import argparse import os import json import re import torch import numpy as np from gguf import * import timm from transformers.models.idefics2.modeling_idefics2 import Idefics2VisionTransformer, Idefics2VisionConfig TEXT = "clip.text" VISION = "clip.vision" def k(raw_key: str, arch: str) -> str: return raw_key.format(arch=arch) def should_skip_tensor(name: str, has_text: bool, has_vision: bool, has_minicpmv: bool) -> bool: if name in ( "logit_scale", "text_model.embeddings.position_ids", "vision_model.embeddings.position_ids", ): return True if has_minicpmv and name in ["visual_projection.weight"]: return True if name.startswith("v") and not has_vision: return True if name.startswith("t") and not has_text: return True return False def get_tensor_name(name: str) -> str: if "projection" in name: return name if "mm_projector" in name: name = name.replace("model.mm_projector", "mm") name = re.sub(r'mm\.mlp\.mlp', 'mm.model.mlp', name, count=1) name = re.sub(r'mm\.peg\.peg', 'mm.model.peg', name, count=1) return name return name.replace("text_model", "t").replace("vision_model", "v").replace("encoder.layers", "blk").replace("embeddings.", "").replace("_proj", "").replace("self_attn.", "attn_").replace("layer_norm", "ln").replace("layernorm", "ln").replace("mlp.fc1", "ffn_down").replace("mlp.fc2", "ffn_up").replace("embedding", "embd").replace("final", "post").replace("layrnorm", "ln") def bytes_to_unicode(): """ Returns list of utf-8 byte and a corresponding list of unicode strings. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. And avoids mapping to whitespace/control characters the bpe code barfs on. """ bs = ( list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) ) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8 + n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) ap = argparse.ArgumentParser() ap.add_argument("-m", "--model-dir", help="Path to model directory cloned from HF Hub", required=True) ap.add_argument("--use-f32", action="store_true", default=False, help="Use f32 instead of f16") ap.add_argument("--text-only", action="store_true", required=False, help="Save a text-only model. It can't be used to encode images") ap.add_argument("--vision-only", action="store_true", required=False, help="Save a vision-only model. It can't be used to encode texts") ap.add_argument("--clip-model-is-vision", action="store_true", required=False, help="The clip model is a pure vision model (ShareGPT4V vision extract for example)") ap.add_argument("--clip-model-is-openclip", action="store_true", required=False, help="The clip model is from openclip (for ViT-SO400M type))") ap.add_argument("--minicpmv-projector", help="Path to minicpmv.projector file. If specified, save an image encoder for MiniCPM-V models.") ap.add_argument("--projector-type", help="Type of projector. Possible values: mlp, ldp, ldpv2", choices=["mlp", "ldp", "ldpv2"], default="mlp") ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None) # Example --image_mean 0.48145466 0.4578275 0.40821073 --image_std 0.26862954 0.26130258 0.27577711 # Example --image_mean 0.5 0.5 0.5 --image_std 0.5 0.5 0.5 default_image_mean = [0.48145466, 0.4578275, 0.40821073] default_image_std = [0.26862954, 0.26130258, 0.27577711] ap.add_argument('--image-mean', type=float, nargs='+', help='Mean of the images for normalization (overrides processor) ', default=None) ap.add_argument('--image-std', type=float, nargs='+', help='Standard deviation of the images for normalization (overrides processor)', default=None) # with proper args = ap.parse_args() if args.text_only and args.vision_only: print("--text-only and --image-only arguments cannot be specified at the same time.") exit(1) if args.use_f32: print("WARNING: Weights for the convolution op is always saved in f16, as the convolution op in GGML does not support 32-bit kernel weights yet.") # output in the same directory as the model if output_dir is None dir_model = args.model_dir if args.clip_model_is_vision or not os.path.exists(dir_model + "/vocab.json") or args.clip_model_is_openclip: vocab = None tokens = None else: with open(dir_model + "/vocab.json", "r", encoding="utf-8") as f: vocab = json.load(f) tokens = [key for key in vocab] # possible data types # ftype == 0 -> float32 # ftype == 1 -> float16 # # map from ftype to string ftype_str = ["f32", "f16"] ftype = 1 if args.use_f32: ftype = 0 # if args.clip_model_is_vision or args.clip_model_is_openclip: # model = CLIPVisionModel.from_pretrained(dir_model) # processor = None # else: # model = CLIPModel.from_pretrained(dir_model) # processor = CLIPProcessor.from_pretrained(dir_model) default_vision_config = { "hidden_size": 1152, "image_size": 980, "intermediate_size": 4304, "model_type": "idefics2", "num_attention_heads": 16, "num_hidden_layers": 27, "patch_size": 14, } vision_config = Idefics2VisionConfig(**default_vision_config) model = Idefics2VisionTransformer(vision_config) processor = None # if model.attn_pool is not None: # model.attn_pool = torch.nn.Identity() # model.blocks = model.blocks[:-1] model.load_state_dict(torch.load(os.path.join(dir_model, "minicpmv.clip"))) fname_middle = None has_text_encoder = True has_vision_encoder = True has_minicpmv_projector = False if args.text_only: fname_middle = "text-" has_vision_encoder = False elif args.minicpmv_projector is not None: fname_middle = "mmproj-" has_text_encoder = False has_minicpmv_projector = True elif args.vision_only: fname_middle = "vision-" has_text_encoder = False else: fname_middle = "" output_dir = args.output_dir if args.output_dir is not None else dir_model os.makedirs(output_dir, exist_ok=True) output_prefix = os.path.basename(output_dir).replace("ggml_", "") fname_out = os.path.join(output_dir, f"{fname_middle}model-{ftype_str[ftype]}.gguf") fout = GGUFWriter(path=fname_out, arch="clip") fout.add_bool("clip.has_text_encoder", has_text_encoder) fout.add_bool("clip.has_vision_encoder", has_vision_encoder) fout.add_bool("clip.has_minicpmv_projector", has_minicpmv_projector) fout.add_file_type(ftype) if args.text_only: fout.add_description("text-only CLIP model") elif args.vision_only and not has_minicpmv_projector: fout.add_description("vision-only CLIP model") elif has_minicpmv_projector: fout.add_description("image encoder for MiniCPM-V") # add projector type fout.add_string("clip.projector_type", "resampler") else: fout.add_description("two-tower CLIP model") if has_vision_encoder: # vision_model hparams fout.add_uint32("clip.vision.image_size", 448) fout.add_uint32("clip.vision.patch_size", 14) fout.add_uint32(k(KEY_EMBEDDING_LENGTH, VISION), 1152) fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, VISION), 4304) fout.add_uint32("clip.vision.projection_dim", 0) fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, VISION), 16) fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, VISION), 1e-6) block_count = 26 fout.add_uint32(k(KEY_BLOCK_COUNT, VISION), block_count) if processor is not None: image_mean = processor.image_processor.image_mean if args.image_mean is None or args.image_mean == default_image_mean else args.image_mean image_std = processor.image_processor.image_std if args.image_std is None or args.image_std == default_image_std else args.image_std else: image_mean = args.image_mean if args.image_mean is not None else default_image_mean image_std = args.image_std if args.image_std is not None else default_image_std fout.add_array("clip.vision.image_mean", image_mean) fout.add_array("clip.vision.image_std", image_std) use_gelu = True fout.add_bool("clip.use_gelu", use_gelu) def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): """ embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D) """ assert embed_dim % 2 == 0 omega = np.arange(embed_dim // 2, dtype=np.float32) omega /= embed_dim / 2. omega = 1. / 10000 ** omega # (D/2,) pos = pos.reshape(-1) # (M,) out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product emb_sin = np.sin(out) # (M, D/2) emb_cos = np.cos(out) # (M, D/2) emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) return emb def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): assert embed_dim % 2 == 0 # use half of dimensions to encode grid_h emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2) emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2) emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D) return emb # https://github.com/facebookresearch/mae/blob/efb2a8062c206524e35e47d04501ed4f544c0ae8/util/pos_embed.py#L20 def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False): """ grid_size: int of the grid height and width return: pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) """ if isinstance(grid_size, int): grid_h_size, grid_w_size = grid_size, grid_size else: grid_h_size, grid_w_size = grid_size[0], grid_size[1] grid_h = np.arange(grid_h_size, dtype=np.float32) grid_w = np.arange(grid_w_size, dtype=np.float32) grid = np.meshgrid(grid_w, grid_h) # here w goes first grid = np.stack(grid, axis=0) grid = grid.reshape([2, 1, grid_h_size, grid_w_size]) pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) if cls_token: pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0) return pos_embed def _replace_name_resampler(s, v): if re.match("resampler.pos_embed", s): return { s: v, re.sub("pos_embed", "pos_embed_k", s): torch.from_numpy(get_2d_sincos_pos_embed(4096, (70, 70))), } if re.match("resampler.proj", s): return { re.sub("proj", "pos_embed_k", s): torch.from_numpy(get_2d_sincos_pos_embed(4096, (70, 70))), re.sub("proj", "proj.weight", s): v.transpose(-1, -2).contiguous(), } if re.match("resampler.attn.in_proj_.*", s): return { re.sub("attn.in_proj_", "attn.q.", s): v.chunk(3, dim=0)[0], re.sub("attn.in_proj_", "attn.k.", s): v.chunk(3, dim=0)[1], re.sub("attn.in_proj_", "attn.v.", s): v.chunk(3, dim=0)[2], } return {s: v} if has_minicpmv_projector: projector = torch.load(args.minicpmv_projector) new_state_dict = {} for k, v in projector.items(): kvs = _replace_name_resampler(k, v) for nk, nv in kvs.items(): new_state_dict[nk] = nv projector = new_state_dict for name, data in projector.items(): name = get_tensor_name(name) data = data.squeeze().numpy() n_dims = len(data.shape) if ftype == 1: if name[-7:] == ".weight" and n_dims == 2: print(" Converting to float16") data = data.astype(np.float16) ftype_cur = 1 else: print(" Converting to float32") data = data.astype(np.float32) ftype_cur = 0 else: if data.dtype != np.float32: print(" Converting to float32") data = data.astype(np.float32) ftype_cur = 0 fout.add_tensor(name, data) print(f"{name} - {ftype_str[ftype_cur]} - shape = {data.shape}") print("Projector tensors added\n") def _replace_name(s, v): s = "vision_model." + s if re.match("vision_model.embeddings.position_embedding", s): v = v.unsqueeze(0) return {s: v} return {s: v} state_dict = model.state_dict() new_state_dict = {} for k, v in state_dict.items(): kvs = _replace_name(k, v) for nk, nv in kvs.items(): new_state_dict[nk] = nv state_dict = new_state_dict for name, data in state_dict.items(): if should_skip_tensor(name, has_text_encoder, has_vision_encoder, has_minicpmv_projector): # we don't need this print(f"skipping parameter: {name}") continue name = get_tensor_name(name) data = data.squeeze().numpy() n_dims = len(data.shape) # ftype == 0 -> float32, ftype == 1 -> float16 ftype_cur = 0 if n_dims == 4: print(f"tensor {name} is always saved in f16") data = data.astype(np.float16) ftype_cur = 1 elif ftype == 1: if name[-7:] == ".weight" and n_dims == 2: print(" Converting to float16") data = data.astype(np.float16) ftype_cur = 1 else: print(" Converting to float32") data = data.astype(np.float32) ftype_cur = 0 else: if data.dtype != np.float32: print(" Converting to float32") data = data.astype(np.float32) ftype_cur = 0 print(f"{name} - {ftype_str[ftype_cur]} - shape = {data.shape}") fout.add_tensor(name, data) fout.write_header_to_file() fout.write_kv_data_to_file() fout.write_tensors_to_file() fout.close() print("Done. Output file: " + fname_out)