(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32, std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1] std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1] int s0 = 1, int s1 = 1, int p0 = 1, int p1 = 1, int d0 = 1, int d1 = 1, bool is_2D = true) : type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), p0(p0), p1(p1), d0(d0), d1(d1), is_2D(is_2D) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data()); ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data()); ggml_tensor * out = ggml_im2col(ctx, kernel, input, s0, s1, p0, p1, d0, d1, is_2D, dst_type); return out; } }; // GGML_OP_CONCAT struct test_concat : public test_case { const ggml_type type; const std::array<int64_t, 4> ne; const int64_t b_ne2; std::string vars() override { return VARS_TO_STR3(type, ne, b_ne2); } test_concat(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne = {10, 10, 10, 10}, int64_t b_ne2 = 10) : type(type), ne(ne), b_ne2(b_ne2) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_tensor * b = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], b_ne2, ne[3]); ggml_tensor * out = ggml_concat(ctx, a, b); return out; } }; // GGML_OP_ARGSORT struct test_argsort : public test_case { const ggml_type type; const std::array<int64_t, 4> ne; ggml_sort_order order; std::string vars() override { return VARS_TO_STR3(type, ne, order); } test_argsort(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne = {16, 10, 10, 10}, ggml_sort_order order = GGML_SORT_ORDER_ASC) : type(type), ne(ne), order(order) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_tensor * out = ggml_argsort(ctx, a, order); return out; } void initialize_tensors(ggml_context * ctx) override { std::random_device rd; std::default_random_engine rng(rd()); for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { if (t->type == GGML_TYPE_I32) { // indices std::vector<int> data(ggml_nelements(t)); for (int i = 0; i < ggml_nelements(t); i++) { data[i] = rand(); } std::shuffle(data.begin(), data.end(), rng); ggml_backend_tensor_set(t, data.data(), 0, ne[0]*ne[1]*ne[2]*ne[3] * sizeof(int)); } else if (t->type == GGML_TYPE_F32) { // initialize with unique values to avoid ties for (int64_t r = 0; r < ggml_nrows(t); r++) { std::vector<float> data(t->ne[0]); for (int i = 0; i < t->ne[0]; i++) { data[i] = i; } std::shuffle(data.begin(), data.end(), rng); ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float)); } } else { GGML_ASSERT(false); } } } }; // GGML_OP_SUM_ROWS struct test_sum_rows : public test_case { const ggml_type type; const std::array<int64_t, 4> ne; std::string vars() override { return VARS_TO_STR2(type, ne); } test_sum_rows(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne = {10, 10, 10, 10}) : type(type), ne(ne) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_tensor * out = ggml_sum_rows(ctx, a); return out; } }; // GGML_OP_UPSCALE struct test_upscale : public test_case { const ggml_type type; const std::array<int64_t, 4> ne; const int32_t scale_factor; std::string vars() override { return VARS_TO_STR3(type, ne, scale_factor); } test_upscale(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne = {512, 512, 3, 1}, int32_t scale_factor = 2) : type(type), ne(ne), scale_factor(scale_factor) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_tensor * out = ggml_upscale(ctx, a, scale_factor); return out; } }; // GGML_OP_GROUP_NORM struct test_group_norm : public test_case { const ggml_type type; const std::array<int64_t, 4> ne; const int32_t num_groups; std::string vars() override { return VARS_TO_STR3(type, ne, num_groups); } test_group_norm(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne = {64, 64, 320, 1}, int32_t num_groups = 32) : type(type), ne(ne), num_groups(num_groups) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_tensor * out = ggml_group_norm(ctx, a, num_groups); return out; } }; // GGML_OP_ACC struct test_acc : public test_case { const ggml_type type; const std::array<int64_t, 4> ne_a; const std::array<int64_t, 4> ne_b; std::string vars() override { return VARS_TO_STR3(type, ne_a, ne_b); } test_acc(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne_a = {1024, 577, 1, 1}, std::array<int64_t, 4> ne_b = {1024, 576, 1, 1}) : type(type), ne_a(ne_a), ne_b(ne_b) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data()); ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data()); ggml_tensor * out = ggml_acc(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], b->nb[1]); return out; } }; // GGML_OP_PAD struct test_pad : public test_case { const ggml_type type; const std::array<int64_t, 4> ne_a; const int pad_0; const int pad_1; std::string vars() override { return VARS_TO_STR4(type, ne_a, pad_0, pad_1); } test_pad(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne_a = {512, 512, 1, 1}, int pad_0 = 1, int pad_1 = 1) : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data()); ggml_tensor * out = ggml_pad(ctx, a, pad_0, pad_1, 0, 0); return out; } }; // GGML_OP_ARANGE struct test_arange : public test_case { const ggml_type type; const float start; const float stop; const float step; std::string vars() override { return VARS_TO_STR4(type, start, stop, step); } test_arange(ggml_type type = GGML_TYPE_F32, float start = 0.f, float stop = 10.f, float step = 1.f) : type(type), start(start), stop(stop), step(step) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * out = ggml_arange(ctx, start, stop, step); return out; } }; // GGML_OP_TIMESTEP_EMBEDDING struct test_timestep_embedding : public test_case { const ggml_type type; const std::array<int64_t, 4> ne_a; const int dim; const int max_period; std::string vars() override { return VARS_TO_STR4(type, ne_a, dim, max_period); } test_timestep_embedding(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne_a = {2, 1, 1, 1}, int dim = 320, int max_period=10000) : type(type), ne_a(ne_a), dim(dim), max_period(max_period) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data()); ggml_tensor * out = ggml_timestep_embedding(ctx, a, dim, max_period); return out; } }; // GGML_OP_LEAKY_RELU struct test_leaky_relu : public test_case { const ggml_type type; const std::array<int64_t, 4> ne_a; const float negative_slope; std::string vars() override { return VARS_TO_STR3(type, ne_a, negative_slope); } test_leaky_relu(ggml_type type = GGML_TYPE_F32, std::array<int64_t, 4> ne_a = {10, 10, 10, 10}, float negative_slope = 0.1f) : type(type), ne_a(ne_a), negative_slope(negative_slope) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data()); ggml_tensor * out = ggml_leaky_relu(ctx, a, negative_slope, true); return out; } }; // Mixtral MOE struct test_moe : public test_case { const int n_experts; const int n_experts_per_tok; const int n_tokens; const int n_embd; const int n_ff; std::string op_desc(ggml_tensor * t) override { return "MOE"; GGML_UNUSED(t); } std::string vars() override { return VARS_TO_STR5(n_experts, n_experts_per_tok, n_tokens, n_embd, n_ff); } test_moe(int n_experts = 8, int n_experts_per_tok = 2, int n_tokens = 1, int n_embd = 4096, int n_ff = 14336) : n_experts(n_experts), n_experts_per_tok(n_experts_per_tok), n_tokens(n_tokens), n_embd(n_embd), n_ff(n_ff) { } ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * ffn_gate_inp = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_experts); std::vector<ggml_tensor *> ffn_up_exp(n_experts); std::vector<ggml_tensor *> ffn_gate_exp(n_experts); std::vector<ggml_tensor *> ffn_down_exp(n_experts); for (int i = 0; i < n_experts; ++i) { ffn_up_exp[i] = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff); ffn_gate_exp[i] = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff); ffn_down_exp[i] = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_ff, n_embd); } ggml_tensor * cur = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_tokens); ggml_tensor * logits = ggml_mul_mat(ctx, ffn_gate_inp, cur); ggml_tensor * probs = ggml_soft_max_ext(ctx, logits, nullptr, nullptr, 1.0f/sqrtf(n_embd), 0.0f); // select experts ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_experts_per_tok); ggml_tensor * weights = ggml_get_rows(ctx, ggml_reshape_3d(ctx, probs, 1, n_experts, n_tokens), selected_experts); weights = ggml_reshape_2d(ctx, weights, n_experts_per_tok, n_tokens); ggml_tensor * weights_sum = ggml_sum_rows(ctx, weights); weights = ggml_div(ctx, weights, weights_sum); // compute expert outputs ggml_tensor * moe_out = nullptr; for (int i = 0; i < n_experts_per_tok; ++i) { ggml_tensor * cur_expert; ggml_tensor * cur_up = ggml_mul_mat_id(ctx, ffn_up_exp.data(), n_experts, selected_experts, i, cur); ggml_tensor * cur_gate = ggml_mul_mat_id(ctx, ffn_gate_exp.data(), n_experts, selected_experts, i, cur); cur_gate = ggml_silu(ctx, cur_gate); cur_expert = ggml_mul(ctx, cur_up, cur_gate); cur_expert = ggml_mul_mat_id(ctx, ffn_down_exp.data(), n_experts, selected_experts, i, cur_expert); cur_expert = ggml_mul(ctx, cur_expert, ggml_view_2d(ctx, weights, 1, n_tokens, weights->nb[1], i*weights->nb[0])); if (i == 0) { moe_out = cur_expert; } else { moe_out = ggml_add(ctx, moe_out, cur_expert); } } cur = moe_out; return cur; } }; enum llm_norm_type { LLM_NORM, LLM_NORM_RMS, }; struct llama_hparams { uint32_t n_vocab; uint32_t n_embd; uint32_t n_head; uint32_t n_head_kv; static constexpr uint32_t n_layer = 1; uint32_t n_rot; uint32_t n_embd_head; // dimension of values (d_v) uint32_t n_ff; float f_norm_eps; float f_norm_rms_eps; // cparams static constexpr uint32_t n_ctx = 512; // user-specified context size static constexpr uint32_t n_orig_ctx = n_ctx; // batch int32_t n_tokens; // llm_build_context static constexpr int32_t n_kv = 32; // size of KV cache to consider (n_kv <= n_ctx static constexpr int32_t kv_head = 1; // index of where we store new KV data in the cache uint32_t n_embd_gqa() const { // dimension of key embeddings across all k-v heads return n_embd_head * n_head_kv; } }; // LLM base class struct test_llm : public test_case { llama_hparams hp; protected: test_llm(llama_hparams hp) : hp(std::move(hp)) { } public: struct ggml_tensor * llm_build_norm( struct ggml_context * ctx, struct ggml_tensor * cur, struct ggml_tensor * mw, struct ggml_tensor * mb, llm_norm_type type) { switch (type) { case LLM_NORM: cur = ggml_norm (ctx, cur, hp.f_norm_eps); break; case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hp.f_norm_rms_eps); break; } cur = ggml_mul(ctx, cur, mw); if (mb) { cur = ggml_add(ctx, cur, mb); } return cur; } void llm_build_kv_store( struct ggml_context * ctx, struct ggml_tensor * k_l, struct ggml_tensor * v_l, struct ggml_tensor * k_cur, struct ggml_tensor * v_cur) { // compute the transposed [n_tokens, n_embd] V matrix struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, hp.n_embd_gqa(), hp.n_tokens)); struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, k_l, hp.n_tokens*hp.n_embd_gqa(), (ggml_row_size(k_l->type, hp.n_embd_gqa()))*hp.kv_head); struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, v_l, hp.n_tokens, hp.n_embd_gqa(), ( hp.n_ctx)*ggml_element_size(v_l), (hp.kv_head)*ggml_element_size(v_l)); // important: storing RoPE-ed version of K in the KV cache! ggml_cpy(ctx, k_cur, k_cache_view); ggml_cpy(ctx, v_cur_t, v_cache_view); } struct ggml_tensor * llm_build_kqv( struct ggml_context * ctx, struct ggml_tensor * k_l, struct ggml_tensor * v_l, struct ggml_tensor * q_cur, struct ggml_tensor * kq_mask, float kq_scale) { struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3); struct ggml_tensor * k = ggml_view_3d(ctx, k_l, hp.n_embd_head, hp.n_kv, hp.n_head_kv, ggml_row_size(k_l->type, hp.n_embd_gqa()), ggml_row_size(k_l->type, hp.n_embd_head), 0); struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q); kq = ggml_soft_max_ext(ctx, kq, kq_mask, nullptr, kq_scale, 0.0f); // split cached v into n_head heads struct ggml_tensor * v = ggml_view_3d(ctx, v_l, hp.n_kv, hp.n_embd_head, hp.n_head_kv, ggml_element_size(v_l)*hp.n_ctx, ggml_element_size(v_l)*hp.n_ctx*hp.n_embd_head, 0); struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq); struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3); struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, hp.n_embd_head*hp.n_head, hp.n_tokens); struct ggml_tensor * wo = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd); cur = ggml_mul_mat(ctx, wo, cur); return cur; } void initialize_tensors(ggml_context * ctx) override { for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { if (t->type == GGML_TYPE_I32) { // pos std::vector<int> data(hp.n_tokens); for (int i = 0; i < hp.n_tokens; i++) { data[i] = rand() % hp.n_ctx; } ggml_backend_tensor_set(t, data.data(), 0, hp.n_tokens * sizeof(int)); } else { init_tensor_uniform(t); } } } }; // Llama struct test_llama : public test_llm { static constexpr float freq_base = 10000.0f; static constexpr float freq_scale = 1.0f; static constexpr float ext_factor = 0.0f; static constexpr float attn_factor = 1.0f; static constexpr float beta_fast = 32.0f; static constexpr float beta_slow = 1.0f; std::string op_desc(ggml_tensor * t) override { GGML_UNUSED(t); return "LLAMA"; } std::string vars() override { auto n_tokens = hp.n_tokens; return VARS_TO_STR1(n_tokens); } double max_nmse_err() override { return 2e-3; } test_llama(int n_tokens = 1) : test_llm({ /*n_vocab =*/ 32000, /*n_embd =*/ 3200, /*n_head =*/ 32, /*n_head_kv =*/ 32, /*n_rot =*/ 100, /*n_embd_head =*/ 100, /*n_ff =*/ 8640, /*f_norm_eps =*/ 0.f, /*f_norm_rms_eps =*/ 1e-5f, /*n_tokens =*/ n_tokens, }) { } ggml_tensor * build_graph(ggml_context * ctx) override { struct ggml_tensor * cur; struct ggml_tensor * inpL; inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens); // inp_pos - contains the positions struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hp.n_kv, hp.n_tokens, 1); ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400); ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400); for (uint32_t il = 0; il < hp.n_layer; ++il) { struct ggml_tensor * inpSA = inpL; // norm ggml_tensor * attn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd); cur = llm_build_norm(ctx, inpL, attn_norm, nullptr, LLM_NORM_RMS); // self-attention { ggml_tensor * wq = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd); ggml_tensor * wk = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa()); ggml_tensor * wv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa()); // compute Q and K and RoPE them struct ggml_tensor * Qcur = ggml_mul_mat(ctx, wq, cur); struct ggml_tensor * Kcur = ggml_mul_mat(ctx, wk, cur); struct ggml_tensor * Vcur = ggml_mul_mat(ctx, wv, cur); Qcur = ggml_rope_custom( ctx, ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens), inp_pos, hp.n_rot, 0, 0, hp.n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); Kcur = ggml_rope_custom( ctx, ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens), inp_pos, hp.n_rot, 0, 0, hp.n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur); cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head))); } struct ggml_tensor * ffn_inp = ggml_add(ctx, cur, inpSA); // feed-forward network ggml_tensor * ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd); cur = llm_build_norm(ctx, ffn_inp, ffn_norm, nullptr, LLM_NORM_RMS); ggml_tensor * ffn_gate = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff); ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd); ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff); struct ggml_tensor * tmp = ggml_mul_mat(ctx, ffn_up, cur); cur = ggml_mul_mat(ctx, ffn_gate, cur); cur = ggml_silu(ctx, cur); cur = ggml_mul(ctx, cur, tmp); cur = ggml_mul_mat(ctx, ffn_down, cur); cur = ggml_add(ctx, cur, ffn_inp); // input for next layer inpL = cur; } cur = inpL; ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd); cur = llm_build_norm(ctx, cur, output_norm, nullptr, LLM_NORM_RMS); // lm_head ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_vocab); cur = ggml_mul_mat(ctx, output, cur); return cur; } }; // Falcon struct test_falcon : public test_llm { static constexpr float freq_base = 10000.0f; static constexpr float freq_scale = 1.0f; static constexpr float ext_factor = 0.0f; static constexpr float attn_factor = 1.0f; static constexpr float beta_fast = 32.0f; static constexpr float beta_slow = 1.0f; std::string op_desc(ggml_tensor * t) override { GGML_UNUSED(t); return "FALCON"; } std::string vars() override { auto n_tokens = hp.n_tokens; return VARS_TO_STR1(n_tokens); } double max_nmse_err() override { return 2e-3; } test_falcon(int n_tokens = 1) : test_llm({ /*n_vocab =*/ 32000, /*n_embd =*/ 3200, /*n_head =*/ 50, /*n_head_kv =*/ 1, /*n_rot =*/ 64, /*n_embd_head =*/ 64, /*n_ff =*/ 8640, /*f_norm_eps =*/ 1e-5f, /*f_norm_rms_eps =*/ 0.f, /*n_tokens =*/ n_tokens, }) { } ggml_tensor * build_graph(ggml_context * ctx) override { struct ggml_tensor * cur; struct ggml_tensor * inpL; inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens); // inp_pos - contains the positions struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hp.n_kv, hp.n_tokens, 1); ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400); ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400); for (uint32_t il = 0; il < hp.n_layer; ++il) { // norm ggml_tensor * attn_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd); ggml_tensor * attn_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd); ggml_tensor * attn_norm = llm_build_norm(ctx, inpL, attn_norm_w, attn_norm_b, LLM_NORM); // self-attention { cur = attn_norm; ggml_tensor * wqkv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd + 2*hp.n_embd_gqa()); cur = ggml_mul_mat(ctx, wqkv, cur); struct ggml_tensor * Qcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd, hp.n_tokens, cur->nb[1], 0*sizeof(float)*(hp.n_embd))); struct ggml_tensor * Kcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd))); struct ggml_tensor * Vcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd + hp.n_embd_gqa()))); Qcur = ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens); Kcur = ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens); // using mode = 2 for neox mode Qcur = ggml_rope_custom( ctx, Qcur, inp_pos, hp.n_rot, 2, 0, hp.n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); Kcur = ggml_rope_custom( ctx, Kcur, inp_pos, hp.n_rot, 2, 0, hp.n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur); cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head))); } struct ggml_tensor * ffn_inp = cur; // feed forward { ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff); ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd); cur = attn_norm; cur = ggml_mul_mat(ctx, ffn_up, cur); cur = ggml_gelu(ctx, cur); cur = ggml_mul_mat(ctx, ffn_down, cur); } cur = ggml_add(ctx, cur, ffn_inp); cur = ggml_add(ctx, cur, inpL); // input for next layer inpL = cur; } cur = inpL; ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd); ggml_tensor * output_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd); cur = llm_build_norm(ctx, cur, output_norm, output_norm_b, LLM_NORM); // lm_head ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q8_0, hp.n_embd, hp.n_vocab); cur = ggml_mul_mat(ctx, output, cur); return cur; } }; static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_name) { std::vector<std::unique_ptr<test_case>> test_cases; std::default_random_engine rng(0); const ggml_type all_types[] = { GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_Q4_0, GGML_TYPE_Q4_1, GGML_TYPE_Q5_0, GGML_TYPE_Q5_1, GGML_TYPE_Q8_0, GGML_TYPE_Q2_K, GGML_TYPE_Q3_K, GGML_TYPE_Q4_K, GGML_TYPE_Q5_K, GGML_TYPE_Q6_K, GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S, GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS, }; // unary ops for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) { test_cases.emplace_back(new test_unary((ggml_unary_op) op)); } test_cases.emplace_back(new test_get_rows(GGML_TYPE_F32, 1, 8, 2, 1, false)); for (ggml_type type : all_types) { for (int b : {1, 7}) { for (bool v : {false, true}) { test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, b, v)); } } } for (int b : {1, 7}) { for (bool v : {false, true}) { test_cases.emplace_back(new test_get_rows(GGML_TYPE_I32, 256, 5, 4, b, v)); } } for (ggml_type type_input : {GGML_TYPE_F32}) { for (ggml_op_pool pool_type : {GGML_OP_POOL_AVG, GGML_OP_POOL_MAX}) { for (int k0 : {1, 3}) { for (int k1 : {1, 3}) { for (int s0 : {1, 2}) { for (int s1 : {1, 2}) { for (int p0 : {0, 1}) { for (int p1 : {0, 1}) { test_cases.emplace_back(new test_pool2d(pool_type, type_input, {10, 10, 3, 1}, k0, k1, s0, s1, p0, p1)); } } } } } } } } test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32)); test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16)); test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 1, 1, 1})); test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {2, 1, 1, 1})); test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 2, 1, 1})); test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 1, 2, 1})); test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 1, 1, 2})); test_cases.emplace_back(new test_repeat(GGML_TYPE_I32, {10, 10, 10, 10}, {2, 1, 1, 1})); test_cases.emplace_back(new test_repeat(GGML_TYPE_I16, {10, 10, 10, 10}, {1, 1, 1, 2})); test_cases.emplace_back(new test_dup(GGML_TYPE_F32)); test_cases.emplace_back(new test_dup(GGML_TYPE_F16)); test_cases.emplace_back(new test_dup(GGML_TYPE_I32)); test_cases.emplace_back(new test_dup(GGML_TYPE_I16)); test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {0, 2, 1, 3})); test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {1, 2, 0, 3})); for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) { for (ggml_type type_dst : all_types) { test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4})); } } test_cases.emplace_back(new test_cont()); auto add_test_bin_bcast = [&](ggml_type type, std::array<int64_t, 4> ne, std::array<int, 4> nr) { for (auto op : {ggml_add, ggml_mul, ggml_div}) { test_cases.emplace_back(new test_bin_bcast(op, type, ne, nr)); } }; add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 8, 1}, {1, 1, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1, 1}, {32, 1, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 320, 320}, {1, 1, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 1, 1}, {1, 1, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 1}, {1, 1, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 1, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {2, 1, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 2, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 1, 2, 1}); add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 1, 1, 2}); add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 1, 2, 2}); add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 2, 2, 2}); add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {2, 2, 2, 2}); // stable diffusion add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 1, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 16, 16, 1}); add_test_bin_bcast(GGML_TYPE_F32, {1280, 16, 16, 1}, {1, 1, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 256, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1280, 1}, {16, 16, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {16, 16, 1280, 1}, {1, 1, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1920, 1}, {16, 16, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 2560, 1}, {16, 16, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1280, 1}, {32, 32, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1920, 1}, {32, 32, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 640, 1}, {32, 32, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {5120, 1, 1, 1}, {1, 256, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {640, 1, 1, 1}, {1, 1, 1, 1}); //add_test_bin_bcast(GGML_TYPE_F32, {3, 3, 2560, 1280}, {1, 1, 1, 1}); //add_test_bin_bcast(GGML_TYPE_F32, {3, 3, 2560, 1280}, {2, 1, 1, 1}); test_cases.emplace_back(new test_scale()); for (float eps : {1e-6f, 1e-5f, 1e-3f, 1e-1f}) { test_cases.emplace_back(new test_norm(GGML_TYPE_F32, {64, 10, 10, 10}, eps)); test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 10, 10, 10}, eps)); } for (ggml_type type_a : all_types) { for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) { test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, { 1, 1}, {1, 1})); test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 1}, {1, 1})); test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 1}, {2, 1})); test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {1, 1})); test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {2, 1})); test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {1, 2})); test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {2, 2})); test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, { 1, 1}, {1, 1})); test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 1}, {1, 1})); test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 1}, {2, 1})); test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {1, 1})); test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {2, 1})); test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {1, 2})); test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {2, 2})); } } for (ggml_type type_a : all_types) { for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) { for (int n_mats : {2, 4, 8}) { for (int id = 0; id < n_mats; id++) { for (bool v : {false, true}) { test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, id, 16, 16, 256, v)); } } } } } test_cases.emplace_back(new test_sqr()); test_cases.emplace_back(new test_clamp()); test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 1, 1}, 5)); test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 10, 1}, 5)); test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 10, 10}, 5)); #if 0 std::uniform_int_distribution<> dist_ne1(1, 50); int exponent = 1; while (exponent < (1 << 17)) { std::uniform_int_distribution<> dist_ne0(exponent, 2*exponent); for (int n = 0; n < 10; ++n) { int64_t ne0 = dist_ne0(rng); int64_t ne1 = dist_ne1(rng); test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, n/2 == 0, 0.1f, ne0 < 1000 ? 4.0f : 0.0f)); } exponent <<= 1; } #endif for (bool mask : {false, true}) { for (float max_bias : {0.0f, 8.0f}) { for (float scale : {1.0f, 0.1f}) { for (int64_t ne0 : {16, 1024}) { for (int64_t ne1 : {16, 1024}) { test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, scale, max_bias)); test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, scale, max_bias)); } } } } } test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, 0.1f, 0.0f)); test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, 0.1f, 0.0f)); test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, 0.1f, 8.0f)); test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, 0.1f, 8.0f)); for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) { test_cases.emplace_back(new test_rope(type, {128, 32, 10, 1}, 128, 0, 512)); // llama 7B test_cases.emplace_back(new test_rope(type, {128, 40, 10, 1}, 128, 0, 512)); // llama 13B test_cases.emplace_back(new test_rope(type, {128, 52, 10, 1}, 128, 0, 512)); // llama 30B test_cases.emplace_back(new test_rope(type, {128, 64, 10, 1}, 128, 0, 512)); // llama 65B test_cases.emplace_back(new test_rope(type, { 64, 1, 10, 1}, 64, 2, 512)); // neox (falcon 7B) test_cases.emplace_back(new test_rope(type, { 64, 71, 10, 1}, 64, 2, 512)); // neox (falcon 7B) test_cases.emplace_back(new test_rope(type, { 64, 8, 10, 1}, 64, 2, 512)); // neox (falcon 40B) test_cases.emplace_back(new test_rope(type, { 64, 128, 10, 1}, 64, 2, 512)); // neox (falcon 40B) test_cases.emplace_back(new test_rope(type, { 80, 32, 10, 1}, 20, 2, 512)); // neox (stablelm) test_cases.emplace_back(new test_rope(type, { 80, 32, 10, 1}, 32, 2, 512)); // neox (phi-2) } test_cases.emplace_back(new test_concat(GGML_TYPE_F32)); test_cases.emplace_back(new test_concat(GGML_TYPE_I32)); for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) { test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order)); test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order)); } test_cases.emplace_back(new test_sum_rows()); test_cases.emplace_back(new test_upscale()); test_cases.emplace_back(new test_group_norm()); test_cases.emplace_back(new test_acc()); test_cases.emplace_back(new test_pad()); test_cases.emplace_back(new test_arange()); test_cases.emplace_back(new test_timestep_embedding()); test_cases.emplace_back(new test_leaky_relu()); // these tests are disabled to save execution time, but they can be handy for debugging #if 0 #if !defined(__SANITIZE_THREAD__) // FIXME: these tests use too much memory with thread sanitizer test_cases.emplace_back(new test_moe(8, 2, 1, 4096, 8*1024)); //test_cases.emplace_back(new test_moe(8, 2, 8, 4096, 14336)); #endif test_cases.emplace_back(new test_llama(1)); test_cases.emplace_back(new test_llama(2)); test_cases.emplace_back(new test_falcon(1)); test_cases.emplace_back(new test_falcon(2)); #endif // run tests if (mode == MODE_TEST) { ggml_backend_t backend_cpu = ggml_backend_cpu_init(); size_t n_ok = 0; for (auto & test : test_cases) { if (test->eval(backend, backend_cpu, op_name)) { n_ok++; } } printf(" %zu/%zu tests passed\n", n_ok, test_cases.size()); ggml_backend_free(backend_cpu); return n_ok == test_cases.size(); } if (mode == MODE_PERF) { for (auto & test : test_cases) { test->eval_perf(backend, op_name); } return true; } GGML_ASSERT(false); return false; } static void usage(char ** argv) { printf("Usage: %s [mode] [-o op] [-b backend]\n", argv[0]); printf(" valid modes are: test (compare with CPU backend for correctness) or perf (performance evaluation)\n"); printf(" op names are as given by ggml_op_desc()\n"); } int main(int argc, char ** argv) { test_mode mode = MODE_TEST; const char * op_name = NULL; const char * backend = NULL; for (int i = 1; i < argc; i++) { if (strcmp(argv[i], "test") == 0) { mode = MODE_TEST; } else if (strcmp(argv[i], "perf") == 0) { mode = MODE_PERF; } else if (strcmp(argv[i], "-o") == 0) { if (i + 1 < argc) { op_name = argv[++i]; } else { usage(argv); return 1; } } else if (strcmp(argv[i], "-b") == 0) { if (i + 1 < argc) { backend = argv[++i]; } else { usage(argv); return 1; } } else { usage(argv); return 1; } } // enumerate backends printf("Testing %zu backends\n\n", ggml_backend_reg_get_count()); size_t n_ok = 0; for (size_t i = 0; i < ggml_backend_reg_get_count(); i++) { printf("Backend %zu/%zu (%s)\n", i + 1, ggml_backend_reg_get_count(), ggml_backend_reg_get_name(i)); if (backend != NULL && strcmp(backend, ggml_backend_reg_get_name(i)) != 0) { printf(" Skipping\n"); n_ok++; continue; } ggml_backend_t backend = ggml_backend_reg_init_backend(i, NULL); GGML_ASSERT(backend != NULL); printf(" Backend name: %s\n", ggml_backend_name(backend)); bool ok = test_backend(backend, mode, op_name); printf(" Backend %s: ", ggml_backend_name(backend)); if (ok) { printf("\033[1;32mOK\033[0m\n"); n_ok++; } else { printf("\033[1;31mFAIL\033[0m\n"); } printf("\n"); ggml_backend_free(backend); } printf("%zu/%zu backends passed\n", n_ok, ggml_backend_reg_get_count()); if (n_ok != ggml_backend_reg_get_count()) { printf("\033[1;31mFAIL\033[0m\n"); return 1; } ggml_quantize_free(); printf("\033[1;32mOK\033[0m\n"); return 0; }