from __future__ import annotations

import logging
import os
import shutil
import struct
import tempfile
from dataclasses import dataclass
from enum import Enum, auto
from pathlib import Path
from io import BufferedWriter
from typing import IO, Any, Sequence, Mapping
from string import ascii_letters, digits

import numpy as np

from .constants import (
    GGUF_DEFAULT_ALIGNMENT,
    GGUF_MAGIC,
    GGUF_VERSION,
    GGMLQuantizationType,
    GGUFEndian,
    GGUFValueType,
    Keys,
    RopeScalingType,
    PoolingType,
    TokenType,
)

from .quants import quant_shape_from_byte_shape

logger = logging.getLogger(__name__)


SHARD_NAME_FORMAT = "{:s}-{:05d}-of-{:05d}.gguf"


@dataclass
class TensorInfo:
    shape: Sequence[int]
    dtype: GGMLQuantizationType
    nbytes: int
    tensor: np.ndarray[Any, Any] | None = None


@dataclass
class GGUFValue:
    value: Any
    type: GGUFValueType


class WriterState(Enum):
    NO_FILE = auto()
    EMPTY   = auto()
    HEADER  = auto()
    KV_DATA = auto()
    TI_DATA = auto()
    WEIGHTS = auto()


class GGUFWriter:
    fout: list[BufferedWriter] | None
    path: Path | None
    temp_file: tempfile.SpooledTemporaryFile[bytes] | None
    tensors: list[dict[str, TensorInfo]]
    kv_data: list[dict[str, GGUFValue]]
    state: WriterState
    _simple_value_packing = {
        GGUFValueType.UINT8:   "B",
        GGUFValueType.INT8:    "b",
        GGUFValueType.UINT16:  "H",
        GGUFValueType.INT16:   "h",
        GGUFValueType.UINT32:  "I",
        GGUFValueType.INT32:   "i",
        GGUFValueType.FLOAT32: "f",
        GGUFValueType.UINT64:  "Q",
        GGUFValueType.INT64:   "q",
        GGUFValueType.FLOAT64: "d",
        GGUFValueType.BOOL:    "?",
    }

    def __init__(
        self, path: os.PathLike[str] | str | None, arch: str, use_temp_file: bool = False, endianess: GGUFEndian = GGUFEndian.LITTLE,
        split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False
    ):
        self.fout = None
        self.path = Path(path) if path else None
        self.arch = arch
        self.endianess = endianess
        self.data_alignment = GGUF_DEFAULT_ALIGNMENT
        self.use_temp_file = use_temp_file
        self.temp_file = None
        self.tensors = [{}]
        self.kv_data = [{}]
        self.split_max_tensors = split_max_tensors
        self.split_max_size = split_max_size
        self.dry_run = dry_run
        self.small_first_shard = small_first_shard
        logger.info("gguf: This GGUF file is for {0} Endian only".format(
            "Big" if self.endianess == GGUFEndian.BIG else "Little",
        ))
        self.state = WriterState.NO_FILE

        if self.small_first_shard:
            self.tensors.append({})

        self.add_architecture()

    def format_shard_names(self, path: Path) -> list[Path]:
        if len(self.tensors) == 1:
            return [path]
        return [path.with_name(SHARD_NAME_FORMAT.format(path.stem, i + 1, len(self.tensors))) for i in range(len(self.tensors))]

    def open_output_file(self, path: Path | None = None) -> None:
        if self.state is WriterState.EMPTY and self.fout is not None and (path is None or path == self.path):
            # allow calling this multiple times as long as the path is the same
            return
        if self.state is not WriterState.NO_FILE:
            raise ValueError(f'Expected output file to be not yet opened, got {self.state}')

        if path is not None:
            self.path = path

        if self.path is not None:
            filenames = self.print_plan()
            self.fout = [open(filename, "wb") for filename in filenames]
            self.state = WriterState.EMPTY

    def print_plan(self) -> list[Path]:
        logger.info("Writing the following files:")
        assert self.path is not None
        filenames = self.format_shard_names(self.path)
        assert len(filenames) == len(self.tensors)
        for name, tensors in zip(filenames, self.tensors):
            logger.info(f"{name}: n_tensors = {len(tensors)}, total_size = {GGUFWriter.format_n_bytes_to_str(sum(ti.nbytes for ti in tensors.values()))}")

        if self.dry_run:
            logger.info("Dry run, not writing files")
            exit()

        return filenames

    def add_shard_kv_data(self) -> None:
        if len(self.tensors) == 1:
            return

        total_tensors = sum(len(t) for t in self.tensors)
        assert self.fout is not None
        total_splits = len(self.fout)
        self.kv_data.extend({} for _ in range(len(self.kv_data), total_splits))
        for i, kv_data in enumerate(self.kv_data):
            kv_data[Keys.Split.LLM_KV_SPLIT_NO] = GGUFValue(i, GGUFValueType.UINT16)
            kv_data[Keys.Split.LLM_KV_SPLIT_COUNT] = GGUFValue(total_splits, GGUFValueType.UINT16)
            kv_data[Keys.Split.LLM_KV_SPLIT_TENSORS_COUNT] = GGUFValue(total_tensors, GGUFValueType.INT32)

    def write_header_to_file(self, path: Path | None = None) -> None:
        if len(self.tensors) == 1 and (self.split_max_tensors != 0 or self.split_max_size != 0):
            logger.warning("Model fails split requirements, not splitting")

        self.open_output_file(path)

        if self.state is not WriterState.EMPTY:
            raise ValueError(f'Expected output file to be empty, got {self.state}')

        assert self.fout is not None
        assert len(self.fout) == len(self.tensors)
        assert len(self.kv_data) == 1

        self.add_shard_kv_data()

        for fout, tensors, kv_data in zip(self.fout, self.tensors, self.kv_data):
            fout.write(self._pack("<I", GGUF_MAGIC, skip_pack_prefix = True))
            fout.write(self._pack("I", GGUF_VERSION))
            fout.write(self._pack("Q", len(tensors)))
            fout.write(self._pack("Q", len(kv_data)))
            fout.flush()
        self.state = WriterState.HEADER

    def write_kv_data_to_file(self) -> None:
        if self.state is not WriterState.HEADER:
            raise ValueError(f'Expected output file to contain the header, got {self.state}')
        assert self.fout is not None

        for fout, kv_data in zip(self.fout, self.kv_data):
            kv_bytes = bytearray()

            for key, val in kv_data.items():
                kv_bytes += self._pack_val(key, GGUFValueType.STRING, add_vtype=False)
                kv_bytes += self._pack_val(val.value, val.type, add_vtype=True)

            fout.write(kv_bytes)

        self.flush()
        self.state = WriterState.KV_DATA

    def write_ti_data_to_file(self) -> None:
        if self.state is not WriterState.KV_DATA:
            raise ValueError(f'Expected output file to contain KV data, got {self.state}')
        assert self.fout is not None

        for fout, tensors in zip(self.fout, self.tensors):
            ti_data = bytearray()
            offset_tensor = 0

            for name, ti in tensors.items():
                ti_data += self._pack_val(name, GGUFValueType.STRING, add_vtype=False)
                n_dims = len(ti.shape)
                ti_data += self._pack("I", n_dims)
                for j in range(n_dims):
                    ti_data += self._pack("Q", ti.shape[n_dims - 1 - j])
                ti_data += self._pack("I", ti.dtype)
                ti_data += self._pack("Q", offset_tensor)
                offset_tensor += GGUFWriter.ggml_pad(ti.nbytes, self.data_alignment)

            fout.write(ti_data)
            fout.flush()
        self.state = WriterState.TI_DATA

    def add_key_value(self, key: str, val: Any, vtype: GGUFValueType) -> None:
        if any(key in kv_data for kv_data in self.kv_data):
            raise ValueError(f'Duplicated key name {key!r}')

        self.kv_data[0][key] = GGUFValue(value=val, type=vtype)

    def add_uint8(self, key: str, val: int) -> None:
        self.add_key_value(key,val, GGUFValueType.UINT8)

    def add_int8(self, key: str, val: int) -> None:
        self.add_key_value(key, val, GGUFValueType.INT8)

    def add_uint16(self, key: str, val: int) -> None:
        self.add_key_value(key, val, GGUFValueType.UINT16)

    def add_int16(self, key: str, val: int) -> None:
        self.add_key_value(key, val, GGUFValueType.INT16)

    def add_uint32(self, key: str, val: int) -> None:
        self.add_key_value(key, val, GGUFValueType.UINT32)

    def add_int32(self, key: str, val: int) -> None:
        self.add_key_value(key, val, GGUFValueType.INT32)

    def add_float32(self, key: str, val: float) -> None:
        self.add_key_value(key, val, GGUFValueType.FLOAT32)

    def add_uint64(self, key: str, val: int) -> None:
        self.add_key_value(key, val, GGUFValueType.UINT64)

    def add_int64(self, key: str, val: int) -> None:
        self.add_key_value(key, val, GGUFValueType.INT64)

    def add_float64(self, key: str, val: float) -> None:
        self.add_key_value(key, val, GGUFValueType.FLOAT64)

    def add_bool(self, key: str, val: bool) -> None:
        self.add_key_value(key, val, GGUFValueType.BOOL)

    def add_string(self, key: str, val: str) -> None:
        if not val:
            return
        self.add_key_value(key, val, GGUFValueType.STRING)

    def add_array(self, key: str, val: Sequence[Any]) -> None:
        self.add_key_value(key, val, GGUFValueType.ARRAY)

    @staticmethod
    def ggml_pad(x: int, n: int) -> int:
        return ((x + n - 1) // n) * n

    def add_tensor_info(
        self, name: str, tensor_shape: Sequence[int], tensor_dtype: np.dtype,
        tensor_nbytes: int, raw_dtype: GGMLQuantizationType | None = None,
    ) -> None:
        if self.state is not WriterState.NO_FILE:
            raise ValueError(f'Expected output file to be not yet opened, got {self.state}')

        if any(name in tensors for tensors in self.tensors):
            raise ValueError(f'Duplicated tensor name {name!r}')

        if raw_dtype is None:
            if tensor_dtype == np.float16:
                dtype = GGMLQuantizationType.F16
            elif tensor_dtype == np.float32:
                dtype = GGMLQuantizationType.F32
            elif tensor_dtype == np.float64:
                dtype = GGMLQuantizationType.F64
            elif tensor_dtype == np.int8:
                dtype = GGMLQuantizationType.I8
            elif tensor_dtype == np.int16:
                dtype = GGMLQuantizationType.I16
            elif tensor_dtype == np.int32:
                dtype = GGMLQuantizationType.I32
            elif tensor_dtype == np.int64:
                dtype = GGMLQuantizationType.I64
            else:
                raise ValueError("Only F16, F32, F64, I8, I16, I32, I64 tensors are supported for now")
        else:
            dtype = raw_dtype
            if tensor_dtype == np.uint8:
                tensor_shape = quant_shape_from_byte_shape(tensor_shape, raw_dtype)

        # make sure there is at least one tensor before splitting
        if len(self.tensors[-1]) > 0:
            if (  # split when over tensor limit
                self.split_max_tensors != 0
                and len(self.tensors[-1]) >= self.split_max_tensors
            ) or (   # split when over size limit
                self.split_max_size != 0
                and sum(ti.nbytes for ti in self.tensors[-1].values()) + tensor_nbytes > self.split_max_size
            ):
                self.tensors.append({})

        self.tensors[-1][name] = TensorInfo(shape=tensor_shape, dtype=dtype, nbytes=tensor_nbytes)

    def add_tensor(
        self, name: str, tensor: np.ndarray[Any, Any], raw_shape: Sequence[int] | None = None,
        raw_dtype: GGMLQuantizationType | None = None,
    ) -> None:
        if self.endianess == GGUFEndian.BIG:
            tensor.byteswap(inplace=True)
        if self.use_temp_file and self.temp_file is None:
            fp = tempfile.SpooledTemporaryFile(mode="w+b", max_size=256 * 1024 * 1024)
            fp.seek(0)
            self.temp_file = fp

        shape: Sequence[int] = raw_shape if raw_shape is not None else tensor.shape
        self.add_tensor_info(name, shape, tensor.dtype, tensor.nbytes, raw_dtype=raw_dtype)

        if self.temp_file is None:
            self.tensors[-1][name].tensor = tensor
            return

        tensor.tofile(self.temp_file)
        self.write_padding(self.temp_file, tensor.nbytes)

    def write_padding(self, fp: IO[bytes], n: int, align: int | None = None) -> None:
        pad = GGUFWriter.ggml_pad(n, align if align is not None else self.data_alignment) - n
        if pad != 0:
            fp.write(bytes([0] * pad))

    def write_tensor_data(self, tensor: np.ndarray[Any, Any]) -> None:
        if self.state is not WriterState.TI_DATA and self.state is not WriterState.WEIGHTS:
            raise ValueError(f'Expected output file to contain tensor info or weights, got {self.state}')
        assert self.fout is not None

        if self.endianess == GGUFEndian.BIG:
            tensor.byteswap(inplace=True)

        file_id = -1
        for i, tensors in enumerate(self.tensors):
            if len(tensors) > 0:
                file_id = i
                break

        fout = self.fout[file_id]

        # pop the first tensor info
        # TODO: cleaner way to get the first key
        first_tensor_name = [name for name, _ in zip(self.tensors[file_id].keys(), range(1))][0]
        ti = self.tensors[file_id].pop(first_tensor_name)
        assert ti.nbytes == tensor.nbytes

        self.write_padding(fout, fout.tell())
        tensor.tofile(fout)
        self.write_padding(fout, tensor.nbytes)

        self.state = WriterState.WEIGHTS

    def write_tensors_to_file(self, *, progress: bool = False) -> None:
        self.write_ti_data_to_file()

        assert self.fout is not None

        for fout in self.fout:
            self.write_padding(fout, fout.tell())

        if self.temp_file is None:
            shard_bar = None
            bar = None

            if progress:
                from tqdm import tqdm

                total_bytes = sum(ti.nbytes for t in self.tensors for ti in t.values())

                if len(self.fout) > 1:
                    shard_bar = tqdm(desc=f"Shard (0/{len(self.fout)})", total=None, unit="byte", unit_scale=True)
                bar = tqdm(desc="Writing", total=total_bytes, unit="byte", unit_scale=True)

            for i, (fout, tensors) in enumerate(zip(self.fout, self.tensors)):
                if shard_bar is not None:
                    shard_bar.set_description(f"Shard ({i + 1}/{len(self.fout)})")
                    total = sum(ti.nbytes for ti in tensors.values())
                    shard_bar.reset(total=(total if total > 0 else None))

                # relying on the fact that Python dicts preserve insertion order (since 3.7)
                for ti in tensors.values():
                    assert ti.tensor is not None  # can only iterate once over the tensors
                    assert ti.tensor.nbytes == ti.nbytes
                    ti.tensor.tofile(fout)
                    if shard_bar is not None:
                        shard_bar.update(ti.nbytes)
                    if bar is not None:
                        bar.update(ti.nbytes)
                    self.write_padding(fout, ti.nbytes)
                    ti.tensor = None
        else:
            self.temp_file.seek(0)

            shutil.copyfileobj(self.temp_file, self.fout[0 if not self.small_first_shard else 1])
            self.flush()
            self.temp_file.close()

        self.state = WriterState.WEIGHTS

    def flush(self) -> None:
        assert self.fout is not None
        for fout in self.fout:
            fout.flush()

    def close(self) -> None:
        if self.fout is not None:
            for fout in self.fout:
                fout.close()
            self.fout = None

    def add_architecture(self) -> None:
        self.add_string(Keys.General.ARCHITECTURE, self.arch)

    def add_author(self, author: str) -> None:
        self.add_string(Keys.General.AUTHOR, author)

    def add_version(self, version: str) -> None:
        self.add_string(Keys.General.VERSION, version)

    def add_tensor_data_layout(self, layout: str) -> None:
        self.add_string(Keys.LLM.TENSOR_DATA_LAYOUT.format(arch=self.arch), layout)

    def add_url(self, url: str) -> None:
        self.add_string(Keys.General.URL, url)

    def add_description(self, description: str) -> None:
        self.add_string(Keys.General.DESCRIPTION, description)

    def add_licence(self, licence: str) -> None:
        self.add_string(Keys.General.LICENSE, licence)

    def add_source_url(self, url: str) -> None:
        self.add_string(Keys.General.SOURCE_URL, url)

    def add_source_hf_repo(self, repo: str) -> None:
        self.add_string(Keys.General.SOURCE_HF_REPO, repo)

    def add_file_type(self, ftype: int) -> None:
        self.add_uint32(Keys.General.FILE_TYPE, ftype)

    def add_name(self, name: str) -> None:
        self.add_string(Keys.General.NAME, name)

    def add_quantization_version(self, quantization_version: int) -> None:
        self.add_uint32(
            Keys.General.QUANTIZATION_VERSION, quantization_version)

    def add_custom_alignment(self, alignment: int) -> None:
        self.data_alignment = alignment
        self.add_uint32(Keys.General.ALIGNMENT, alignment)

    def add_vocab_size(self, size: int) -> None:
        self.add_uint32(Keys.LLM.VOCAB_SIZE.format(arch=self.arch), size)

    def add_context_length(self, length: int) -> None:
        self.add_uint32(Keys.LLM.CONTEXT_LENGTH.format(arch=self.arch), length)

    def add_embedding_length(self, length: int) -> None:
        self.add_uint32(Keys.LLM.EMBEDDING_LENGTH.format(arch=self.arch), length)

    def add_block_count(self, length: int) -> None:
        self.add_uint32(Keys.LLM.BLOCK_COUNT.format(arch=self.arch), length)

    def add_leading_dense_block_count(self, length: int) -> None:
        self.add_uint32(Keys.LLM.LEADING_DENSE_BLOCK_COUNT.format(arch=self.arch), length)

    def add_feed_forward_length(self, length: int | Sequence[int]) -> None:
        if isinstance(length, int):
            self.add_uint32(Keys.LLM.FEED_FORWARD_LENGTH.format(arch=self.arch), length)
        else:
            self.add_array(Keys.LLM.FEED_FORWARD_LENGTH.format(arch=self.arch), length)

    def add_expert_feed_forward_length(self, length: int) -> None:
        self.add_uint32(Keys.LLM.EXPERT_FEED_FORWARD_LENGTH.format(arch=self.arch), length)

    def add_expert_shared_feed_forward_length(self, length: int) -> None:
        self.add_uint32(Keys.LLM.EXPERT_SHARED_FEED_FORWARD_LENGTH.format(arch=self.arch), length)

    def add_parallel_residual(self, use: bool) -> None:
        self.add_bool(Keys.LLM.USE_PARALLEL_RESIDUAL.format(arch=self.arch), use)

    def add_decoder_start_token_id(self, id: int) -> None:
        self.add_uint32(Keys.LLM.DECODER_START_TOKEN_ID.format(arch=self.arch), id)

    def add_head_count(self, count: int | Sequence[int]) -> None:
        if isinstance(count, int):
            self.add_uint32(Keys.Attention.HEAD_COUNT.format(arch=self.arch), count)
        else:
            self.add_array(Keys.Attention.HEAD_COUNT.format(arch=self.arch), count)

    def add_head_count_kv(self, count: int | Sequence[int]) -> None:
        if isinstance(count, int):
            self.add_uint32(Keys.Attention.HEAD_COUNT_KV.format(arch=self.arch), count)
        else:
            self.add_array(Keys.Attention.HEAD_COUNT_KV.format(arch=self.arch), count)

    def add_key_length(self, length: int) -> None:
        self.add_uint32(Keys.Attention.KEY_LENGTH.format(arch=self.arch), length)

    def add_value_length(self, length: int) -> None:
        self.add_uint32(Keys.Attention.VALUE_LENGTH.format(arch=self.arch), length)

    def add_max_alibi_bias(self, bias: float) -> None:
        self.add_float32(Keys.Attention.MAX_ALIBI_BIAS.format(arch=self.arch), bias)

    def add_clamp_kqv(self, value: float) -> None:
        self.add_float32(Keys.Attention.CLAMP_KQV.format(arch=self.arch), value)

    def add_logit_scale(self, value: float) -> None:
        self.add_float32(Keys.LLM.LOGIT_SCALE.format(arch=self.arch), value)

    def add_attn_logit_softcapping(self, value: float) -> None:
        self.add_float32(Keys.LLM.ATTN_LOGIT_SOFTCAPPING.format(arch=self.arch), value)

    def add_final_logit_softcapping(self, value: float) -> None:
        self.add_float32(Keys.LLM.FINAL_LOGIT_SOFTCAPPING.format(arch=self.arch), value)

    def add_expert_count(self, count: int) -> None:
        self.add_uint32(Keys.LLM.EXPERT_COUNT.format(arch=self.arch), count)

    def add_expert_used_count(self, count: int) -> None:
        self.add_uint32(Keys.LLM.EXPERT_USED_COUNT.format(arch=self.arch), count)

    def add_expert_shared_count(self, count: int) -> None:
        self.add_uint32(Keys.LLM.EXPERT_SHARED_COUNT.format(arch=self.arch), count)

    def add_expert_weights_scale(self, value: float) -> None:
        self.add_float32(Keys.LLM.EXPERT_WEIGHTS_SCALE.format(arch=self.arch), value)

    def add_layer_norm_eps(self, value: float) -> None:
        self.add_float32(Keys.Attention.LAYERNORM_EPS.format(arch=self.arch), value)

    def add_layer_norm_rms_eps(self, value: float) -> None:
        self.add_float32(Keys.Attention.LAYERNORM_RMS_EPS.format(arch=self.arch), value)

    def add_causal_attention(self, value: bool) -> None:
        self.add_bool(Keys.Attention.CAUSAL.format(arch=self.arch), value)

    def add_q_lora_rank(self, length: int) -> None:
        self.add_uint32(Keys.Attention.Q_LORA_RANK.format(arch=self.arch), length)

    def add_kv_lora_rank(self, length: int) -> None:
        self.add_uint32(Keys.Attention.KV_LORA_RANK.format(arch=self.arch), length)

    def add_relative_attn_buckets_count(self, value: int) -> None:
        self.add_uint32(Keys.Attention.REL_BUCKETS_COUNT.format(arch=self.arch), value)

    def add_sliding_window(self, value: int) -> None:
        self.add_uint32(Keys.Attention.SLIDING_WINDOW.format(arch=self.arch), value)

    def add_pooling_type(self, value: PoolingType) -> None:
        self.add_uint32(Keys.LLM.POOLING_TYPE.format(arch=self.arch), value.value)

    def add_rope_dimension_count(self, count: int) -> None:
        self.add_uint32(Keys.Rope.DIMENSION_COUNT.format(arch=self.arch), count)

    def add_rope_freq_base(self, value: float) -> None:
        self.add_float32(Keys.Rope.FREQ_BASE.format(arch=self.arch), value)

    def add_rope_scaling_type(self, value: RopeScalingType) -> None:
        self.add_string(Keys.Rope.SCALING_TYPE.format(arch=self.arch), value.value)

    def add_rope_scaling_factor(self, value: float) -> None:
        self.add_float32(Keys.Rope.SCALING_FACTOR.format(arch=self.arch), value)

    def add_rope_scaling_attn_factors(self, value: float) -> None:
        self.add_float32(Keys.Rope.SCALING_ATTN_FACTOR.format(arch=self.arch), value)

    def add_rope_scaling_orig_ctx_len(self, value: int) -> None:
        self.add_uint32(Keys.Rope.SCALING_ORIG_CTX_LEN.format(arch=self.arch), value)

    def add_rope_scaling_finetuned(self, value: bool) -> None:
        self.add_bool(Keys.Rope.SCALING_FINETUNED.format(arch=self.arch), value)

    def add_rope_scaling_yarn_log_mul(self, value: float) -> None:
        self.add_float32(Keys.Rope.SCALING_YARN_LOG_MUL.format(arch=self.arch), value)

    def add_ssm_conv_kernel(self, value: int) -> None:
        self.add_uint32(Keys.SSM.CONV_KERNEL.format(arch=self.arch), value)

    def add_ssm_inner_size(self, value: int) -> None:
        self.add_uint32(Keys.SSM.INNER_SIZE.format(arch=self.arch), value)

    def add_ssm_state_size(self, value: int) -> None:
        self.add_uint32(Keys.SSM.STATE_SIZE.format(arch=self.arch), value)

    def add_ssm_time_step_rank(self, value: int) -> None:
        self.add_uint32(Keys.SSM.TIME_STEP_RANK.format(arch=self.arch), value)

    def add_tokenizer_model(self, model: str) -> None:
        self.add_string(Keys.Tokenizer.MODEL, model)

    def add_tokenizer_pre(self, pre: str) -> None:
        self.add_string(Keys.Tokenizer.PRE, pre)

    def add_token_list(self, tokens: Sequence[str] | Sequence[bytes] | Sequence[bytearray]) -> None:
        self.add_array(Keys.Tokenizer.LIST, tokens)

    def add_token_merges(self, merges: Sequence[str] | Sequence[bytes] | Sequence[bytearray]) -> None:
        self.add_array(Keys.Tokenizer.MERGES, merges)

    def add_token_types(self, types: Sequence[TokenType] | Sequence[int]) -> None:
        self.add_array(Keys.Tokenizer.TOKEN_TYPE, types)

    def add_token_type_count(self, value: int) -> None:
        self.add_uint32(Keys.Tokenizer.TOKEN_TYPE_COUNT, value)

    def add_token_scores(self, scores: Sequence[float]) -> None:
        self.add_array(Keys.Tokenizer.SCORES, scores)

    def add_bos_token_id(self, id: int) -> None:
        self.add_uint32(Keys.Tokenizer.BOS_ID, id)

    def add_eos_token_id(self, id: int) -> None:
        self.add_uint32(Keys.Tokenizer.EOS_ID, id)

    def add_unk_token_id(self, id: int) -> None:
        self.add_uint32(Keys.Tokenizer.UNK_ID, id)

    def add_sep_token_id(self, id: int) -> None:
        self.add_uint32(Keys.Tokenizer.SEP_ID, id)

    def add_pad_token_id(self, id: int) -> None:
        self.add_uint32(Keys.Tokenizer.PAD_ID, id)

    def add_cls_token_id(self, id: int) -> None:
        self.add_uint32(Keys.Tokenizer.CLS_ID, id)

    def add_mask_token_id(self, id: int) -> None:
        self.add_uint32(Keys.Tokenizer.MASK_ID, id)

    def add_add_bos_token(self, value: bool) -> None:
        self.add_bool(Keys.Tokenizer.ADD_BOS, value)

    def add_add_eos_token(self, value: bool) -> None:
        self.add_bool(Keys.Tokenizer.ADD_EOS, value)

    def add_add_space_prefix(self, value: bool) -> None:
        self.add_bool(Keys.Tokenizer.ADD_PREFIX, value)

    def add_remove_extra_whitespaces(self, value: bool) -> None:
        self.add_bool(Keys.Tokenizer.REMOVE_EXTRA_WS, value)

    def add_precompiled_charsmap(self, charsmap: Sequence[bytes]) -> None:
        self.add_array(Keys.Tokenizer.PRECOMPILED_CHARSMAP, charsmap)

    def add_chat_template(self, value: str | Sequence[Mapping[str, str]]) -> None:
        if not isinstance(value, str):
            template_default = None
            template_names = set()

            for choice in value:
                name = choice.get('name', '')
                template = choice.get('template')

                # Allowing non-alphanumerical characters in template name is probably not a good idea, so filter it
                name = ''.join((c if c in ascii_letters + digits else '_' for c in name))

                if name and template is not None:
                    if name == 'default':
                        template_default = template
                    else:
                        template_names.add(name)
                        self.add_string(Keys.Tokenizer.CHAT_TEMPLATE_N.format(name=name), template)

            if template_names:
                self.add_array(Keys.Tokenizer.CHAT_TEMPLATES, list(template_names))

            if template_default is None:
                return

            value = template_default

        self.add_string(Keys.Tokenizer.CHAT_TEMPLATE, value)

    def add_prefix_token_id(self, id: int) -> None:
        self.add_uint32(Keys.Tokenizer.PREFIX_ID, id)

    def add_suffix_token_id(self, id: int) -> None:
        self.add_uint32(Keys.Tokenizer.SUFFIX_ID, id)

    def add_middle_token_id(self, id: int) -> None:
        self.add_uint32(Keys.Tokenizer.MIDDLE_ID, id)

    def add_eot_token_id(self, id: int) -> None:
        self.add_uint32(Keys.Tokenizer.EOT_ID, id)

    def _pack(self, fmt: str, value: Any, skip_pack_prefix: bool = False) -> bytes:
        pack_prefix = ''
        if not skip_pack_prefix:
            pack_prefix = '<' if self.endianess == GGUFEndian.LITTLE else '>'
        return struct.pack(f'{pack_prefix}{fmt}', value)

    def _pack_val(self, val: Any, vtype: GGUFValueType, add_vtype: bool) -> bytes:
        kv_data = bytearray()

        if add_vtype:
            kv_data += self._pack("I", vtype)

        pack_fmt = self._simple_value_packing.get(vtype)
        if pack_fmt is not None:
            kv_data += self._pack(pack_fmt, val, skip_pack_prefix = vtype == GGUFValueType.BOOL)
        elif vtype == GGUFValueType.STRING:
            encoded_val = val.encode("utf-8") if isinstance(val, str) else val
            kv_data += self._pack("Q", len(encoded_val))
            kv_data += encoded_val
        elif vtype == GGUFValueType.ARRAY and isinstance(val, Sequence) and val:
            if isinstance(val, bytes):
                ltype = GGUFValueType.UINT8
            else:
                ltype = GGUFValueType.get_type(val[0])
                if not all(GGUFValueType.get_type(i) is ltype for i in val[1:]):
                    raise ValueError("All items in a GGUF array should be of the same type")
            kv_data += self._pack("I", ltype)
            kv_data += self._pack("Q", len(val))
            for item in val:
                kv_data += self._pack_val(item, ltype, add_vtype=False)
        else:
            raise ValueError("Invalid GGUF metadata value type or value")

        return kv_data

    @staticmethod
    def format_n_bytes_to_str(num: int) -> str:
        if num == 0:
            return "negligible - metadata only"
        fnum = float(num)
        for unit in ("", "K", "M", "G"):
            if abs(fnum) < 1000.0:
                return f"{fnum:3.1f}{unit}"
            fnum /= 1000.0
        return f"{fnum:.1f}T - over 1TB, split recommended"